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3 Convergence in Euclidean Spaces

3.1 Convergence of Sequences in Euclidean Spaces

Definition An infinite sequence x1,x2,x3, . . . of points in Rn is said to con-
verge to a point p if and only if, given strictly positive real number ε, there
exists some positive integer N such that |xj − p| < ε whenever j ≥ N .

Given a convergent infinite sequence x1,x2,x3, . . . of points in Rn, the
point p to which the sequence converges is referred to as the limit of the
infinite sequence, and may be denoted by lim

j→+∞
xj.

Lemma 3.1 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then an
infinite sequence x1,x2,x3, . . . of points in Rn converges to p if and only
if the ith components of the elements of this sequence converge to pi for
i = 1, 2, . . . , n.

Proof For each positive integer j, let (xj)i denote the ith component of xj.
Then |(xj)i−pi| ≤ |xj−p| for i = 1, 2, . . . , n and for all positive integers j. It
follows directly from the definition of convergence that if xj → p as j → +∞
then (xj)i → pi as j → +∞.

Conversely suppose that, for each integer i between 1 and n, (xj)i → pi as
j → +∞. Let some positive real number ε be given. Then there exist positive
integers N1, N2, . . . , Nn such that |(xj)i−pi| < ε/

√
n whenever j ≥ Ni. Let N

be the maximum of N1, N2, . . . , Nn. If j ≥ N then j ≥ Ni for i = 1, 2, . . . , n,
and therefore

|xj − p|2 =
n∑

i=1

((xj)i − pi)
2 < n

(
ε√
n

)2

= ε2.

Thus xj → p as j → +∞, as required.

3.2 The Multidimensional Bolzano-Weierstrass Theo-
rem

Theorem 3.2 (Multidimensional Bolzano-Weierstrass Theorem)
Every bounded sequence of points in a Euclidean space has a convergent sub-
sequence.

Proof The theorem is proved by induction on the dimension n of the
space Rn within which the points reside. When n = 1, the required result is
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the one-dimensional case of the Bolzano-Weierstrass Theorem, and the result
has already been established in this case (see Theorem 1.3).

When n > 1, the result is proved in dimension n asssuming the result in
dimensions n − 1 and 1. Consequently the result is established successively
in dimensions 2, 3, 4, . . ., and therefore is valid for bounded sequences in Rn

for all positive integers n.
It has been shown that every bounded infinite sequence of real numbers

has a convergent subsequence (Theorem 1.3). Let n be an integer greater than
one, and suppose, as an induction hypothesis, that, in cases where n > 2,
all bounded sequences of points in Rn−1 have convergent subsequences. Let
S:Rn → Rn−1 and T :Rn → R and be the linear transformations from Rn to
Rn−1 and R respectively defined such that

S(x1, x2, . . . , xn) = (x1, x2, . . . , xn−1)

and
T (x1, x2, . . . , xn) = xn

for all (x1, x2, . . . , xn) ∈ Rn.
Let x1,x2,x3, . . . be a infinite bounded sequence of points (or vectors) in

Rn, and let some strictly positive real number ε be given. Now the infinite
sequence

Sx1, Sx2, Sx3, . . .

of points of Rn−1 is a bounded infinite sequence. In the case when n = 2 we
can apply the one-dimensional Bolzano-Weierstrass Theorem (Theorem 1.3)
to conclude that this sequence of real numbers has a convergent subsequence.
In cases where n > 2, we are supposing as our induction hypothesis that any
bounded sequence in Rn−1 has a convergent subsequence. Thus, assuming
this induction hypothesis in cases where n > 2, we can conclude, in all cases
with n > 1, that the bounded infinite sequence Sx1, Sx2, Sx3, . . . of points
in Rn−1 has a convergent subsequence. Let that convergent subsequence be

Sxm1 , Sxm2 , Sxm3 , . . . ,

where m1,m2,m3, . . . is a strictly increasing infinite sequence of positive in-
tegers, and let q = lim

j→+∞
Sxmj

. There then exists some positive integer L

such that
|Sxmj

− q| < 1
2
ε

for all positive integers j for which mj ≥ L. (Indeed the definition of conver-
gence ensures the existence of a positive integer N that is large enough to
ensure that |Sxmj

− q| < 1
2
ε whenever j ≥ N . Taking L = mN then ensures

that j ≥ N whenever mj ≥ L.)
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Now the one-dimensional Bolzano-Weierstrass Theorem ensures that the
bounded infinite sequence

Txm1 , Txm2 , Txm3 , . . .

of real numbers has a convergent subsequence (where, for each x ∈ Rn, Tx
is defined to be the final Cartesian component of x). It follows that there is
a strictly increasing infinite sequence k1, k2, k3, . . . of positive integers, where
each kj is equal to one of the positive integers m1,m2,m3, . . ., such that the
infinite sequence

Txk1 , Txk2 , Txk3 , . . .

is convergent. (Here, for j = 1, 2, 3, . . ., the infinite sequence of points xkj

is a subsequence of the infinite sequence of points xmj
, which sequence is in

turn a subsequence of the infinite sequence of points xj.) Let r = lim
j→+∞

Txkj .

