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Open Balls and Sets in Euclidean Spaces

Given any point p of a Euclidean space Rn, and given any positive real
number η, the open ball of radius η centred on the point p consists of all
points x of the Euclidean space Rn that lie within a distance η of the given
point p. Thus if p = (p1, p2, . . . , pn) then the open ball of radius η in Rn

centred on the point p is the set

{(x1, x2, . . . , xn) ∈ Rn : (x1 − p1)2 + (x2 − p2)2 + · · ·+ (xn − pn)2 < η2}.

A subset V of Rn is then said to be open in Rn if, given any point p of the
set V , there exists some positive real number η for which the open ball of
radius η centred on the point p is contained in the set V . A subset F of Rn

of Rn is said to be closed in Rn if and only if its complement Rn \ F is open
in Rn. Here

Rn \ F = {x ∈ Rn : x 6∈ F}.

Open balls in Euclidean spaces are open sets. This follows as an almost
immediate consequence of the Triangle Inequality.

Open Disks and Open Sets in the Euclidean Plane

When working with subsets of the Euclidean plane R2, the terms open ball
and open disk should be regarded as being synonymous: the term open ball
applies to appropriate subsets of a Euclidean space of any dimension; but if
the dimension of the space is equal to two, then the term open disk accords
more closely with everyday usage outside mathematics.
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Accordingly, the open disk in R2 of radius η centred on a point (a, b) of
R2 is the set

{(x, y) ∈ R2 : (x− a)2 + (y − b)2 = η}.

Of course the equation right-hand side here can be manipulated in various
ways. For example, the open disk of radius η in R2 centred on the point (a, b)
may be represented as the set

{(x, y) ∈ R2 : x2 − 2ax+ y2 − 2by = η2 − a2 − b2}.

In particular, the open disks in R2 of radius 2 centred on the points (1, 0)
and (−1, 0) are the sets

{(x, y) ∈ R2 : x2 − 2x+ y2 = 3} and {(x, y) ∈ R2 : x2 + 2x+ y2 = 3}

respectively.
A subset of the plane R2 is open in R2 if and in only if, given any point

of that subset, there exists some open disk centred on that point which is
contained within the subset.

We now consider the basic result that open disks in R2 are open subsets
of R2.
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We consider an open disk of radius η centred on some given point p, and
take an arbitrary point q of this disk. Then |q − p| < η, where |q − p|
denotes the standard Euclidean distance between the points p and q, this
distance being the length, or norm, of the displacement vector q−p between
the points p and q. We claim that if δ = η − |q − p| then the open disk
of radius δ centred on the point q is contained in the open disk of radius η
centred on the point p. Accordingly we take an arbitrary point x of the open
disk of radius δ centred on the point q.

p

q

x
η

δ

Now, in the triangle with vertices at the points p, q and x, the length
of the side with endpoints p and x is less than or equal to the sum of the
lengths of the other two sides. In vector notation this basic inequality may
be written as follows:

|x− p| ≤ |x− q|+ |q− p|.

Now, the point x is an arbitrary element of the open disk of radius δ centred
on the point q. This point therefore lies within a distance δ of the point q.
The Triangle Inequality stated above therefore ensures that

|x− p| < δ + |q− p|.

The manner in which the positive real number δ has been chosen then ensures
that |x−p| < η, thereby ensuring that the point x belongs to the open disk
of radius η centred on the point p.
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It should be clear from the argument just presented that the basic result
that open disks in the plane are open sets does not require the use of vector
notation to establish its validity. The validity of this result follows from the
fact that there is a well-defined notion of distance, determining in numerical
terms the separation between any two points of the plane, where the distance
function measuring the separation between points of the plane satisfies the
Triangle Equality.

A proof of the result that the length of any side of a triangle is less than
or equal to the sum of the lengths of the other two sides was given by Euclid
in the 20th Proposition of the First Book of his Elements of Geometry. The
proof given by Euclid is, in essentials, the same as that of the course in
geometry included in the Junior and Leaving Certificate curricula in Ireland.

