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1 The Real Number System

1.1 Basic Properties of the Real Number System

The real numbers R constitute a field with respect to the usual operations of
addition and multiplication. In other words, the real number system satisfies
all of the following properties: the operations of addition and multiplication
satisfy the usual commutative, associative and distributive laws, so that x+
y = y + x, xy = yx, (x + y) + z = x + (y + z), (xy)z = x(yz) and (x +
y)z = xz + yz for all real numbers x, y and z; there exist real numbers 0
and 1 characterized by the properties that 0 + x = x and 1x = x for all
real numbers x; given any real number x, there exists a real number −x
characterized by the property that x + (−x) = 0; given any non-zero real
number x there exists a real number x−1 characterized by the property that
xx−1 = 1.

In the field R of real numbers operations of subtraction of real numbers,
and division of real numbers by non-zero real numbers are defined so that x−
y = x+(−y) and x/z = xz−1 for all real numbers x and y and for all non-zero
real numbers z. A variety of other algebraic identities and properties follow
as consequences of those just stated: analogous identities and properties are
valid in any field.

The real numbers R constitute an ordered field with respect to the usual
operations of addition and multiplication and the usual ordering. This state-
ment amounts to asserting that, in addition to having operations of addition
and multiplication satisfying the properties already described, there is an
ordering < on the real numbers which satisfies all the following properties:—

• given two real numbers x and y, exactly one of the ordering relations
x < y, x = y, y < x must hold for x and y (Trichotomy Law);

• if real numbers x, y and z satisfy both x < y and y < z then x < z
(Transitivity Law);

• if x and y are real numbers that satisfy x < y then x + z < y + z for
all real numbers z;

• if x and y are real numbers satisfying x > 0 and y > 0 then xy > 0.

The statement that the real numbers, with the usual operations of addi-
tion and multiplication and the usual ordering, constitute an ordered field
is not in itself sufficient to characterize the real number system completely.
Indeed the rational numbers, with the usual operations of addition and mul-
tiplication and the usual ordering, constitute in themselves an ordered field
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that is embedded as a subfield of the real numbers. Thus the basic properties,
or axioms, that characterize ordered fields are not in themselves sufficient to
enable one to prove properties of the real number system that are not shared
by the rational number system.

In particular, the real number system should contain an element,
√

2,
that is characterized by the properties that

√
2 > 0 and (

√
2)2 = 2. Now,

already by the time of Plato, the ancient Greeks knew that there are no pos-
itive integers m and n that satisfy the equation m2 = 2n2. Accordingly there
cannot exist any rational number whose square is equal to the number 2.
Consequently, it cannot be possible to prove the existence of the real num-
ber
√

2 using only the basic properties, or axioms, that characterize ordered
fields.

There are also some basic properties, shared by the systems of rational
numbers and real numbers, that do not follow as logical consequences of
the ordered field axioms. One such property is the Archimedean Property :
given any real (or rational) number x, there exists a positive integer that is
greater than x. It follows easily from the Archimedean property that, given
any positive real number ε, no matter how small, there exists some positive
integer n with the property that 1/n < ε.

In order to complete the axiomatic characterization of the real number
system, we introduce the Least Upper Bound Principle (or Least Upper Bound
Axiom). Before stating this principle, we establish some basic terminology.

Let S be a subset of the set R of real numbers. A real number u is said
to be an upper bound of the set S if x ≤ u for all x ∈ S. The set S is said to
be bounded above if such an upper bound exists. Similarly a real number l is
said to be a lower bound of the set S if x ≥ l for all x ∈ S. The set S is said
to be bounded below if such a lower bound exists.

Definition Let S be a subset of the set R of real numbers that is bounded
above. A real number s is said to be the least upper bound (or supremum)
of S (and is denoted by supS) if s is an upper bound of S and s ≤ u for all
upper bounds u of S.

Definition Let S be a subset of the set R of real numbers that is bounded
below. A real number t is said to be the greatest lower bound (or infimum)
of S (and is denoted by inf S) if t is a lower bound of S and t ≥ l for all
lower bounds l of S.

Note that there is no requirement that the least upper bound of a set of
real numbers, where it exists, either must belong or else must not belong to
the set which it bounds. Indeed the number 2 is the least upper bound of
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the sets {x ∈ Q : x ≤ 2} and {x ∈ Q : x < 2}. Note that the first of these
sets contains its least upper bound, whereas the second set does not.

The Least Upper Bound Principle may now be stated as follows.

Least Upper Bound Principle. Given any non-empty set S of
real numbers that is bounded above, there exists a real number
supS that is the least upper bound for the set S.

