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Example Consider the function f :R2 → R defined by

f(x, y) =


2xy

x2 + y2
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

This function f is continuous at all points of R2 that are distinct from the
origin (0, 0). Indeed it follows immediately from the definition of continuity
that if the restriction of a function of several real variables to some open
subset of its domain is continuous on that open subset, then the function
itself is continuous at each point of that open subset. In the present example,
the function f is expressed as the quotient of two continuous functions, the
denominator being non-zero throughout the complement of the origin in R2.
Consequently the restriction of the function f to the complement of the origin
in R2 is continuous on that open set, and therefore the function f itself is
continuous at all points of the complement of the origin in two-dimensional
space R2.

Accordingly we investigate the behaviour of the function f :R2 → R
around the origin. To carry through such an investigation, it is advisable
to seek to construct some mental picture of the qualitative behaviour of this
function around the origin. Let us in particular investigate the behaviour of
this function on a circle of radius r centred on the origin.

Now
−(x2 + y2) ≤ 2xy ≤ x2 + y2

for all real numbers x and y, because (x−y)2 ≥ 0 and (x+y)2 ≥ 0. Moreover
2xy = x2 + y2 if and only if x = y, and 2xy = −(x2 + y2) if and only if
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x = −y. It follows that the function f takes values between −1 and 1 on
the circle of radius r for each positive real number r. Note that this function
is not continuous at (0, 0). There are various ways of showing this. For
this particular function, considering the behaviour of the function on a circle
of positive radius centred on the origin, it should be clear that, whilst the
function f has the value 0 at those points on such a circle where the circle
crosses the coordinate axes y = 0 and x = 0, the function f takes the value
1 at those points where the circle crosses the line x = y, and takes the value
−1 at those points where the circle crosses the line x = −y. Therefore, for
this particular function, a formal proof that this function is not continuous
at the origin can be obtained by considering the behaviour of the function
along the line x = y.

The function f thus takes the value 1 at all points of the line x = y
with the exception of the point (0, 0), where the function takes the value 0.
It should be pretty obvious that such a function could not possibly be con-
tinuous at (0, 0). We consider various way by which the existence of the
discontinuity can be formally established.

We can establish the existence of the discontinuity of the function f at
(0, 0) by applying the epsilon-delta criterion for continuity at this point with
ε chosen to be equal to 1

2
. Given any positive real number δ, some real

number t can be chosen for which 0 < t < δ/
√

2. Then |(t, t) − (0, 0)| < δ
but |f(t, t) − f(0, 0)| = 1. Thus no positive real number δ can be chosen
to ensure that |f(x, y) − f(0, 0)| < 1

2
whenever |(x, y) − (0, 0)| < δ. The

function f therefore has a discontinuity at (0, 0).
It is not however necessary to apply the epsilon-delta criterion directly

in order to show that the function f is discontinuous at (0, 0). Consider the

infinite sequence p1,p2,p3, . . . of points of R2, where pj =

(
1

j
,
1

j

)
for all

positive integers j. Then f(pj) = 1 for all positive integers j, and therefore
lim

j→+∞
f(pj) = 1. But lim

j→+∞
pj = (0, 0) and f(0, 0) = 0. Thus lim

j→+∞
f(pj) 6=

f

(
lim

j→+∞
pj

)
. Consequently the function f must have a discontinuity at

(0, 0).
One can also formally show the existence of the discontinuity as follows.

Let q:R → R2 be the function defined so that q(t) = (t, t) for all real num-
bers t. The function q is continuous. If the function f were continuous
at (0, 0) then the composition function f : q would be continuous at 0. But
f(q(0)) = 0 and f(q(t)) = 1 for all non-zero real numbers t. Thus composi-
tion function then fails to be continuous at 0, and consquently the function f
must have a discontinuity at (0, 0).
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But, although the function has a discontinuity at the origin, the partial
derivatives

∂f(x, y)

∂x
and

∂f(x, y)

∂y

of the function f with respect to the variables x and y exist at all points of
the plane R2. In particular those partial derivatives exist at the origin (0, 0).

