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3 Convergence in Euclidean Spaces

3.1 Convergence of Sequences in Euclidean Spaces

Definition An infinite sequence x1, X, X3, . .. of points in R"” is said to con-
verge to a point p if and only if, given strictly positive real number ¢, there
exists some positive integer N such that |x; — p| < € whenever j > N.

Given a convergent infinite sequence Xi,Xs, X3, ... of points in R”, the
point p to which the sequence converges is referred to as the limit of the

infinite sequence, and may be denoted by lim x;.
J—+o0o

Lemma 3.1 Let p be a point of R™, where p = (p1,p2,--.,0n). Then an
infinite sequence Xi,Xs,Xs,... of points in R™ converges to p if and only
if the ith components of the elements of this sequence converge to p; for
1=1,2,...,n.

Proof For each positive integer j, let (x;); denote the ith component of x;.
Then |(x;); —pi| < |x;—p|fori=1,2,...,n and for all positive integers j. It
follows directly from the definition of convergence that if x; — p as j — 400
then (x;); — p; as j — +o0.

Conversely suppose that, for each integer ¢ between 1 and n, (x;); — p; as
Jj — +00. Let some positive real number € be given. Then there exist positive
integers N1, No, ..., N, such that |(x;);—pi| < &/y/n whenever j > N;. Let N
be the maximum of Ny, Ny,...,N,. If > N then j > N, fori=1,2,...,n,
and therefore

%~ pf’ = ig";«xj)i ) <n (%) _e

Thus x; — p as j — +o00, as required. |

3.2 The Multidimensional Bolzano-Weierstrass Theo-
rem

Theorem 3.2 (Multidimensional Bolzano-Weierstrass Theorem)
FEvery bounded sequence of points in a Fuclidean space has a convergent sub-
sequence.

Proof The theorem is proved by induction on the dimension n of the
space R™ within which the points reside. When n = 1, the required result is
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the one-dimensional case of the Bolzano-Weierstrass Theorem, and the result
has already been established in this case (see Theorem 1.3).

When n > 1, the result is proved in dimension n asssuming the result in
dimensions n — 1 and 1. Consequently the result is established successively
in dimensions 2, 3,4, ..., and therefore is valid for bounded sequences in R"
for all positive integers n.

It has been shown that every bounded infinite sequence of real numbers
has a convergent subsequence (Theorem 1.3). Let n be an integer greater than
one, and suppose, as an induction hypothesis, that, in cases where n > 2,
all bounded sequences of points in R®~! have convergent subsequences. Let
S:R"™ — R* ! and T:R™ — R and be the linear transformations from R" to
R"! and R respectively defined such that

;S($1,1§,.-.,$n) ::($17$27"'7xn71)

and
T(xy,To,...,2,) = Tp,

for all (1, z9,...,2,) € R™.
Let X1, X9, X3, ... be a infinite bounded sequence of points (or vectors) in
R™, and let some strictly positive real number € be given. Now the infinite

sequence
SX1“9X2“9X3V..

of points of R"! is a bounded infinite sequence. In the case when n = 2 we
can apply the one-dimensional Bolzano-Weierstrass Theorem (Theorem 1.3)
to conclude that this sequence of real numbers has a convergent subsequence.
In cases where n > 2, we are supposing as our induction hypothesis that any
bounded sequence in R™~! has a convergent subsequence. Thus, assuming
this induction hypothesis in cases where n > 2, we can conclude, in all cases
with n > 1, that the bounded infinite sequence Sx;, Sxs, Sx3, ... of points
in R"! has a convergent subsequence. Let that convergent subsequence be

SXmy s SXimgy SXimgs - - - s

where mq, mg, ms, ... is a strictly increasing infinite sequence of positive in-

tegers, and let g = lim Sx,,;. There then exists some positive integer L
J—+00

such that

|SXm, —q| < %6

for all positive integers j for which m; > L. (Indeed the definition of conver-
gence ensures the existence of a positive integer N that is large enough to
ensure that [Sx,,, —q| < %5 whenever 7 > N. Taking L = my then ensures
that j > N whenever m; > L.)
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Now the one-dimensional Bolzano-Weierstrass Theorem ensures that the
bounded infinite sequence

