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9 The Inverse and Implicit Function Theo-

rems

9.1 Contraction Mappings on Closed Subsets of Eu-
clidean Spaces

Definition Let F be a subset of Rn for some positive integer n. A function
ϕ:F → F mapping that set F into itself is said to be a contraction mapping
on F if there exists some non-negative real number λ satisfying λ < 1 that
is such as to ensure that

|ϕ(u)− ϕ(v)| ≤ λ|u− v|

for all points u and v of F .

Theorem 9.1 Let F be a closed subset of Rn, and let ϕ:F → F be a con-
traction mapping on the set F . Then there exists a unique point p of F for
which ϕ(p) = p.

Proof The function ϕ:F → F is a contraction mapping. Therefore a non-
negative real number λ satisfying λ < 1 can be associated with the function ϕ
so as to ensure that

|ϕ(u)− ϕ(v)| ≤ λ|u− v|

for all points u and v of F .
Choose x0 ∈ F , and let x1,x2,x3, . . . be the infinite sequence of points of

F defined such that xj = ϕ(xj−1) for all positive integers j. Then

|xj+1 − xj| ≤ λ|xj − xj−1|

for all positive integers j. It follows that

|xj+1 − xj| ≤ λj|x1 − x0|

for all positive integers j, and therefore

|xk − xj| ≤

(
k−1∑
m=j

λm

)
|x1 − x0| ≤

λj − λk

1− λ
|x1 − x0|

≤ λj

1− λ
|x1 − x0|

for all positive integers j and k satisfying j < k.
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Now the inequality λ < 1 ensures that, given any positive real number ε,
there exists a positive integer N large enough to ensure that λj|x1 − x0| <
(1−λ)ε for all integers j satisfying j ≥ N . Then |xk−xj| < ε for all positive
integers j and k satisfying k > j ≥ N . The infinite sequence x1,x2,x3, . . .
is thus a Cauchy sequence of points of F . Now F ⊂ Rn and every Cauchy
sequence in Rn is convergent (see Theorem 3.4). We conclude therefore that
the infinite sequence x1,x2,x3, . . . is convergent. Let p = lim

j→+∞
xj. Then

p ∈ F , because F is closed in Rn (see Lemma 4.7). Moreover

p = lim
j→+∞

xj+1 = lim
j→+∞

ϕ(xj) = ϕ

(
lim

j→+∞
xj

)
= ϕ(p).

(This follows on applying Lemma 5.2.) We have thus proved the existence
of a point p of F for which ϕ(p) = p.

Now let q be any point of the closed set F with the property that ϕ(q) =
q. Then

|q− p| = |ϕ(q)− ϕ(p)| ≤ λ|q− p|.
But λ < 1. It follows that the Euclidean distance |q−p| from q to p cannot
be strictly positive, and therefore q = p. We conclude therefore that p is
the unique point of F for which ϕ(p) = p, as required.

9.2 The Inverse Function Theorem

Lemma 9.2 Let X be an open set in Rm, let ϕ:X → Rn be a differentiable
function mapping X into Rn, let p be a point of X, and let K be a positive
real number. Suppose that |x − p| ≤ K|ϕ(x) − ϕ(p)| for all points x of X.
Then |w| ≤ K|(Dϕ)pw| for all w ∈ Rm.

Proof Let w ∈ Rm. Then

t|w| = |(p + tw)− p| ≤ K|ϕ(p + tw)− ϕ(p)|

for all positive real numbers t small enough to ensure that p + tw ∈ X. Now

(Dϕ)pw = lim
t→0+

ϕ(p + tw)− ϕ(p)

t

(see Proposition 8.13). It follows that

|w| ≤ lim
t→0+

K

∣∣∣∣ϕ(p + tw)− ϕ(p)

t

∣∣∣∣
= K

∣∣∣∣ lim
t→0+

ϕ(p + tw)− ϕ(p)

t

∣∣∣∣ = K|(Dϕ)pw|,

as required.
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Proposition 9.3 Let X and Y be open sets in Rn, let ϕ:X → Rn be a
differentiable function mapping X into Rn, let p be a point of X, and let
K be a positive real number. Suppose that Y ⊂ ϕ(X). Suppose also that
|u − v| ≤ K|ϕ(u) − ϕ(v)| for all points u and v of X. Then there is a
differentiable function µ:Y → Rn characterized by the property that, for any
point y of Y , µ(y) is the unique point of X for which ϕ(µ(y)) = y. Moreover
µ(Y ) is an open set in Rn, and (Dµ)ϕ(p) = (Dϕ)−1p for all p ∈ µ(Y ).

