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5 Limits and Continuity for Functions of Sev-

eral Variables

5.1 Continuity of Functions of Several Real Variables

Definition Let X and Y be subsets of Rm and Rn respectively. A function
f :X → Y from X to Y is said to be continuous at a point p of X if and
only if, given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x)− f(p)| < ε whenever x ∈ X satisfies
|x− p| < δ.

The function f :X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.
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f(p)

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f

δ

ε

Lemma 5.1 Let X, Y and Z be subsets of Euclidean spaces, let f :X → Y
be a function from X to Y and let g:Y → Z be a function from Y to Z.
Suppose that f is continuous at some point p of X and that g is continuous
at f(p). Then the composition function g ◦ f :X → Z is continuous at p.

Proof Let some positive real number ε be given. Then there exists some
positive real number η such that |g(y)−g(f(p))| < ε for all y ∈ Y satisfying
|y − f(p)| < η. But then there exists some positive real number δ such
that |f(x) − f(p)| < η for all x ∈ X satisfying |x − p| < δ. It follows that
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|g(f(x)) − g(f(p))| < ε for all x ∈ X satisfying |x − p| < δ, and thus g ◦ f
is continuous at p, as required.

Lemma 5.2 Let X and Y be subsets of Euclidean spaces, and let f :X →
Y be a continuous function from X to Y . Let x1,x2,x3, . . . be an infinite
sequence of points of X which converges to some point p of X. Then the
sequence f(x1), f(x2), f(x3), . . . converges to f(p).

Proof Let some positive real number ε be given. The function f is contin-
uous at p, and therefore there exists some positive real number δ such that
|f(x) − f(p)| < ε for all x ∈ X satisfying |x − p| < δ. Also the infinite se-
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BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f

xN

f(xN)

quence x1,x2,x3, . . . converges to the point p, and therefore there exists some
positive integer N such that |xj − p| < δ whenever j ≥ N . It follows that
if j ≥ N then |f(xj)− f(p)| < ε. Thus the sequence f(x1), f(x2), f(x3), . . .
converges to f(p), as required.

Let X and Y be subsets of Rm and Rn respectively, and let f :X → Y be
a function from X to Y . Then

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where f1, f2, . . . , fn are functions from X to R, referred to as
the components of the function f .
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Proposition 5.3 Let X and Y be subsets of Euclidean spaces, and let p ∈
X. A function f :X → Y is continuous at the point p if and only if its
components are all continuous at p.

Proof Let Y be a subset of n-dimensional Euclidean space Rn. Note that
the ith component fi of f is given by fi = πi◦f , where πi:Rn → R is the con-
tinuous function which maps (y1, y2, . . . , yn) ∈ Rn onto its ith component yi.
Now any composition of continuous functions is continuous, by Lemma 5.1.
Thus if f is continuous at p, then so are the components of f .

Conversely suppose that the components of f are continuous at p ∈ X.
Let some positive real number ε be given. Then there exist positive real
numbers δ1, δ2, . . . , δn such that |fi(x)− fi(p)| < ε/

√
n for x ∈ X satisfying

|x − p| < δi. Let δ be the minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies
|x− p| < δ then

|f(x)− f(p)|2 =
n∑

i=1

|fi(x)− fi(p)|2 < ε2,

and hence |f(x) − f(p)| < ε. Thus the function f is continuous at p, as
required.

Lemma 5.4 The functions s:R2 → R and m:R2 → R defined by s(x, y) =
x+ y and m(x, y) = xy are continuous.

Proof Let (u, v) ∈ R2. We first show that s:R2 → R is continuous at (u, v).
Let some positive real number ε be given. Let δ = 1

2
ε. If (x, y) is any point

of R2 whose distance from (u, v) is less than δ then |x−u| < δ and |y−v| < δ,
and hence

|s(x, y)− s(u, v)| = |x+ y − u− v| ≤ |x− u|+ |y − v| < 2δ = ε.

This shows that s:R2 → R is continuous at (u, v).
Next we show that m:R2 → R is continuous at (u, v). Let some positive

real number ε be given. Now

m(x, y)−m(u, v) = xy − uv = (x− u)(y − v) + u(y − v) + (x− u)v.

for all points (x, y) of R2. Thus if the distance from (x, y) to (u, v) is less
than δ then |x − u| < δ and |y − v| < δ, and hence |m(x, y) − m(u, v)| <
δ2 + (|u| + |v|)δ. Let some positive real number ε be given. If the positive
real number δ is chosen to be the minimum of 1 and ε/(1 + |u| + |v|) then
δ2 + (|u| + |v|)δ ≤ (1 + |u| + |v|)δ ≤ ε, and thus |m(x, y) −m(u, v)| < ε for
all points (x, y) of R2 whose distance from (u, v) is less than δ. This shows
that m:R2 → R is continuous at (u, v).
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Proposition 5.5 Let X be a subset of Rn, and let f :X → R and g:X → R
be continuous functions from X to R. Then the functions f + g, f − g and
f · g are continuous. If in addition g(x) 6= 0 for all x ∈ X then the quotient
function f/g is continuous.

