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5 Limits and Continuity for Functions of Sev-
eral Variables

5.1 Continuity of Functions of Several Real Variables

Definition Let X and Y be subsets of R™ and R™ respectively. A function
f: X — Y from X to Y is said to be continuous at a point p of X if and
only if, given any strictly positive real number ¢, there exists some strictly
positive real number ¢ such that |f(x) — f(p)| < € whenever x € X satisfies
|x —p| < 6.

The function f: X — Y is said to be continuous on X if and only if it is
continuous at every point p of X.

Lemma 5.1 Let X, Y and Z be subsets of Fuclidean spaces, let f: X —Y
be a function from X toY and let oY — Z be a function from Y to Z.
Suppose that [ is continuous at some point p of X and that g is continuous
at f(p). Then the composition function go f: X — Z is continuous at p.

Proof Let some positive real number ¢ be given. Then there exists some
positive real number 1 such that |g(y) — g(f(p))| < ¢ for all y € Y satisfying
ly — f(p)| < n. But then there exists some positive real number ¢ such
that |f(x) — f(p)| < n for all x € X satisfying |x — p| < ¢. It follows that
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lg(f(x)) —g(f(p))| < € for all x € X satistying |x — p| < J, and thus go f
is continuous at p, as required. |

Lemma 5.2 Let X and Y be subsets of Fuclidean spaces, and let f: X —
Y be a continuous function from X to Y. Let Xi,Xs9,X3,... be an infinite
sequence of points of X which converges to some point p of X. Then the

sequence f(X1), f(x2), f(X3),... converges to f(p).

Proof Let some positive real number € be given. The function f is contin-
uous at p, and therefore there exists some positive real number ¢ such that
|f(x) — f(p)| < e for all x € X satisfying |[x — p| < . Also the infinite se-

quence X1, X, X3, . . . converges to the point p, and therefore there exists some
positive integer N such that |x; — p| < 0 whenever j > N. It follows that
if 7 > N then |f(x;) — f(p)| < €. Thus the sequence f(x1), f(x2), f(x3), ...
converges to f(p), as required. |

Let X and Y be subsets of R™ and R” respectively, and let f: X — Y be
a function from X to Y. Then

f(x) = (f1(x), f2(%), - - fu(x))

for all x € X, where fi, fo,..., f, are functions from X to R, referred to as
the components of the function f.
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Proposition 5.3 Let X and Y be subsets of Euclidean spaces, and let p €
X. A function f: X — Y s continuous at the point p if and only if its
components are all continuous at p.

Proof Let Y be a subset of n-dimensional Euclidean space R"™. Note that
the ith component f; of f is given by f; = m;o f, where m;: R — R is the con-
tinuous function which maps (y1, 2, - - ., yn) € R™ onto its ith component y;.
Now any composition of continuous functions is continuous, by Lemma 5.1.
Thus if f is continuous at p, then so are the components of f.

Conversely suppose that the components of f are continuous at p € X.
Let some positive real number € be given. Then there exist positive real
numbers 01, s, . .., 0, such that |f;(x) — fi(p)| < &/+/n for x € X satisfying
|x — p| < d;. Let ¢ be the minimum of d01,0s,...,0,. If x € X satisfies
|x — p| < 4 then

f(x) — f(p)]* = Z f:(x) — fi(p)]* < €%,

and hence |f(x) — f(p)| < e. Thus the function f is continuous at p, as
required. |

Lemma 5.4 The functions s:R?> — R and m: R* — R defined by s(x,y) =
x4y and m(z,y) = xy are continuous.

Proof Let (u,v) € R% We first show that s: R? — R is continuous at (u,v).
Let some positive real number € be given. Let 0 = fe. If (2, y) is any point
of R? whose distance from (u, v) is less than § then |z —u| < § and |[y—v| < 4,
and hence

s(z,y) —s(u,v)| = |z +y —u—v[ <[z —u[+]y—v|] <2 =e

This shows that s:R? — R is continuous at (u, v).
Next we show that m:R? — R is continuous at (u,v). Let some positive
real number ¢ be given. Now

m(z,y) —m(u,v) =zy —uwv = (z —u)(y —v) + uly — v) + (x — w)v.