Proof Given any point y of Y , there exists at least one point x of X for
which ϕ(x) = y, because Y ⊂ ϕ(X). Also the stated inequality in the
statement of the lemma ensures that, given any point y of Y , there cannot
exist more than one point x of X for which ϕ(x) = y. Consequently there
is a well-defined function µ:Y → Rn characterized by the property that, for
all points y of the open set Y , the point µ(y) is the unique point of the
open set X for which ϕ(x) = y. We must prove that this function µ is
differentiable and that it maps the open set Y onto an open set in Rn.

First we show that µ(Y ) is an open set in Rn. Let p be a point of µ(Y ).
The continuity of the function ϕ ensures that ϕ−1(Y ) is open in X. Therefore
there exists some positive real number δ that is small enough to ensure both
that all points x of Rn that satisfy |x−p| < δ belong to the open set X and
also that all points x of that open set that satisfy |x − p| < δ are mapped
by ϕ into the open set Y . Consequently all points of the open ball of radius δ
in Rn centred on the point p are mapped by ϕ into the set Y and therefore
belong to µ(Y ). Consequently µ(Y ) is an open set in Rn.

Let q ∈ Y , and let p = µ(q). Also let some positive real number ε be
given. The differentiability of the function ϕ at p ensures the existence of a
positive real number δ that is small enough to ensure that all points x of Rn

that satisfy the inequality |x − p| ≤ Kδ belong to the open set X and also
satisfy the inequality

|ϕ(x)− ϕ(p)− (Dϕ)p(x− p)| ≤ ε

K2
|x− p|.

Reducing the value of δ if necessary, we can also ensure that the open ball
of radius δ centred on the point q is contained in the open set Y . Let y ∈ Y
satisfy |y − q| < δ, and let x = µ(y). Then ϕ(x) = y and ϕ(p) = q, and
therefore

|x− p| ≤ K|ϕ(x)− ϕ(p)| = K|y − q| < Kδ.

It follows that

|y − q− (Dϕ)p(x− p)| = |ϕ(x)− ϕ(p)− (Dϕ)p(x− p)|

≤ ε

K2
|x− p| ≤ ε

K
|y − q|.
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Consequently it follows (on applying Lemma 9.2) that∣∣(Dϕ)−1p (y − q)− (x− p)
∣∣ ≤ K

∣∣(Dϕ)p((Dϕ)−1p (y − q)− (x− p))
∣∣

≤ K |y − q− (Dϕ)p(x− p)|
≤ ε|y − q|.

But x = µ(y) and p = µ(q). We conclude therefore that, given any positive
real number ε, there exists some positive real number δ such that y ∈ Y and∣∣µ(y)− µ(q)− (Dϕ)−1p (y − q)

∣∣ ≤ ε|y − q|

for all points y of Rn satisfying |y − q| < δ. It follows that the function
µ:Y → Rn is differentiable at q, and moreover

(Dµ)q = (Dϕ)−1p = (Dϕ)−1µ(q).

The result follows.

Definition A vector-valued function, defined over an open set in some Eu-
clidean space, is said to be continuously differentiable if it is differentiable,
with continuous first order partial derivatives throughout its domain.

It follows directly from a result previously established that if a vector-
valued function defined over an open set in a Euclidean space has continuous
first order partial derivatives then that function must necessarily be differ-
entiable (see Proposition 8.12). Thus the existence of continuous first order
partial derivatives throughout the domain of such a function is sufficient to
ensure that the function is continuously differentiable over its domain. No
additional differentiability criterion is required in order to ensure continuous
differentiability.

Theorem 9.4 (Inverse Function Theorem) Let ϕ:X → Rn be a contin-
uously differentiable function defined over an open set X in n-dimensional
Euclidean space Rn and mapping X into Rn, and let p be a point of X. Sup-
pose that the derivative (Dϕ)p:Rn → Rn of the function ϕ at the point p
is an invertible linear transformation. Then there exists an open set Y in
Rn and a continuously differentiable function µ:Y → Rn that satisfies the
following conditions:—

(i) µ(Y ) is an open set in Rn contained in X, and p ∈ µ(Y );

(ii) ϕ(µ(y)) = y for all y ∈ Y .
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Proof The derivative (Dϕ)p:Rn → Rn of ϕ at the point p is an invertible
linear operator on the real vector space Rn. In other words, it is an invertible
linear transformation mapping Rn onto itself. Let T = (Dϕ)−1p , and let a
positive real number K be chosen such that 2|Tw| ≤ K for all w ∈ Rn

satisfying |w| = 1. Then |Tw| ≤ 1
2
K|w| for all w ∈ Rn.