TXpmy, TXmy s Ty - - -

of real numbers has a convergent subsequence (where, for each x € R", Tx
is defined to be the final Cartesian component of x). It follows that there is
a strictly increasing infinite sequence ki, ko, k3, ... of positive integers, where
each k; is equal to one of the positive integers m;, mg, ms, ..., such that the
infinite sequence

TX;C1 s TX]Q, Tng, .

is convergent. (Here, for j = 1,2,3,..., the infinite sequence of points xy,
is a subsequence of the infinite sequence of points x,,;, which sequence is in

turn a subsequence of the infinite sequence of points x;.) Let r = lim Tx;,;.
J—+oo

There then exists some positive integer M such that M > L and
Txy, — 7| < 3¢
for all positive integers j for which k; > M. It follows that if k; > M then
1Sxi, —q| < 2 and |Txy, — 7| < 3¢

Now there is a point p of R, where p = (p1, pa, - .., Pn), determined so that

q=5Sp=(p1,p2,---,pn1) and 7 =Tp = p,.
Also it follows from the definition of the Euclidean norm that

x —p> = [Sx —q|* + |Tx —r|*
for all x € R™. It follows that
xp, — P> = |Sxk, — d|* + |Txi, — r|* < 37

whenever k; > M. But then |x;, — p| < ¢ for all positive integers j for
which k; > M. It follows that lim x; = p. We conclude therefore that

J—+00
the bounded infinite sequence x1,Xs, X3, ... does indeed have a convergent

subsequence. This completes the proof of the Bolzano-Weierstrass Theorem
in dimension n for all positive integers n. |}

17



3.3 Cauchy Sequences in Euclidean Spaces

Definition A sequence X1,Xs,X3,... of points of n-dimensional Euclidean
space R™ is said to be a Cauchy sequence if, given any strictly positive real
number e, there exists some positive integer N such that |x; — x| < ¢ for
all positive integers j and k satisfying j > N and k£ > N.

Lemma 3.3 Every Cauchy sequence of points of n-dimensional Euclidean
space R™ is bounded.

Proof Let x1,Xs,X3,... be a Cauchy sequence of points in R”. Then there
exists some positive integer N such that |x; — x;| < 1 whenever j > N
and k£ > N. In particular, |x;| < |xy|+ 1 whenever j > N. Therefore
1x;| < R for all positive integers j, where R is the maximum of the real
numbers |x1|, [Xal, ..., |xy_1] and |xx|+ 1. Thus the sequence is bounded,
as required. |

Theorem 3.4 (Cauchy’s Criterion for Convergence) An infinite se-
quence of points of n-dimensional Fuclidean space R™ is convergent if and
only if it is a Cauchy sequence.

Proof First we show that convergent sequences in R™ are Cauchy sequences.
Let xi,X9,X3,... be a convergent sequence of points in R”, and let p =

lim x;. Let some strictly positive real number ¢ be given. Then there
J—+oo

exists some positive integer N such that |x; — p| < %z—: for all 5 > N. Thus
if > N and k > N then |x; — p| < %8 and |x; — p| < %5, and hence

[x; = xk| = (%) =p) = (s = P)[ < [x; = p| +[xx —p| <&

Thus the sequence x1, Xs, X3, ... is a Cauchy sequence.

Conversely we must show that any Cauchy sequence X1, Xz, X3, ... in R"
is convergent. Now Cauchy sequences are bounded, by Lemma 3.3. The se-
quence Xi, Xg, X3, . . . therefore has a convergent subsequence Xy, , Xk, , Xiy, - - -
by the multidimensional Bolzano-Weierstrass Theorem (Theorem 3.2). Let
pP= jli}inoo xy,. We claim that the sequence x;, X2, X3, . . . itself converges to p.

Let some strictly positive real number ¢ be given. Then there exists some
positive integer N such that |x; — x4| < 3¢ whenever j > N and k > N
(since the sequence is a Cauchy sequence). Let m be chosen large enough to
ensure that k,, > N and |x;, — p| < ie. Then

x; — p| < |xj — X, | + |Xp,, —P| < s+ 3e=¢

whenever j > N. It follows that x; — p as j — 400, as required. [}
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