By far the most important commentary on the First Book of Euclid’s
Elements of Geometry surviving from ancient times is that of Proclus (410–
485 C.E.), a Neo-Platonist philosopher and teacher of mathematics, who for
many years was the director of the Academy in Athens. Proclus’s commen-
tary on the 20th Proposition of the First Book of the Elements begins as
follows (in the translation published by Thomas Taylor in 1792):

The Epicureans oppose the present theorem, asserting that it is
manifest even to an ass; and that it requires no demonstration:
and besides this, that it is alike the employment of the ignorant,
to consider things manifest as worthy of proof, and to assent to
such as are of themselves immanifest and unknown; for he who
confounds these, seems to be ignorant of the difference between
demonstrable and indemonstrable. But that the present theorem
is known even to an ass, they evince from hence, that grass being
placed in one extremity of the sides, the ass seeking his food, wan-
ders over one side, and not over two. Against these we reply, that
the present theorem is indeed manifest to sense, but not to reason
producing science: for this is the case in a variety of concerns.
Thus for example, we are indubitably certain from sense, that
fire warms, but it is the business of science to convince us how
it warms; whether by an incorporeal power, or by corporeal sec-
tions; whether by spherical, or pyramidal particles. Again, that
we are moved is evident to sense, but it is difficult to assign a
rational cause how we are moved; whether over an impartible, or
over an interval: but how can we run through infinite, since every
magnitude is divisible in infinitum? Let, therefore, the present
theorem, that the two sides of a triangle are greater than the re-
mainder, be manifest to sense, yet it belongs to science to inform
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us how this is effected. And thus much may suffice against the
Epicureans.

(Regarding the suggestion that fire might warm by “pyramidal particles”,
Proclus was here clearly making reference to the account of the nature of the
earth and the cosmos, presented by Plato in his Timæus dialogue, that made
the claim that the four elements Fire, Air, Water and Earth recognized by an-
cient Greek philosophers were constituted of particles that were respectively
tetrahedral, octahedral, icosahedral and cubic in form.)

Open Disks in Euclidean Spaces and Metric Spaces

Resuming the discussion of open sets, it should be noted that the principle
that open disks are open sets in the plane generalizes to higher dimensions.
Imagine the surface of the Earth (or some idealized Earth) as being a perfect
sphere. This sphere then bounds a ball. If some point is located 100 kilome-
tres below the surface of the (perfectly spherical) Earth, then the open ball
of radius 100 kilometres centered on that point in the interior of the Earth
is wholly contained in the interior of the Earth.

Ultimately the proposition generalizes so as to apply to open balls and
open sets in metric spaces. A metric space consists of a set X, together
with a distance function d determining in numerical terms the separation or
distance d(x, y) between any two points x and y of the set X of the set, where
the distance function is required to satisfy the following four axioms:—

(i) d(x, y) ≥ 0 for all points x and y of X;

(ii) d(x, y) = d(y, x) for all points x and y of X;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all points x, y and z of X;

(iv) points x and y of X satisfy d(x, y) = 0 if and only if x = y.

The definitions of open ball and open set, applicable to subsets of any metric
space, generalize in the most direct and obvious fashion the standard defi-
nitions of open ball and open set applicable to subsets of Euclidean spaces.
The validity of the Triangle Inequality is built into the very axioms which
the distance function on a metric space must satisfy. Consequently the proof
of the result that open balls are open sets also generalizes in the most direct
and obvious fashion so as to apply to open balls and open sets in any metric
space.

Indeed let X be a metric space with distance function d, let p be a point
of X and let η be a positive real number. The open ball of radius η centred
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on the point p by definition consists of those points q of the metric space for
which d(p, q) < η. Accordingly let q be an arbitrary point of the open ball
in X centred on the point p, and let δ = η − d(p, q). Then δ > 0. Moreover
if x ∈ X satisfies d(x, q) < δ then, by the version of the Triangle Inequality
included in the metric space axioms (see (iii) above),

d(p, x) ≤ d(p, q) + d(q, x) < d(p, q) + δ = η,

and therefore the arbitrarily chosen point x of open ball of radius δ about
the point q belongs also to the open ball of radius η about the point p. Thus
the open ball of radius δ centred on the point q is contained in the open ball
of radius η centred on the point p.

Now a subset V of the metric space X is said to be open in X if, given
any point of V , there exists some open ball in X centred on that point which
is wholly contained within the set V . It follows from the argument just
presented that any open ball in a metric space is an open set in that space.