It follows as a consequence of the Least Upper Bound Principle that,
given any non-empty set S of real numbers that is bounded below, there
exists a real number inf S that is the greatest lower bound for the set S.
Indeed, given any non-empty set S of real numbers that is bounded below,
let T = {−x : x ∈ S}. Then the set T is non-empty and bounded above,
and therefore there exists a least upper bound supT for the set T . It is then
a straightforward exercise to verify that inf S = − supT .

1.2 Dedekind-complete Ordered Fields

Given a subset of an ordered field, the concepts of bounded above, bounded
below, upper bound, lower bound, least upper bound and greatest lower bound
can be defined in the obvious fashion so as to generalize the definitions pre-
viously given in the particular case of subsets of the set of real numbers.
An ordered field is said to be Dedekind-complete if, given any subset of that
ordered field that is bounded above, there exists, within the ordered field, a
least upper bound for that set. The real number system can be characterized
by the statement that the real numbers, with the usual operations of addition
and multiplication and the usual ordering, constitute a Dedekind-complete
ordered field.

Moreover it can be shown that any two Dedekind-complete ordered fields
are isomorphic as ordered fields. Thus, given any two Dedekind-complete
ordered fields, there exists a one-to-one correspondence between elements of
one field and elements of the other which respects the algebraic operations,
so that sums correspond to sums and products correspond to products, and
also respects the ordering, so that if, in one of the two ordered fields, a first
element is less than a second, the element of the other field corresponding to
the first element is less than that corresponding to the second.

In consequence, there is no essential difference between any two Dedekind-
complete ordered fields with regard to algebraic and ordering properties. One
Dedekind-complete ordered field is as good as another for the purpose of
providing a model of the real number system.

In 1872 the mathematicians Richard Dedekind and Georg Cantor each
constructed models of the real number system that proved adequate for the
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purpose of providing foundations for the theorems and constructions of real
analysis.

In Dedekind’s construction, each irrational number is represented as a
decomposition of the collection of rational numbers into two classes (or sets)
L and R, where each rational number belongs to exactly one of the two
classes L and R, and where each rational number belonging to L is less than
all the rational numbers belonging to R. Each such decomposition of the
collection of rational numbers is referred to as a Dedekind section.

In Cantor’s construction, expressed in more contemporary language, each
real number is constructed as an equivalence class of Cauchy sequences of
rational numbers. An infinite sequence q1, q2, q3, . . . of rational numbers is a
Cauchy sequence if, given any positive integer m, there exists some positive
integer N such that |qj − qk| < 1/m whenever j ≥ N and k ≥ N . Two such
Cauchy sequences of rational numbers q1, q2, q3, . . . and r1, r2, r3, . . . are said
to be equivalent if, given any positive integer m, there exists some positive
integer N such that |qj − rj| < 1/m whenever j ≥ N . (Note that, in or-
der to avoid circularity, in phrasing these definitions, it is necessary to use
definitions where quantities are made less than the reciprocal 1/m of some
positive integer m in place of the “positive real number ε”.) One can show
that the definition of equivalence of Cauchy sequences previously stated is an
equivalence relation. The resulting equivalence classes of Cauchy sequences
are identified with real numbers in Cantor’s construction of the real number
system.

The constructions published by Dedekind and Cantor in 1872 each yield a
set of mathematical objects that can be provided with appropriately-defined
operations of addition and multiplication, together with a natural ordering.
It can be shown that these constructions of Dedekind and Cantor each give
rise to a Dedekind-complete ordered field. Their methods are thus equally
viable for the purpose of constructing sets whose elements can be regarded
as representing real numbers satisfying all the properties required in order to
build the theory of real analysis on a secure foundation.

1.3 Convergence of Infinite Sequences of Real Num-
bers

An infinite sequence x1, x2, x3, . . . of real numbers associates to each positive
integer j a corresponding real number xj.

Definition An infinite sequence x1, x2, x3, . . . of real numbers is said to con-
verge to some real number p if and only if the following criterion is satisfied:
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given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − p| < ε for all positive integers j
satisfying j ≥ N .

If an infinite sequence x1, x2, x3, . . . of real numbers converges to some real
number p, then p is said to be the limit of the sequence, and we can indicate
the convergence of the infinite sequence to p by writing ‘xj → p as j → +∞’,
or by writing ‘ lim

j→+∞
xj = p’.

Let x and p be real numbers, and let ε be a strictly positive real number.
Then |x − p| < ε if and only if both x − p < ε and p − x < ε. It follows
that |x− p| < ε if and only if p− ε < x < p + ε. The condition |x− p| < ε
essentially requires that the value of the real number x should agree with p
to within an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number p if and only if, given any positive
real number ε, there exists some positive integer N such that p−ε < xj < p+ε
for all positive integers j satisfying j ≥ N .