There then exists some positive integer M such that M ≥ L and

|Txkj − r| < 1
2
ε

for all positive integers j for which kj ≥M . It follows that if kj ≥M then

|Sxkj − q| < 1
2
ε and |Txkj − r| < 1

2
ε.

Now there is a point p of Rn, where p = (p1, p2, . . . , pn), determined so that

q = Sp = (p1, p2, . . . , pn−1) and r = Tp = pn.

Also it follows from the definition of the Euclidean norm that

|x− p|2 = |Sx− q|2 + |Tx− r|2

for all x ∈ Rn. It follows that

|xkj − p|2 = |Sxkj − q|2 + |Txkj − r|2 < 1
2
ε2

whenever kj ≥ M . But then |xkj − p| < ε for all positive integers j for
which kj ≥ M . It follows that lim

j→+∞
xkj = p. We conclude therefore that

the bounded infinite sequence x1,x2,x3, . . . does indeed have a convergent
subsequence. This completes the proof of the Bolzano-Weierstrass Theorem
in dimension n for all positive integers n.
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3.3 Cauchy Sequences in Euclidean Spaces

Definition A sequence x1,x2,x3, . . . of points of n-dimensional Euclidean
space Rn is said to be a Cauchy sequence if, given any strictly positive real
number ε, there exists some positive integer N such that |xj − xk| < ε for
all positive integers j and k satisfying j ≥ N and k ≥ N .

Lemma 3.3 Every Cauchy sequence of points of n-dimensional Euclidean
space Rn is bounded.

Proof Let x1,x2,x3, . . . be a Cauchy sequence of points in Rn. Then there
exists some positive integer N such that |xj − xk| < 1 whenever j ≥ N
and k ≥ N . In particular, |xj| ≤ |xN | + 1 whenever j ≥ N . Therefore
|xj| ≤ R for all positive integers j, where R is the maximum of the real
numbers |x1|, |x2|, . . . , |xN−1| and |xN | + 1. Thus the sequence is bounded,
as required.

Theorem 3.4 (Cauchy’s Criterion for Convergence) An infinite se-
quence of points of n-dimensional Euclidean space Rn is convergent if and
only if it is a Cauchy sequence.

Proof First we show that convergent sequences in Rn are Cauchy sequences.
Let x1,x2,x3, . . . be a convergent sequence of points in Rn, and let p =
lim

j→+∞
xj. Let some strictly positive real number ε be given. Then there

exists some positive integer N such that |xj − p| < 1
2
ε for all j ≥ N . Thus

if j ≥ N and k ≥ N then |xj − p| < 1
2
ε and |xk − p| < 1

2
ε, and hence

|xj − xk| = |(xj − p)− (xk − p)| ≤ |xj − p|+ |xk − p| < ε.

Thus the sequence x1,x2,x3, . . . is a Cauchy sequence.
Conversely we must show that any Cauchy sequence x1,x2,x3, . . . in Rn

is convergent. Now Cauchy sequences are bounded, by Lemma 3.3. The se-
quence x1,x2,x3, . . . therefore has a convergent subsequence xk1 ,xk2 ,xk3 , . . .,
by the multidimensional Bolzano-Weierstrass Theorem (Theorem 3.2). Let
p = lim

j→+∞
xkj . We claim that the sequence x1,x2,x3, . . . itself converges to p.

Let some strictly positive real number ε be given. Then there exists some
positive integer N such that |xj − xk| < 1

2
ε whenever j ≥ N and k ≥ N

(since the sequence is a Cauchy sequence). Let m be chosen large enough to
ensure that km ≥ N and |xkm − p| < 1

2
ε. Then

|xj − p| ≤ |xj − xkm |+ |xkm − p| < 1
2
ε + 1

2
ε = ε

whenever j ≥ N . It follows that xj → p as j → +∞, as required.
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