for all points (z,y) of R%. Thus if the distance from (z,y) to (u,v) is less
than 0 then |z —u| < § and |y — v| < ¢, and hence |m(z,y) — m(u,v)| <
62 + (Ju] + |v])d. Let some positive real number ¢ be given. If the positive
real number ¢ is chosen to be the minimum of 1 and ¢/(1 4 |u| + |v|) then
62 + (Ju| + |[v])d < (1 + |u] + |[v])d < &, and thus |m(z,y) — m(u,v)| < € for
all points (x,y) of R? whose distance from (u,v) is less than 4. This shows
that m: R? — R is continuous at (u,v). |
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Proposition 5.5 Let X be a subset of R", and let f: X - R and g: X — R
be continuous functions from X to R. Then the functions f + g, f — g and
f - g are continuous. If in addition g(x) # 0 for all x € X then the quotient
function f/g is continuous.

Proof Note that f + g = soh and f-g = m o h, where h: X — R?,
s:R? — R and m:R?* — R are given by h(x) = (f(x),9(x)), s(u,v) =u+v
and m(u,v) = uv for all x € X and u,v € R. It follows from Proposition 5.3,
Lemma 5.4 and Lemma 5.1 that f + g and f - g are continuous, being com-
positions of continuous functions. Now f —¢g = f + (—g), and both f and
—g are continuous. Therefore f — ¢ is continuous.

Now suppose that g(x) # 0 for all x € X. Note that 1/g = r o g, where
r:R\ {0} — R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. Thus the function 1/¢ is a composition
of continuous functions and is thus continuous. But then, using the fact that
a product of continuous real-valued functions is continuous, we deduce that
f/g is continuous. |}

Example Consider the function f:R?\ {(0,0)} — R? defined by

_ x Y
f<I7y) — (l‘2+y27$2+y2> .

The continuity of the components of the function f follows from straightfor-
ward applications of Proposition 5.5. It then follows from Proposition 5.3
that the function f is continuous on R?\ {(0,0)}.

Lemma 5.6 Let X be a subset of R™, let f: X — R"™ be a continuous func-
tion mapping X into R"™, and let |f|: X — R be the real-valued function on
X defined such that |f|(x) = |f(x)| for all x € X. Then the real-valued

function |f| is continuous on X.

Proof Let x and p be points of X. Then

[F ) = [(fx) = f(p)) + f(P)| < |f(x) = f(P)| + [f(P)]

and
fP) = [(f(p) — f(x)) + f(x)] < [f(x) = fP)] + [f(x)],
and therefore

If) = 1fP)l| < [f(x) = f(p)]-

The result now follows on applying the definition of continuity, using the
above inequality. Indeed let p be a point of X, and let some positive real
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number € be given. Then there exists a positive real number ¢ small enough
to ensure that |f(x) — f(p)| < € for all x € X satisfying |x — p| < . But
then

&)= [fp)]| < [f(x) = f(p) <€

for all x € X satisfying |x — p| < d, and thus the function |f| is continuous,
as required. |

5.2 Limits of Functions of Several Real Variables

Definition Let X be a subset of m-dimensional Euclidean space R™, let
f: X — R” be a function mapping the set X into n-dimensional Fuclidean
space R™, let p be a limit point of the set X, and let q be a point in R".
The point q is said to be the limit of f(x), as x tends to p in X, if and
only if, given any strictly positive real number ¢, there exists some strictly
positive real number § such that |f(x) — q| < & whenever x € X satisfies
0<|x—p|<o.

Let X be a subset of m-dimensional Euclidean space R™, let f: X — R"
be a function mapping the set X into n-dimensional Euclidean space R",
let p be a limit point of the set X, and let q be a point of R™. If q is the
limit of f(x) as x tends to p in X then we can denote this fact by writing

lim f(x) = q.

