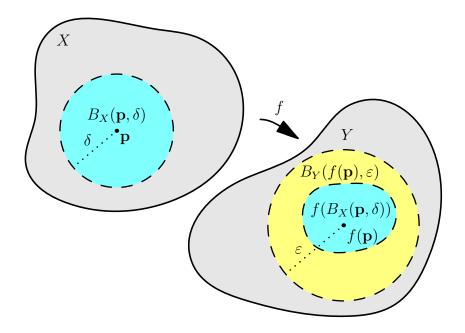
Module MAU23203: Analysis in Several Real Variables Michaelmas Term 2020 Section 5: Limits and Continuity for Functions of Several Variables

D. R. Wilkins

Copyright © Trinity College Dublin 2020

Contents

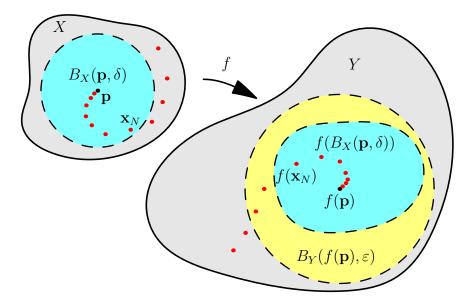

5	Lim	its and Continuity for Functions of Several Variables	29
	5.1	Continuity of Functions of Several Real Variables	29
	5.2	Limits of Functions of Several Real Variables	33
	5.3	Continuous Functions and Open Sets	37

5 Limits and Continuity for Functions of Several Variables

5.1 Continuity of Functions of Several Real Variables

Definition Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n respectively. A function $f: X \to Y$ from X to Y is said to be *continuous* at a point **p** of X if and only if, given any strictly positive real number ε , there exists some strictly positive real number δ such that $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$ whenever $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$.

The function $f: X \to Y$ is said to be continuous on X if and only if it is continuous at every point **p** of X.


Lemma 5.1 Let X, Y and Z be subsets of Euclidean spaces, let $f: X \to Y$ be a function from X to Y and let $g: Y \to Z$ be a function from Y to Z. Suppose that f is continuous at some point **p** of X and that g is continuous at $f(\mathbf{p})$. Then the composition function $g \circ f: X \to Z$ is continuous at **p**.

Proof Let some positive real number ε be given. Then there exists some positive real number η such that $|g(\mathbf{y}) - g(f(\mathbf{p}))| < \varepsilon$ for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - f(\mathbf{p})| < \eta$. But then there exists some positive real number δ such that $|f(\mathbf{x}) - f(\mathbf{p})| < \eta$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. It follows that

 $|g(f(\mathbf{x})) - g(f(\mathbf{p}))| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$, and thus $g \circ f$ is continuous at \mathbf{p} , as required.

Lemma 5.2 Let X and Y be subsets of Euclidean spaces, and let $f: X \to Y$ be a continuous function from X to Y. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be an infinite sequence of points of X which converges to some point \mathbf{p} of X. Then the sequence $f(\mathbf{x}_1), f(\mathbf{x}_2), f(\mathbf{x}_3), \ldots$ converges to $f(\mathbf{p})$.

Proof Let some positive real number ε be given. The function f is continuous at \mathbf{p} , and therefore there exists some positive real number δ such that $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. Also the infinite se-

quence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to the point \mathbf{p} , and therefore there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \delta$ whenever $j \ge N$. It follows that if $j \ge N$ then $|f(\mathbf{x}_j) - f(\mathbf{p})| < \varepsilon$. Thus the sequence $f(\mathbf{x}_1), f(\mathbf{x}_2), f(\mathbf{x}_3), \ldots$ converges to $f(\mathbf{p})$, as required.

Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $f: X \to Y$ be a function from X to Y. Then

$$f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x}))$$

for all $\mathbf{x} \in X$, where f_1, f_2, \ldots, f_n are functions from X to \mathbb{R} , referred to as the *components* of the function f.

Proposition 5.3 Let X and Y be subsets of Euclidean spaces, and let $\mathbf{p} \in X$. A function $f: X \to Y$ is continuous at the point \mathbf{p} if and only if its components are all continuous at \mathbf{p} .