Proof Note that f + g = s ◦ h and f · g = m ◦ h, where h:X → R2,
s:R2 → R and m:R2 → R are given by h(x) = (f(x), g(x)), s(u, v) = u + v
and m(u, v) = uv for all x ∈ X and u, v ∈ R. It follows from Proposition 5.3,
Lemma 5.4 and Lemma 5.1 that f + g and f · g are continuous, being com-
positions of continuous functions. Now f − g = f + (−g), and both f and
−g are continuous. Therefore f − g is continuous.

Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r:R \ {0} → R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. Thus the function 1/g is a composition
of continuous functions and is thus continuous. But then, using the fact that
a product of continuous real-valued functions is continuous, we deduce that
f/g is continuous.

Example Consider the function f :R2 \ {(0, 0)} → R2 defined by

f(x, y) =

(
x

x2 + y2
,
−y

x2 + y2

)
.

The continuity of the components of the function f follows from straightfor-
ward applications of Proposition 5.5. It then follows from Proposition 5.3
that the function f is continuous on R2 \ {(0, 0)}.

Lemma 5.6 Let X be a subset of Rm, let f :X → Rn be a continuous func-
tion mapping X into Rn, and let |f |:X → R be the real-valued function on
X defined such that |f |(x) = |f(x)| for all x ∈ X. Then the real-valued
function |f | is continuous on X.

Proof Let x and p be points of X. Then

|f(x)| = |(f(x)− f(p)) + f(p)| ≤ |f(x)− f(p)|+ |f(p)|

and
|f(p)| = |(f(p)− f(x)) + f(x)| ≤ |f(x)− f(p)|+ |f(x)|,

and therefore ∣∣∣|f(x)| − |f(p)|
∣∣∣ ≤ |f(x)− f(p)|.

The result now follows on applying the definition of continuity, using the
above inequality. Indeed let p be a point of X, and let some positive real
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number ε be given. Then there exists a positive real number δ small enough
to ensure that |f(x) − f(p)| < ε for all x ∈ X satisfying |x − p| < δ. But
then ∣∣∣|f(x)| − |f(p)|

∣∣∣ ≤ |f(x)− f(p)| < ε

for all x ∈ X satisfying |x− p| < δ, and thus the function |f | is continuous,
as required.

5.2 Limits of Functions of Several Real Variables

Definition Let X be a subset of m-dimensional Euclidean space Rm, let
f :X → Rn be a function mapping the set X into n-dimensional Euclidean
space Rn, let p be a limit point of the set X, and let q be a point in Rn.
The point q is said to be the limit of f(x), as x tends to p in X, if and
only if, given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x) − q| < ε whenever x ∈ X satisfies
0 < |x− p| < δ.

Let X be a subset of m-dimensional Euclidean space Rm, let f :X → Rn

be a function mapping the set X into n-dimensional Euclidean space Rn,
let p be a limit point of the set X, and let q be a point of Rn. If q is the
limit of f(x) as x tends to p in X then we can denote this fact by writing
lim
x→p

f(x) = q.

Proposition 5.7 Let X be a subset of Rm, let p be a limit point of X, and
let q be a point of Rn. A function f :X → Rn has the property that

lim
x→p

f(x) = q

if and only if
lim
x→p

fi(x) = qi

for i = 1, 2, . . . , n, where f1, f2, . . . , fn are the components of the function f
and q = (q1, q2, . . . , qn).

Proof Suppose that lim
x→p

f(x) = q. Let i be an integer between 1 and n, and

let some positive real number ε be given. Then there exists some positive
real number δ such that |f(x) − q| < ε whenever 0 < |x − p| < δ. It then
follows from the definition of the Euclidean norm that

|fi(x)− qi| ≤ |f(x)− q| < ε
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whenever 0 < |x − p| < δ. Thus if lim
x→p

f(x) = q then lim
x→p

fi(x) = qi for

i = 1, 2, . . . , n.
Conversely suppose that

lim
x→p

fi(x) = qi

for i = 1, 2, . . . , n. Let some positive real number ε be given. Then there
exist positive real numbers δ1, δ2, . . . , δn such that |fi(x) − qi| < ε/

√
n for

x ∈ X satisfying 0 < |x− p| < δi. Let δ be the minimum of δ1, δ2, . . . , δn. If
x ∈ X satisfies 0 < |x− p| < δ then

|f(x)− q|2 =
n∑

i=1

|fi(x)− qi|2 < ε2,

and hence |f(x)− q| < ε. Thus

lim
x→p

f(x) = q,

as required.