Proposition 5.7 Let X be a subset of R™, let p be a limit point of X, and
let q be a point of R™. A function f: X — R™ has the property that

lim f(x) =q

X—p

if and only iof
lim f;(x) = ¢

X—p

fori=1,2,...,n, where f1, fo,..., fn are the components of the function f
and q= (q17QQ7‘ o 7Qn)

Proof Suppose that lim f(x) = q. Let i be an integer between 1 and n, and
X—p

let some positive real number € be given. Then there exists some positive
real number 0 such that |f(x) — q| < ¢ whenever 0 < |x — p| < §. It then
follows from the definition of the Euclidean norm that

1fix) —al < |f(x) —al <e
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whenever 0 < |x — p| < 0. Thus if lim f(x) = q then lim f;(x) = ¢, for
X—p X—p
1=1,2,...,n
Conversely suppose that

lim fi(x) = ¢

X—Pp

for e = 1,2,...,n. Let some positive real number ¢ be given. Then there
exist positive real numbers dy,ds, ..., 0, such that |fi(x) — ¢| < ¢/v/n for
x € X satisfying 0 < |x — p| < §;. Let § be the minimum of 01, s, ..., 0,. If
x € X satisfies 0 < |x — p| < 0 then

‘ q‘2 Z ’fz - QZ 2
and hence |f(x) — q| < e. Thus

lim f(x) =

X—=p

as required. |

Proposition 5.8 Let X be a subset of m-dimensional Euclidean space R™,
let f: X — R and g: X — R" be functions mapping X into n-dimensional
Fuclidean space R™, let p be a limit point of X, and let q and r be points of
R™. Suppose that

lim f(x) =
X—=Pp
and
lim g(x) =
Then

lim ((x) + g(x)) = q + .

X—p

Proof Let some strictly positive real number € be given. Then there exist
strictly positive real numbers d; and d, such that

[f(x) —al < 3¢
whenever x € X satisfies 0 < |x — p| < ; and

l9(x) — x| < 3¢
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whenever x € X satisfies 0 < |[x —p| < d2. Let § be the minimum of §; and
d2. Then 6 > 0, and if x € X satisfies 0 < |x — p| < J then

|f(x) —d] < ie
and
lg(x) — 1| < 3¢,

and therefore

lf(x)+g9(x)—(q+71)| < [f(x)—q|+|g9(x)—r|
< ifetie=e

It follows that
lim (£(x) + g(x)) = a +,

X—p

as required. |}

Lemma 5.9 Let X and Y be subsets of R™ and R™ respectively, let p be a
limit point of X, let q be a point of Y, let - X — Y be a function satisfying
f(X)CY, and let g:Y — RF be a function from'Y to R*. Suppose that

lim f(x) = q

X—p

and that the function g is continuous at q. Then

lim g(f(x)) = g(q).

X—p
Proof Let some positive real number ¢ be given. Then there exists some
positive real number 7 such that |g(y) — g(q)| < ¢ for all y € Y satisfying
ly — q| < n, because the function ¢ is continuous at q. But then there exists
some positive real number § such that |f(x) —q| < n for all x € X satisfying
0 < |x —p| < 4. It follows that |g(f(x)) — g(q)| < € for all x € X satisfying
0 < |x — p| < 4, and thus

lim g(f(x)) = g(a),

X—p

as required. |

Proposition 5.10 Let X be a subset of R™, let f: X — R and g: X —
R be real-valued functions on X, and let p be a limit point of the set X.

35



Suppose that lim f(x) and lim g(x) both exist. Then so do lim (f(x)+ g(x)),
X—p X—p

X—p

)lci_r)rll)(f(x) —g(x)) and )lci_rg(f(x)g(x)), and moreover

T (/) + 9(x)) = lim f(x) + lim g(x),
lim (/) = g(x)) = lim f(x) — lim g(x),
lim (f(x)g(x) = lim £(x) x lim g(x)

If moreover g(x) # 0 for all x € X and lim g(x) # 0 then
X—p

IRICOINE St
xpg(x)  lim g(x)

Proof Let ¢ = lim f(x) and r = lim g(x), and let h: X — R? be defined
X—Pp X—Pp
such that

for all x € X. Then
lim h(x) = (q,7)

X—p
(see Proposition 5.7).

Let s: R? — R and m:R? — R be the functions from R? to R defined such
that s(u,v) = u + v and m(u,v) = wov for all u,v € R. Then the functions s
and m are continuous (see Lemma 5.4). Also f+g=sohand f-g=moh.
It follows from this that

lim (£(0) + 9()) = lim s((x), 9(x)) = lim s(h(x))

X—p X—p
= s (lim h(x)) =s(q,r) =q+r,
X—p

(see Lemma 5.9), and
lim (—g(x)) = —r.

X—p
It follows that
lim (f(x) — g(x)) =q—r.