Proof Let Y be a subset of n-dimensional Euclidean space \mathbb{R}^n . Note that the *i*th component f_i of f is given by $f_i = \pi_i \circ f$, where $\pi_i \colon \mathbb{R}^n \to \mathbb{R}$ is the continuous function which maps $(y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$ onto its *i*th component y_i . Now any composition of continuous functions is continuous, by Lemma 5.1. Thus if f is continuous at **p**, then so are the components of f.

Conversely suppose that the components of f are continuous at $\mathbf{p} \in X$. Let some positive real number ε be given. Then there exist positive real numbers $\delta_1, \delta_2, \ldots, \delta_n$ such that $|f_i(\mathbf{x}) - f_i(\mathbf{p})| < \varepsilon/\sqrt{n}$ for $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta_i$. Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_n$. If $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$ then

$$|f(\mathbf{x}) - f(\mathbf{p})|^2 = \sum_{i=1}^n |f_i(\mathbf{x}) - f_i(\mathbf{p})|^2 < \varepsilon^2,$$

and hence $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$. Thus the function f is continuous at \mathbf{p} , as required.

Lemma 5.4 The functions $s: \mathbb{R}^2 \to \mathbb{R}$ and $m: \mathbb{R}^2 \to \mathbb{R}$ defined by s(x, y) = x + y and m(x, y) = xy are continuous.

Proof Let $(u, v) \in \mathbb{R}^2$. We first show that $s: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v). Let some positive real number ε be given. Let $\delta = \frac{1}{2}\varepsilon$. If (x, y) is any point of \mathbb{R}^2 whose distance from (u, v) is less than δ then $|x-u| < \delta$ and $|y-v| < \delta$, and hence

$$|s(x,y) - s(u,v)| = |x + y - u - v| \le |x - u| + |y - v| < 2\delta = \varepsilon.$$

This shows that $s: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v).

Next we show that $m: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v). Let some positive real number ε be given. Now

$$m(x,y) - m(u,v) = xy - uv = (x - u)(y - v) + u(y - v) + (x - u)v.$$

for all points (x, y) of \mathbb{R}^2 . Thus if the distance from (x, y) to (u, v) is less than δ then $|x - u| < \delta$ and $|y - v| < \delta$, and hence $|m(x, y) - m(u, v)| < \delta^2 + (|u| + |v|)\delta$. Let some positive real number ε be given. If the positive real number δ is chosen to be the minimum of 1 and $\varepsilon/(1 + |u| + |v|)$ then $\delta^2 + (|u| + |v|)\delta \leq (1 + |u| + |v|)\delta \leq \varepsilon$, and thus $|m(x, y) - m(u, v)| < \varepsilon$ for all points (x, y) of \mathbb{R}^2 whose distance from (u, v) is less than δ . This shows that $m: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v). **Proposition 5.5** Let X be a subset of \mathbb{R}^n , and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be continuous functions from X to \mathbb{R} . Then the functions f + g, f - g and $f \cdot g$ are continuous. If in addition $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ then the quotient function f/g is continuous.

Proof Note that $f + g = s \circ h$ and $f \cdot g = m \circ h$, where $h: X \to \mathbb{R}^2$, $s: \mathbb{R}^2 \to \mathbb{R}$ and $m: \mathbb{R}^2 \to \mathbb{R}$ are given by $h(\mathbf{x}) = (f(\mathbf{x}), g(\mathbf{x})), s(u, v) = u + v$ and m(u, v) = uv for all $\mathbf{x} \in X$ and $u, v \in \mathbb{R}$. It follows from Proposition 5.3, Lemma 5.4 and Lemma 5.1 that f + g and $f \cdot g$ are continuous, being compositions of continuous functions. Now f - g = f + (-g), and both f and -g are continuous. Therefore f - g is continuous.

Now suppose that $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$. Note that $1/g = r \circ g$, where $r: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is the reciprocal function, defined by r(t) = 1/t. Now the reciprocal function r is continuous. Thus the function 1/g is a composition of continuous functions and is thus continuous. But then, using the fact that a product of continuous real-valued functions is continuous, we deduce that f/g is continuous.

