Course M AU23203—Michaelmas Term 2021.
Worked Solutions.

1. Let X be a subset of n-dimensional Euclidean space. A subset W of
X is open in X if and only if there exists some open set V in R™ for
which W =V N X (see Proposition 4.5 in the MAU23203 course notes
for Michaelmas Term 2021). A subset G of X is said to be closed in
X if and only if its complement X \ G in X is open in X. (Here the
complement X \ G consists of all points of the set X that do not belong
to the set G.)

(a) Prove that a subset G of X is closed in X if and only if there exists a
closed set F in R™ for which G = FNX. [Your proof should be logically
accurate, and ought not to exceed ten carefully-chosen sentences.]

First suppose that G is closed in X. Then X \ G is open in X and
consequently (by a proposition proved in the course notes) there exists
some subset V of X open in X for which X\G = XNV. Let ' = R™"\V.
Then F'is closed in R", and

XNF=XNER\V)=X\V=X\(XNnV)=X\(X\G) =G.

Now suppose that G is a subset of X with the property that there
exists a closed set F' in R” for which G = X N F. Let V = R"\ F.
Then X NV = X\ FF = X \ G, and moreover X NV is open in X.
Then X \ G = X NV, and thus X \ G is open in X, and therefore G
is closed in X, as required.

(b) Give a short proof, in no more than six sentences, of the result that
if X is a closed set in R™, and if G is a subset of X that is closed in
X, then the set G is closed in n-dimensional Euclidean space R™.

It follows from the result of (a) that there exists some subset F' of R"
that is closed in R™ and satisfies X N F' = G. It then follows that the
set GG is the intersection of two subsets of R" that are closed in R", and
therefore the set G is itself closed in R™.



(¢) Let X be a closed set in R™ and let f: X — R be a real-valued
function on X that is continuous on X. Give a short proof, in no more
than siz sentences that, for any real number c, the set

{xeX: f(x)=>c}

is a closed set in n-dimensional space R™. [You may apply, without
proof, the result of any lemma, proposition, theorem or corollary in the
MAU23203 course notes for Michaelmas Term 2021. Indeed, where you
can apply directly a result that is already proved in the notes, you should
not, in the context of a homework assignment, incorporate the steps of
the given proof included in the course notes into your own proof.|

Note that
fTfteR:t>c}) = X\ 4,

where A = {x € X : f(x) > ¢}, and consequently the complement
X\ A of Ain X is open in X (by an immediate application of a
proposition proved in the course notes). It follows that the set A is
closed in X. But X is itself closed in R™. It now follows, on applying
the result of (b), that A is closed in R", as required.

. Let f:R — R be a real-valued function defined over the set of real
numbers, and let v be a real number. We say that the real num-
ber v is the limit of the function f as t increases to infinity, and write
tE+moo f(t) = v, if, given any positive real number e, there exists some

real number L that is large enough to ensure that |f(t) —v| < e for all
real numbers t for which t > L.

Now Z be the subset of two-dimensional space R? defined so that
Z ={(0,0)} U{(e"cost,e"sint} : t € R}.

(Thus the set Z is the union of the singleton set consisting of the ori-
gin and the set of points that lie on a given spiral in the plane that
swirls in towards the origin.) Let f:R — R be a real-valued function
on the set of real numbers, let v be a real number, and let g: Z — R
be the real-valued function on the set Z defined so that g(0,0) = v and
gle tcost, e tsint) = f(t) for all real numbers t. Prove that the func-
tion g is continuous at the origin (0,0) if and only if the real number v
is the limit of f(t) is t increases to infinity.



First note that

|(e7" cost,e " sint)| = e

for all real numbers ¢.
Now suppose that v = lim f(t). Let some positive real number ¢ be

t—+o00
given. Then there exists some real number L such that |f(t) —v| < ¢

whenever t > L. Set 6 = e ~. Then

lg(z,y) — 9(0,0)] < ¢

for all (z,y) € Z for which |(z,y)| < 0, and therefore the function g is
continuous at (0, 0).

Conversely suppose that the function ¢ is continuous at (0,0). Let
some positive real number € be given. Then there exists some positive
real number ¢ such that |g(z,y) — v| < € whenever (z,y) € Z satisfies
|(z,y)| < d, where v = ¢(0,0). Let L = —logd. Then |f(t) —v| < ¢
whenever ¢ > L, and therefore v = tE—i—moo f(@).

We conclude that v = . lifrn f(t) if and only if the function g is contin-
—+oo

uous at (0,0), as required.