X—=p

Similarly, when taking limits of products of functions,

i (/(x)g(x)) = Lim m(£(x).9(x) = lim m(h(x))

= m <lim h(x)) =m(q,r) = qr

X—=p
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Now suppose that g(x) # 0 for all x € X and that lim g(x) # 0. Rep-
X—=p

resenting the function sending x € X to 1/¢g(x) as the composition of the
function ¢ and the reciprocal function e:R\ {0} — R, where e(t) = 1/t for
all non-zero real numbers ¢, we find, as in the first proof, that the function
sending each point x of X to

i (560) =

i 4 %) _ 4

b g(x) 1’

It then follows that

as required. |}

Proposition 5.11 Let X be a subset of R™, let f: X — R™ be a function
mapping the set X into R™, and let p be a point of the set X that is also
a limit point of X. Then the function f is continuous at the point p if and

only if lim f(x) = f(p).
X—p
Proof The result follows directly on comparing the relevant definitions. |}

Let X be a subset of m-dimensional Euclidean space R™, and let p be a
point of the set X. Suppose that the point p is not a limit point of the set X.
Then there exists some strictly positive real number ¢ such that [x —p| > do
for all x € X satisfying x # p. The point p is then said to be an isolated
point of X.

Let X be a subset of m-dimensional Euclidean space R™. The definition
of continuity then ensures that any function f: X — R"™ mapping the set X
into n-dimensional Euclidean space R"™ is continuous at any isolated point of
its domain X.

5.3 Continuous Functions and Open Sets

Let X and Y be subsets of R™ and R", and let f: X — Y be a function from
X to Y. We recall that the function f is continuous at a point p of X if|
given any positive real number e, there exists some positive real number §
such that | f(x) — f(p)| < € for all points x of X satisfying |x —p| < . Thus
the function f: X — Y is continuous at p if and only if, given any positive real
number ¢, there exists some positive real number § such that the function f
maps Bx(p,d) into By (f(p),e) (where Bx(p,d) and By (f(p),e) denote the
open balls in X and Y of radius ¢ and ¢ about p and f(p) respectively).
Given any function f: X — Y, we denote by f~1(V) the preimage of a
subset V of Y under the map f, defined by f~1(V) ={x € X : f(x) € V}.
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Proposition 5.12 Let X and Y be subsets of R™ and R™, and let f: X — Y
be a function from X toY . The function f is continuous if and only if f~1(V)
1s open in X for every open subset V of Y.

Proof Suppose that f: X — Y is continuous. Let V' be an open set in Y. We
must show that f~!(V) is open in X. Let p € f~(V). Then f(p) € V. But
V' is open, hence there exists some positive real number ¢ with the property
that By (f(p),e) € V. But f is continuous at p. Therefore there exists
some positive real number § such that f maps Bx(p,d) into By (f(p),¢)
(see the remarks above). Thus f(x) € V for all x € Bx(p,¢), showing that
Bx(p,d) C f~%V). This shows that f~'(V) is open in X for every open
set Vin Y.

Conversely suppose that f: X — Y is a function with the property that
f7YV) is open in X for every open set V in Y. Let p € X. We must show
that f is continuous at p. Let some positive real number € be given. Then
By (f(p),e) is an open set in Y, by Lemma 4.1, hence = (By(f(p),¢)) is
an open set in X which contains p. It follows that there exists some positive
real number ¢ such that Bx(p,d) C f~!'(By(f(p),€)). Thus, given any
positive real number e, there exists some positive real number ¢ such that f
maps Bx(p,d) into By (f(p),e). We conclude that f is continuous at p, as
required. |

Let X be a subset of R™, let f: X — R be continuous, and let ¢ be some
real number. Then the sets

{xe X: f(x)>c}
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and

{xeX: f(x)<c}

are open in X, and, given real numbers a and b satisfying a < b, the set

{xe X:a< f(x)<b}

is open in X.

Again let X be a subset of R”, let f: X — R be continuous, and let ¢
be some real number. Now a subset of X is closed in X if and only if its
complement is open in X. Consequently the sets

{xeX: f(x)<c}

and

{xe X: f(x)>c},

being the complements in X of sets that are open in X, must themselves be
closed in X. It follows that that set

{xeX:f(x)=¢},

being the intersection of two subsets X that are closed in X, must itself be
closed in X.
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