Example Consider the function $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ defined by

$$f(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right).$$

The continuity of the components of the function f follows from straightforward applications of Proposition 5.5. It then follows from Proposition 5.3 that the function f is continuous on $\mathbb{R}^2 \setminus \{(0,0)\}$.

Lemma 5.6 Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a continuous function mapping X into \mathbb{R}^n , and let $|f|: X \to \mathbb{R}$ be the real-valued function on X defined such that $|f|(\mathbf{x}) = |f(\mathbf{x})|$ for all $\mathbf{x} \in X$. Then the real-valued function |f| is continuous on X.

Proof Let \mathbf{x} and \mathbf{p} be points of X. Then

$$|f(\mathbf{x})| = |(f(\mathbf{x}) - f(\mathbf{p})) + f(\mathbf{p})| \le |f(\mathbf{x}) - f(\mathbf{p})| + |f(\mathbf{p})|$$

and

$$|f(\mathbf{p})| = |(f(\mathbf{p}) - f(\mathbf{x})) + f(\mathbf{x})| \le |f(\mathbf{x}) - f(\mathbf{p})| + |f(\mathbf{x})|,$$

and therefore

$$\left| |f(\mathbf{x})| - |f(\mathbf{p})| \right| \le |f(\mathbf{x}) - f(\mathbf{p})|.$$

The result now follows on applying the definition of continuity, using the above inequality. Indeed let \mathbf{p} be a point of X, and let some positive real

number ε be given. Then there exists a positive real number δ small enough to ensure that $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. But then

$$\left| \left| f(\mathbf{x}) \right| - \left| f(\mathbf{p}) \right| \right| \le \left| f(\mathbf{x}) - f(\mathbf{p}) \right| < \varepsilon$$

for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$, and thus the function |f| is continuous, as required.

5.2 Limits of Functions of Several Real Variables

Definition Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into n-dimensional Euclidean space \mathbb{R}^n , let **p** be a limit point of the set X, and let **q** be a point in \mathbb{R}^n . The point **q** is said to be the *limit* of $f(\mathbf{x})$, as **x** tends to **p** in X, if and only if, given any strictly positive real number ε , there exists some strictly positive real number δ such that $|f(\mathbf{x}) - \mathbf{q}| < \varepsilon$ whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into *n*-dimensional Euclidean space \mathbb{R}^n , let **p** be a limit point of the set X, and let **q** be a point of \mathbb{R}^n . If **q** is the limit of $f(\mathbf{x})$ as **x** tends to **p** in X then we can denote this fact by writing $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = \mathbf{q}$.

Proposition 5.7 Let X be a subset of \mathbb{R}^m , let **p** be a limit point of X, and let **q** be a point of \mathbb{R}^n . A function $f: X \to \mathbb{R}^n$ has the property that

$$\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})=\mathbf{q}$$

if and only if

$$\lim_{\mathbf{x}\to\mathbf{p}}f_i(\mathbf{x})=q_i$$

for i = 1, 2, ..., n, where $f_1, f_2, ..., f_n$ are the components of the function fand $\mathbf{q} = (q_1, q_2, ..., q_n)$.

Proof Suppose that $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = \mathbf{q}$. Let *i* be an integer between 1 and *n*, and let some positive real number ε be given. Then there exists some positive real number δ such that $|f(\mathbf{x}) - \mathbf{q}| < \varepsilon$ whenever $0 < |\mathbf{x} - \mathbf{p}| < \delta$. It then follows from the definition of the Euclidean norm that

$$|f_i(\mathbf{x}) - q_i| \le |f(\mathbf{x}) - \mathbf{q}| < \varepsilon$$

whenever $0 < |\mathbf{x} - \mathbf{p}| < \delta$. Thus if $\lim_{\mathbf{x} \to \mathbf{p}} f(\mathbf{x}) = \mathbf{q}$ then $\lim_{\mathbf{x} \to \mathbf{p}} f_i(\mathbf{x}) = q_i$ for i = 1, 2, ..., n.