The values of the partial derivatives of the function f can be determined
as functions of x and y away from the origin by the usual methods of multi-
variable calculus. At the origin (0, 0) of Cartesian coordinates itself, we find
that

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

= 0,
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

= 0

on account of the fact that f(x, 0) = f(0, y) = 0 for all x, y ∈ R.

Example Consider the function g:R2 → R defined by

g(x, y) =


4xy

(x2 + y2)2
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Note that this function is not continuous at (0, 0). Indeed, for each positive
real number r, the values of the function on the circle of radius r centred
on the origin range between −1/r2 and 1/r2, with the maximum value 1/r2

being achieved at those points on the circle of radius r centred on the origin
at which x = y, and the minimum value −1/r2 being achieved at those points
on that circle at which x = −y.

Accordingly consider in particular the behaviour of the function g along
the line x = y. Now g(t, t) = 1/t2 for all non-zero real numbers t, and
therefore g(t, t) → +∞ as t → 0, yet g(x, 0) = g(0, y) = 0 for all x, y ∈ R.
This function g accordingly has a discontinuity at (0, 0). Moreover the values
of the function g on a circle of radius r take on all real values between −1/r2

and 1/r2. It follows easily from this that, no matter how small the value of
the positive real number δ, every single real number is the value taken on
by the function g at some point of the open ball of radius δ centred on the
origin.

Nevertheless the partial derivatives

∂g(x, y)

∂x
and

∂g(x, y)

∂y

exist everywhere on R2, even at (0, 0). Indeed the partial derivatives of the
function g away from the origin can be computed by the standard methods
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of multivariable calculus. Furthermore at the origin we find that

∂g(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

= 0,
∂g(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

= 0

on account of the fact that g(x, 0) = g(0, y) = 0 for all x, y ∈ R.

Example Consider the function h:R2 → R defined by

h(x, y) =


2xy2

x2 + y4
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Given real numbers b and c, let ub,c:R → R be defined so that ub,c(t) =
h(bt, ct) for all t ∈ R. If b = 0 or c = 0 then ub,c(t) = 0 for all t ∈ R. If b 6= 0
and c 6= 0 then

ub,c(t) =
2bc2t3

b2t2 + c4t4
=

2bc2t

b2 + c2t2
.

Also, for non-zero constants b and c, the function ub,c satisfies the equation

ub,c(t) = h(bt, ct) =
2bc2t

b2 + c2t2
for all real numbers t.

Given non-zero constants b and c, the standard rules of one-variable cal-
culus enable us to differentiate the function ub,c any number of times. Ac-
cordingly this function ub,c:R → R is a real-valued function of a single real
variable that has derivatives of all orders.

Also, for non-zero constants b and c, the function ub,c satisfies the equation

ub,c(t) = h(bt, ct) =
2bc2t

b2 + c2t2
for all real numbers t.

Moreover the first derivative u′b,c(0) of ub,c(t) at t = 0 is given by the
formula

u′b,c(0) =


2c2

b
if b 6= 0;

0 if b = 0.

We have shown that the restriction of the function h:R2 → R to any line
passing through the origin determines a function that may be differentiated
any number of times with respect to distance along the line. Analogous
arguments show that the restriction of the function h to any other line in the
plane also determines a function that may be differentiated any number of
times with respect to distance along the line.

Now h(x, y) = 1 for all (x, y) ∈ R2 satisfying x > 0 and y = ±
√
x, and

similarly h(x, y) = −1 for all (x, y) ∈ R2 satisfying x < 0 and y = ±
√
−x. It

follows that every open disk centred on the origin (0, 0) contains some points
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at which the function h takes the value 1, and other points at which the
function takes the value −1, and indeed the function h will take on all real
values between −1 and 1 on any open disk centred on the origin, no matter
how small the disk. Therefore the function h:R2 → R is not continuous at
zero, even though the partial derivatives of the function h with respect to x
and y exist at each point of R2.

5