Proposition 5.8 Let X be a subset of m-dimensional Euclidean space Rm,
let f :X → Rn and g:X → Rn be functions mapping X into n-dimensional
Euclidean space Rn, let p be a limit point of X, and let q and r be points of
Rn. Suppose that

lim
x→p

f(x) = q

and
lim
x→p

g(x) = r.

Then
lim
x→p

(f(x) + g(x)) = q + r.

Proof Let some strictly positive real number ε be given. Then there exist
strictly positive real numbers δ1 and δ2 such that

|f(x)− q| < 1
2
ε

whenever x ∈ X satisfies 0 < |x− p| < δ1 and

|g(x)− r| < 1
2
ε
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whenever x ∈ X satisfies 0 < |x− p| < δ2. Let δ be the minimum of δ1 and
δ2. Then δ > 0, and if x ∈ X satisfies 0 < |x− p| < δ then

|f(x)− q| < 1
2
ε

and
|g(x)− r| < 1

2
ε,

and therefore

|f(x) + g(x)− (q + r)| ≤ |f(x)− q|+ |g(x)− r|
< 1

2
ε+ 1

2
ε = ε.

It follows that
lim
x→p

(f(x) + g(x)) = q + r,

as required.

Lemma 5.9 Let X and Y be subsets of Rm and Rn respectively, let p be a
limit point of X, let q be a point of Y , let f :X → Y be a function satisfying
f(X) ⊂ Y , and let g:Y → Rk be a function from Y to Rk. Suppose that

lim
x→p

f(x) = q

and that the function g is continuous at q. Then

lim
x→p

g(f(x)) = g(q).

Proof Let some positive real number ε be given. Then there exists some
positive real number η such that |g(y) − g(q)| < ε for all y ∈ Y satisfying
|y−q| < η, because the function g is continuous at q. But then there exists
some positive real number δ such that |f(x)−q| < η for all x ∈ X satisfying
0 < |x− p| < δ. It follows that |g(f(x))− g(q)| < ε for all x ∈ X satisfying
0 < |x− p| < δ, and thus

lim
x→p

g(f(x)) = g(q),

as required.

Proposition 5.10 Let X be a subset of Rm, let f :X → R and g:X →
R be real-valued functions on X, and let p be a limit point of the set X.
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Suppose that lim
x→p

f(x) and lim
x→p

g(x) both exist. Then so do lim
x→p

(f(x)+g(x)),

lim
x→p

(f(x)− g(x)) and lim
x→p

(f(x)g(x)), and moreover

lim
x→p

(f(x) + g(x)) = lim
x→p

f(x) + lim
x→p

g(x),

lim
x→p

(f(x)− g(x)) = lim
x→p

f(x)− lim
x→p

g(x),

lim
x→p

(f(x)g(x)) = lim
x→p

f(x)× lim
x→p

g(x),

If moreover g(x) 6= 0 for all x ∈ X and lim
x→p

g(x) 6= 0 then

lim
x→p

f(x)

g(x)
=

lim
x→p

f(x)

lim
x→p

g(x)
.

Proof Let q = lim
x→p

f(x) and r = lim
x→p

g(x), and let h:X → R2 be defined

such that
h(x) = (f(x), g(x))

for all x ∈ X. Then
lim
x→p

h(x) = (q, r)

(see Proposition 5.7).
Let s:R2 → R and m:R2 → R be the functions from R2 to R defined such

that s(u, v) = u+ v and m(u, v) = uv for all u, v ∈ R. Then the functions s
and m are continuous (see Lemma 5.4). Also f + g = s ◦h and f · g = m ◦h.
It follows from this that

lim
x→p

(f(x) + g(x)) = lim
x→p

s(f(x), g(x)) = lim
x→p

s(h(x))

= s

(
lim
x→p

h(x)

)
= s(q, r) = q + r,

(see Lemma 5.9), and
lim
x→p

(−g(x)) = −r.

It follows that
lim
x→p

(f(x)− g(x)) = q − r.