Conversely suppose that

$$\lim_{\mathbf{x}\to\mathbf{p}}f_i(\mathbf{x})=q_i$$

for i = 1, 2, ..., n. Let some positive real number ε be given. Then there exist positive real numbers $\delta_1, \delta_2, ..., \delta_n$ such that $|f_i(\mathbf{x}) - q_i| < \varepsilon/\sqrt{n}$ for $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta_i$. Let δ be the minimum of $\delta_1, \delta_2, ..., \delta_n$. If $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$ then

$$|f(\mathbf{x}) - \mathbf{q}|^2 = \sum_{i=1}^n |f_i(\mathbf{x}) - q_i|^2 < \varepsilon^2,$$

and hence $|f(\mathbf{x}) - \mathbf{q}| < \varepsilon$. Thus

$$\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})=\mathbf{q},$$

as required.

Proposition 5.8 Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ and $g: X \to \mathbb{R}^n$ be functions mapping X into n-dimensional Euclidean space \mathbb{R}^n , let **p** be a limit point of X, and let **q** and **r** be points of \mathbb{R}^n . Suppose that

$$\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})=\mathbf{q}$$

and

$$\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x})=\mathbf{r}.$$

Then

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x}))=\mathbf{q}+\mathbf{r}.$$

Proof Let some strictly positive real number ε be given. Then there exist strictly positive real numbers δ_1 and δ_2 such that

$$|f(\mathbf{x}) - \mathbf{q}| < \frac{1}{2}\varepsilon$$

whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta_1$ and

$$|g(\mathbf{x}) - \mathbf{r}| < \frac{1}{2}\varepsilon$$

whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta_2$. Let δ be the minimum of δ_1 and δ_2 . Then $\delta > 0$, and if $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$ then

$$|f(\mathbf{x}) - \mathbf{q}| < \frac{1}{2}\varepsilon$$

and

$$|g(\mathbf{x}) - \mathbf{r}| < \frac{1}{2}\varepsilon,$$

and therefore

$$\begin{aligned} |f(\mathbf{x}) + g(\mathbf{x}) - (\mathbf{q} + \mathbf{r})| &\leq |f(\mathbf{x}) - \mathbf{q}| + |g(\mathbf{x}) - \mathbf{r}| \\ &< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon. \end{aligned}$$

It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x}))=\mathbf{q}+\mathbf{r},$$

as required.

Lemma 5.9 Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n respectively, let \mathbf{p} be a limit point of X, let \mathbf{q} be a point of Y, let $f: X \to Y$ be a function satisfying $f(X) \subset Y$, and let $g: Y \to \mathbb{R}^k$ be a function from Y to \mathbb{R}^k . Suppose that

$$\lim_{\mathbf{x} \to \mathbf{p}} f(\mathbf{x}) = \mathbf{q}$$

and that the function g is continuous at q. Then

$$\lim_{\mathbf{x} \to \mathbf{p}} g(f(\mathbf{x})) = g(\mathbf{q}).$$

Proof Let some positive real number ε be given. Then there exists some positive real number η such that $|g(\mathbf{y}) - g(\mathbf{q})| < \varepsilon$ for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - \mathbf{q}| < \eta$, because the function g is continuous at \mathbf{q} . But then there exists some positive real number δ such that $|f(\mathbf{x}) - \mathbf{q}| < \eta$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$. It follows that $|g(f(\mathbf{x})) - g(\mathbf{q})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$, and thus

$$\lim_{\mathbf{x}\to\mathbf{p}}g(f(\mathbf{x}))=g(\mathbf{q}),$$

as required.

Proposition 5.10 Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be real-valued functions on X, and let \mathbf{p} be a limit point of the set X.

Suppose that $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x})$ and $\lim_{\mathbf{x}\to\mathbf{p}} g(\mathbf{x})$ both exist. Then so do $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x})+g(\mathbf{x}))$, $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x})-g(\mathbf{x}))$ and $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x})g(\mathbf{x}))$, and moreover

$$\begin{split} &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})+\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),\\ &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})-\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),\\ &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})\times\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}), \end{split}$$

If moreover $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ and $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x}) \neq 0$ then

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})}{\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x})}.$$

Proof Let $q = \lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x})$ and $r = \lim_{\mathbf{x}\to\mathbf{p}} g(\mathbf{x})$, and let $h: X \to \mathbb{R}^2$ be defined such that

$$h(\mathbf{x}) = (f(\mathbf{x}), g(\mathbf{x}))$$

for all $\mathbf{x} \in X$. Then

$$\lim_{\mathbf{x} \to \mathbf{p}} h(\mathbf{x}) = (q, r)$$

(see Proposition 5.7).