Definition We say that an infinite sequence x1, x2, x3, . . . of real numbers is
bounded above if there exists some real number B such that xj ≤ B for all
positive integers j. Similarly we say that this sequence is bounded below if
there exists some real number A such that xj ≥ A for all positive integers j.
A sequence is said to be bounded if it is bounded above and bounded below.
Thus the sequence x1, x2, x3, . . . is bounded if and only if there exist real
numbers A and B such that A ≤ xj ≤ B for all positive integers j.

Lemma 1.1 Every convergent sequence of real numbers is bounded.

Proof Let x1, x2, x3, . . . be a sequence of real numbers converging to some
real number p. On applying the formal definition of convergence (with ε = 1),
we deduce the existence of some positive integer N such that p−1 < xj < p+1
for all j ≥ N . But then A ≤ xj ≤ B for all positive integers j, where A
is the minimum of x1, x2, . . . , xN−1 and p − 1, and B is the maximum of
x1, x2, . . . , xN−1 and p + 1.

1.4 Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be strictly increas-
ing if xj+1 > xj for all positive integers j, strictly decreasing if xj+1 < xj for
all positive integers j, non-decreasing if xj+1 ≥ xj for all positive integers j,
non-increasing if xj+1 ≤ xj for all positive integers j. A sequence satisfy-
ing any one of these conditions is said to be monotonic; thus a monotonic
sequence is either non-decreasing or non-increasing.
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Theorem 1.2 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Axiom that there
exists a least upper bound p for the set {xj : j ∈ N}. We claim that the
sequence converges to p.

Let some strictly positive real number ε be given. We must show that
there exists some positive integer N such that |xj − p| < ε whenever j ≥ N .
Now p − ε is not an upper bound for the set {xj : j ∈ N} (since p is the
least upper bound), and therefore there must exist some positive integer N
such that xN > p − ε. But then p − ε < xj ≤ p whenever j ≥ N , since
the sequence is non-decreasing and bounded above by p. Thus |xj − p| < ε
whenever j ≥ N . Therefore xj → p as j → +∞, as required.

If the sequence x1, x2, x3, . . . is non-increasing and bounded below then
the sequence −x1,−x2,−x3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence x1, x2, x3, . . . is also
convergent.

1.5 Subsequences of Sequences of Real Numbers

Definition Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form xj1 , xj2 , xj3 , . . .
where j1, j2, j3, . . . is an infinite sequence of positive integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The following
sequences are examples of subsequences of this sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .

1.6 The Bolzano-Weierstrass Theorem

Theorem 1.3 (Bolzano-Weierstrass) Every bounded sequence of real
numbers has a convergent subsequence.

Proof Let a1, a2, a3, . . . be a bounded sequence of real numbers. We define
a peak index to be a positive integer j with the property that aj ≥ ak for all
positive integers k satisfying k ≥ j. Thus a positive integer j is a peak index
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if and only if the jth member of the infinite sequence a1, a2, a3, . . . is greater
than or equal to all succeeding members of the sequence. Let S be the set of
all peak indices. Then

S = {j ∈ N : aj ≥ ak for all k ≥ j}.

First let us suppose that the set S of peak indices is infinite. Arrange the
elements of S in increasing order so that S = {j1, j2, j3, j4, . . .}, where j1 <
j2 < j3 < j4 < · · ·. It follows from the definition of peak indices that aj1 ≥
aj2 ≥ aj3 ≥ aj4 ≥ · · · . Thus aj1 , aj2 , aj3 , . . . is a non-increasing subsequence
of the original sequence a1, a2, a3, . . .. This subsequence is bounded below
(since the original sequence is bounded). It follows from Theorem 1.2 that
aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original sequence.

Now suppose that the set S of peak indices is finite. Choose a positive
integer j1 which is greater than every peak index. Then j1 is not a peak
index. Therefore there must exist some positive integer j2 satisfying j2 > j1
such that aj2 > aj1 . Moreover j2 is not a peak index (because j2 is greater
than j1 and j1 in turn is greater than every peak index). Therefore there
must exist some positive integer j3 satisfying j3 > j2 such that aj3 > aj2 . We
can continue in this way to construct (by induction on j) a strictly increasing
subsequence aj1 , aj2 , aj3 , . . . of our original sequence. This increasing subse-
quence is bounded above (since the original sequence is bounded) and thus
is convergent, by Theorem 1.2. This completes the proof of the Bolzano-
Weierstrass Theorem.
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