Similarly, when taking limits of products of functions,

lim
x→p

(f(x)g(x)) = lim
x→p

m(f(x), g(x)) = lim
x→p

m(h(x))

= m

(
lim
x→p

h(x)

)
= m(q, r) = qr

36



Now suppose that g(x) 6= 0 for all x ∈ X and that lim
x→p

g(x) 6= 0. Rep-

resenting the function sending x ∈ X to 1/g(x) as the composition of the
function g and the reciprocal function e:R \ {0} → R, where e(t) = 1/t for
all non-zero real numbers t, we find, as in the first proof, that the function
sending each point x of X to

lim
x→p

(
1

g(x)

)
=

1

r
.

It then follows that

lim
x→p

f(x)

g(x)
=
q

r
,

as required.

Proposition 5.11 Let X be a subset of Rm, let f :X → Rn be a function
mapping the set X into Rn, and let p be a point of the set X that is also
a limit point of X. Then the function f is continuous at the point p if and
only if lim

x→p
f(x) = f(p).

Proof The result follows directly on comparing the relevant definitions.

Let X be a subset of m-dimensional Euclidean space Rm, and let p be a
point of the set X. Suppose that the point p is not a limit point of the set X.
Then there exists some strictly positive real number δ0 such that |x−p| ≥ δ0
for all x ∈ X satisfying x 6= p. The point p is then said to be an isolated
point of X.

Let X be a subset of m-dimensional Euclidean space Rm. The definition
of continuity then ensures that any function f :X → Rn mapping the set X
into n-dimensional Euclidean space Rn is continuous at any isolated point of
its domain X.

5.3 Continuous Functions and Open Sets

Let X and Y be subsets of Rm and Rn, and let f :X → Y be a function from
X to Y . We recall that the function f is continuous at a point p of X if,
given any positive real number ε, there exists some positive real number δ
such that |f(x)− f(p)| < ε for all points x of X satisfying |x−p| < δ. Thus
the function f :X → Y is continuous at p if and only if, given any positive real
number ε, there exists some positive real number δ such that the function f
maps BX(p, δ) into BY (f(p), ε) (where BX(p, δ) and BY (f(p), ε) denote the
open balls in X and Y of radius δ and ε about p and f(p) respectively).

Given any function f :X → Y , we denote by f−1(V ) the preimage of a
subset V of Y under the map f , defined by f−1(V ) = {x ∈ X : f(x) ∈ V }.
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Proposition 5.12 Let X and Y be subsets of Rm and Rn, and let f :X → Y
be a function from X to Y . The function f is continuous if and only if f−1(V )
is open in X for every open subset V of Y .

Proof Suppose that f :X → Y is continuous. Let V be an open set in Y . We
must show that f−1(V ) is open in X. Let p ∈ f−1(V ). Then f(p) ∈ V . But
V is open, hence there exists some positive real number ε with the property
that BY (f(p), ε) ⊂ V . But f is continuous at p. Therefore there exists
some positive real number δ such that f maps BX(p, δ) into BY (f(p), ε)
(see the remarks above). Thus f(x) ∈ V for all x ∈ BX(p, δ), showing that
BX(p, δ) ⊂ f−1(V ). This shows that f−1(V ) is open in X for every open
set V in Y .

X

Yp

f(p)

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))
V

f−1(V )

f

Conversely suppose that f :X → Y is a function with the property that
f−1(V ) is open in X for every open set V in Y . Let p ∈ X. We must show
that f is continuous at p. Let some positive real number ε be given. Then
BY (f(p), ε) is an open set in Y , by Lemma 4.1, hence f−1 (BY (f(p), ε)) is
an open set in X which contains p. It follows that there exists some positive
real number δ such that BX(p, δ) ⊂ f−1 (BY (f(p), ε)). Thus, given any
positive real number ε, there exists some positive real number δ such that f
maps BX(p, δ) into BY (f(p), ε). We conclude that f is continuous at p, as
required.

Let X be a subset of Rn, let f :X → R be continuous, and let c be some
real number. Then the sets

{x ∈ X : f(x) > c}
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X

Yp

f(p)

f−1(BY (f(p), ε))

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f

and
{x ∈ X : f(x) < c}

are open in X, and, given real numbers a and b satisfying a < b, the set

{x ∈ X : a < f(x) < b}

is open in X.
Again let X be a subset of Rn, let f :X → R be continuous, and let c

be some real number. Now a subset of X is closed in X if and only if its
complement is open in X. Consequently the sets

{x ∈ X : f(x) ≤ c}

and
{x ∈ X : f(x) ≥ c},

being the complements in X of sets that are open in X, must themselves be
closed in X. It follows that that set

{x ∈ X : f(x) = c},

being the intersection of two subsets X that are closed in X, must itself be
closed in X.
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