Let $s: \mathbb{R}^2 \to \mathbb{R}$ and $m: \mathbb{R}^2 \to \mathbb{R}$ be the functions from \mathbb{R}^2 to \mathbb{R} defined such that s(u, v) = u + v and m(u, v) = uv for all $u, v \in \mathbb{R}$. Then the functions s and m are continuous (see Lemma 5.4). Also $f + g = s \circ h$ and $f \cdot g = m \circ h$. It follows from this that

$$\begin{split} \lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x}) + g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}} s(f(\mathbf{x}), g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}} s(h(\mathbf{x})) \\ &= s\left(\lim_{\mathbf{x}\to\mathbf{p}} h(\mathbf{x})\right) = s(q, r) = q + r, \end{split}$$

(see Lemma 5.9), and

$$\lim_{\mathbf{x}\to\mathbf{p}}(-g(\mathbf{x})) = -r.$$

It follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x}))=q-r.$$

Similarly, when taking limits of products of functions,

$$\begin{split} \lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x})g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}} m(f(\mathbf{x}),g(\mathbf{x})) = \lim_{\mathbf{x}\to\mathbf{p}} m(h(\mathbf{x})) \\ &= m\left(\lim_{\mathbf{x}\to\mathbf{p}} h(\mathbf{x})\right) = m(q,r) = qr \end{split}$$

Now suppose that $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ and that $\lim_{\mathbf{x}\to\mathbf{p}} g(\mathbf{x}) \neq 0$. Representing the function sending $\mathbf{x} \in X$ to $1/g(\mathbf{x})$ as the composition of the function g and the reciprocal function $e: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, where e(t) = 1/t for all non-zero real numbers t, we find, as in the first proof, that the function sending each point \mathbf{x} of X to

$$\lim_{\mathbf{x}\to\mathbf{p}}\left(\frac{1}{g(\mathbf{x})}\right) = \frac{1}{r}.$$

It then follows that

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{q}{r},$$

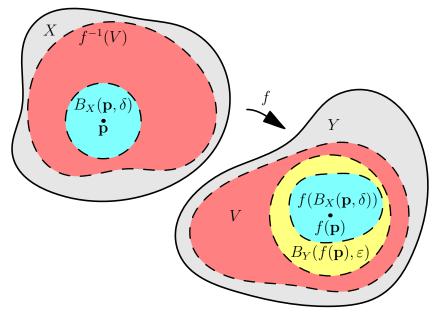
as required.

Proposition 5.11 Let X be a subset of \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into \mathbb{R}^n , and let \mathbf{p} be a point of the set X that is also a limit point of X. Then the function f is continuous at the point \mathbf{p} if and only if $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = f(\mathbf{p})$.

Proof The result follows directly on comparing the relevant definitions.

Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , and let **p** be a point of the set X. Suppose that the point **p** is not a limit point of the set X. Then there exists some strictly positive real number δ_0 such that $|\mathbf{x} - \mathbf{p}| \ge \delta_0$ for all $\mathbf{x} \in X$ satisfying $\mathbf{x} \neq \mathbf{p}$. The point **p** is then said to be an *isolated point* of X.

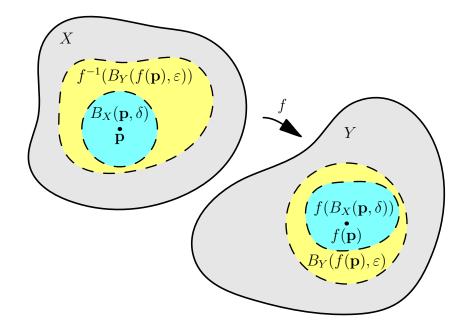
Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m . The definition of continuity then ensures that any function $f: X \to \mathbb{R}^n$ mapping the set X into *n*-dimensional Euclidean space \mathbb{R}^n is continuous at any isolated point of its domain X.