Regions Exterior to Spheres and Circles

Let us now discuss the regions of Euclidean space that are exterior to spheres.
Such regions are also open sets. Let us consider the three-dimensional case.
Again consider the surface of the Earth to be a perfect sphere. Let an
aeroplane happen to be one kilometre above the surface of the Earth. Then
any bird located within a distance of one kilometre of the aeroplane must be
airborne. Indeed suppose it were the case that the bird were located in the
interior of the Earth, or on the surface of the Earth. (For example, maybe
the bird in question was a deceased parrot that got chucked down a well
and subsequently buried under a pile of rubble.) Consider the triangle with
vertices at the aeroplane, the bird and the centre of the Earth. The distance
from the aeroplane to the centre of the Earth would exceed the radius of the
Earth by one kilometre. Now if the bird were both located in the interior of
the Earth, or on the surface of the Earth, and were also within a distance of
one kilometre from the plane, then the sum of the distances from the centre
of the Earth to the bird, and from the bird to the aeroplane would be strictly
less than the direct distance from the centre of the Earth to the aeroplane,
contradicting the Triangle inequality. It follows, as claimed, that if a bird is
located within a distance of one kilometre from the aeroplane then that bird
must be airborne. Or, in other words, the open ball centred on the aeroplane
is contained wholly within the atmosphere, provided that the radius of the
ball does not exceed one kilometre. And similarly if the aeroplane were
cruising ten kilometres above the surface of the Earth then a ball centred on
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the aeroplane is contained wholly within the atmosphere, provided that the
radius of the ball does not exceed ten kilometres. Thus, if the areoplane were
taking off or landing, then, at any time whilst the aeroplane is airborne, an
open ball whose radius less than or equal to the height of the aeroplane at
that time would be wholly contained within the atmosphere.

The region outside a sphere in three-dimensional space is accordingly an
open set in three-dimensional space. Similarly the region outside a circle in
the plane is an open set in that plane. Given a point lying outside the circle,
one can consider the open disk centred on the given point whose radius is
determined by subtracting the radius of the circle from the distance of the
given point from the centre of the circle. Such an open disk lies wholly
outside the circle. And the formal proof of this result utilizes the standard
Triangle Inequality.

Open Half-Spaces and Half-Planes

Returning to the aeroplane metaphor, now suppose that some portion of the
Earth’s surface is a perfectly flat featureless prairie. If an aeroplane is located
one kilometre above that prairie then any bird located within a distance of
one kilometre from the aeroplane is airborne. And similarly, whenever the
aeroplane is itself airborne, any bird whose distance from the aeroplane were
less than the height of the aeroplane above the surface of the prairie would
be airborne. Moreover the open ball centred on the areoplane is wholly
contained within the atmosphere provided that the radius of the ball is less
than or equal to the height of the aeroplane above the prairie.
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These considerations illustrate the mathematical result that a comple-
ment of a plane in three-dimensional space consists of two half-spaces, each
of which is an open subset of three-dimensional space. Similarly the com-
plement of any unbounded straight line in the plane consists of two open
half-planes, each of which is an open subset of the plane. Indeed if we take
a point of the plane that does not lie on the line then the open disk whose
radius is the perpendicular distance from the point to the line will be wholly
contained within that side of the line to which the point belongs.
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Intersecting Disks and Half-Planes

Let V be the subset of the plane defined so that

V = {(x, y) ∈ R2 : x2 + y2 < 9 and x+ 2 > 0}.

This set is pictured below.

This set V is an open set in the plane R2. In fact, given an arbitrary
point (a, b) of the set, the open disk of radius δ centred on the point (a, b) is
contained within the set, provided that

0 < δ ≤ min(3−
√
a2 + b2, a+ 2).

In geometric terms, the maximum value of δ associated with a point (a, b) of
the set V is the distance from that point (a, b) to the boundary of the set V .
Some points of the set V are closer to the straight part of the boundary;
other points the set V are closer to the circular arc that is the portion of the
circle x2+y2 = 9 included in the boundary of the set V . However, if one were
asked to justify the assertion that the set V is open in the plane, a lengthy
explanation to establish an explicit range for permissible values of the radius
of open disks fitting within the set would provide unnecessary detail. A more
succinct method of justifying the assertion would note first that the set V is
the intersection of two open sets, the first of those open sets being the open
disk of radius 3 centred on the origin (0, 0) and the second being the open-
half space consisting of all all points (x, y) of the plane for which x > −2.
Now any finite intersection of open sets in the plane must itself be an open
set. Therefore, in particular, the set V , being the intersection of two open
sets, must itself be an open set.
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One can also consider whether or not the set V is a closed set. It is not.
To justify the assertion that the set V is not closed, it suffices to show that
the complement of the set is not open. And to show that the complement
of the set V is open, one should exhibit a point of the complement of the
set V that is not the centre of any open ball of positive radius contained in
the complement of the set V . In other words, one should exhibit a point
that belongs to the complement of the set V but also has the property that
every open ball of positive radius centred on the exhibited point intersects the
set V . Examples of points of the complement of the set V with this property
are the following: the point (−2, 0), the point (3, 0), the point (0, 3). Note
that the set V has an obvious boundary, and the boundary of the set V is
where one would seek points that do not belong to the set V but are limit
points of the set V .
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