5.3 Continuous Functions and Open Sets

Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n , and let $f: X \to Y$ be a function from X to Y. We recall that the function f is continuous at a point **p** of X if, given any positive real number ε , there exists some positive real number δ such that $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$ for all points **x** of X satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. Thus the function $f: X \to Y$ is continuous at **p** if and only if, given any positive real number ε , there exists some positive real number δ such that the function $f: X \to Y$ is continuous at **p** if and only if, given any positive real number ε , there exists some positive real number δ such that the function f maps $B_X(\mathbf{p}, \delta)$ into $B_Y(f(\mathbf{p}), \varepsilon)$ (where $B_X(\mathbf{p}, \delta)$ and $B_Y(f(\mathbf{p}), \varepsilon)$ denote the open balls in X and Y of radius δ and ε about **p** and $f(\mathbf{p})$ respectively).

Given any function $f: X \to Y$, we denote by $f^{-1}(V)$ the preimage of a subset V of Y under the map f, defined by $f^{-1}(V) = \{ \mathbf{x} \in X : f(\mathbf{x}) \in V \}.$

Proposition 5.12 Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n , and let $f: X \to Y$ be a function from X to Y. The function f is continuous if and only if $f^{-1}(V)$ is open in X for every open subset V of Y.


Proof Suppose that $f: X \to Y$ is continuous. Let V be an open set in Y. We must show that $f^{-1}(V)$ is open in X. Let $\mathbf{p} \in f^{-1}(V)$. Then $f(\mathbf{p}) \in V$. But V is open, hence there exists some positive real number ε with the property that $B_Y(f(\mathbf{p}), \varepsilon) \subset V$. But f is continuous at \mathbf{p} . Therefore there exists some positive real number δ such that f maps $B_X(\mathbf{p}, \delta)$ into $B_Y(f(\mathbf{p}), \varepsilon)$ (see the remarks above). Thus $f(\mathbf{x}) \in V$ for all $\mathbf{x} \in B_X(\mathbf{p}, \delta)$, showing that $B_X(\mathbf{p}, \delta) \subset f^{-1}(V)$. This shows that $f^{-1}(V)$ is open in X for every open set V in Y.

Conversely suppose that $f: X \to Y$ is a function with the property that $f^{-1}(V)$ is open in X for every open set V in Y. Let $\mathbf{p} \in X$. We must show that f is continuous at **p**. Let some positive real number ε be given. Then $B_Y(f(\mathbf{p}), \varepsilon)$ is an open set in Y, by Lemma 4.1, hence $f^{-1}(B_Y(f(\mathbf{p}), \varepsilon))$ is an open set in X which contains **p**. It follows that there exists some positive real number δ such that $B_X(\mathbf{p}, \delta) \subset f^{-1}(B_Y(f(\mathbf{p}), \varepsilon))$. Thus, given any positive real number ε , there exists some positive real number δ such that f maps $B_X(\mathbf{p}, \delta)$ into $B_Y(f(\mathbf{p}), \varepsilon)$. We conclude that f is continuous at **p**, as required.

Let X be a subset of \mathbb{R}^n , let $f: X \to \mathbb{R}$ be continuous, and let c be some real number. Then the sets

$$\{\mathbf{x} \in X : f(\mathbf{x}) > c\}$$

and

$$\{\mathbf{x} \in X : f(\mathbf{x}) < c\}$$

are open in X, and, given real numbers a and b satisfying a < b, the set

$$\{\mathbf{x} \in X : a < f(\mathbf{x}) < b\}$$

is open in X.

Again let X be a subset of \mathbb{R}^n , let $f: X \to \mathbb{R}$ be continuous, and let c be some real number. Now a subset of X is closed in X if and only if its complement is open in X. Consequently the sets

$$\{\mathbf{x} \in X : f(\mathbf{x}) \le c\}$$

and

$$\{\mathbf{x} \in X : f(\mathbf{x}) \ge c\},\$$

being the complements in X of sets that are open in X, must themselves be closed in X. It follows that that set

$$\{\mathbf{x} \in X : f(\mathbf{x}) = c\},\$$

being the intersection of two subsets X that are closed in X, must itself be closed in X.