Also let ψ:X → Rn be defined such that

ψ(x) = x− T (ϕ(x)− q)

for all x ∈ X, where q = ϕ(p).
Now the derivative of any linear transformation at any point is equal

to that linear transformation (see Lemma 8.9). It follows on applying the
Chain Rule (Proposition 8.20) that the derivative of the composition function
T ◦ ϕ at any point x of X is equal to T (Dϕ)x. Consequently (Dψ)x =
I − T (Dϕ)x for all x ∈ X, where I denotes the identity operator on Rn. In
particular (Dψ)p = I−T (Dϕ)p = 0. Moreover ψ(p) = p. Now the first order
derivatives of the function ϕ are continuous at the point p. Therefore, given
that (Dψ)p = 0, we can choose some positive constant r that is small enough
to ensure both that x ∈ X for all elements x of Rn satisfying |x−p| ≤ r and
also that

|ψ(u)− ψ(v)| ≤ 1
2
|u− v|

for all points u and v of X for which |u − p| ≤ r and |v − p| ≤ r (see
Corollary 8.7).

Let u and v be points of X for which |u− p| ≤ r and |v − p| ≤ r. Now
ψ(x) = x− T (ϕ(x)− q) for all x ∈ X, and moreover T is a linear operator.
It follows that

ψ(u)− ψ(v) = u− v − T (ϕ(u)− ϕ(v)).

Therefore

|u− v| = |ψ(u)− ψ(v) + T (ϕ(u)− ϕ(v))|
≤ |ψ(u)− ψ(v)|+ |T (ϕ(u)− ϕ(v))|
≤ 1

2
|u− v|+ |T (ϕ(u)− ϕ(v))| .

Subtracting 1
2
|u − v| from both sides of this inequality, and multiplying by

2, we deduce that

|u− v| ≤ 2 |T (ϕ(u)− ϕ(v))| ≤ K|ϕ(u)− ϕ(v)|,

for all points u and v of X satisfying |u− p| ≤ r and |v − p| ≤ r.
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Now let
F = {x ∈ Rn : |x− p| ≤ r}.

Then F is a closed subset of Rn, and F ⊂ X. Moreover |ψ(u) − ψ(v)| ≤
1
2
|u− v| for all u ∈ F and v ∈ F .

Let y ∈ Rn satisfy |y − q| < s, where q = ϕ(p) and s = r/K. Also let
z = p + T (y − q), and let

θ(x) = ψ(x) + z− p

for all x ∈ X. Now z − p = T (y − q) and ψ(x) = x − T (ϕ(x) − q) for all
x ∈ X. It follows from the definition of θ(x) and the linearity of T that

θ(x)− x = z− p + ψ(x)− x

= T (y − q)− T (ϕ(x)− q)

= T (y − ϕ(x))

for all x ∈ X. Moreover the linear operator T is invertible. Consequently
a point x of X satisfies the equation x = θ(x) if and only if ϕ(x) = y.
Accordingly if we can show that the restriction of the function θ to the
closed set F maps that closed set into itself, where

F = {x ∈ Rn : |x− p| ≤ r},

and if we can also show that the restriction of the function θ to the closed
set F is a contraction mapping on that closed set, then we can use the result
(Theorem 9.1) concerning contraction mappings on closed sets previously
established to deduce the existence of a fixed point x for θ located within the
closed set F . That fixed point x will then satisfy the equation ϕ(x) = y.

Now the positive constant K was chosen at the beginning of the proof so
as to ensure that |Tw| ≤ 1

2
K|w| for all w ∈ Rn. Also |y − q| < s, where

s = r/K. Consequently

|z− p| = |T (y − q)| ≤ 1
2
K|y − q| < 1

2
Ks = 1

2
r.

Also ψ(p) = p, and consequently

θ(x)− z = ψ(x)− p = ψ(x)− ψ(p).

Moreover |ψ(u) − ψ(v)| ≤ 1
2
|u − v| for all points u and v of X that satisfy

|u− p| ≤ r and |v − p| ≤ r. Consequently if |x− p| ≤ r then

|θ(x)− z| ≤ 1
2
|x− p| ≤ 1

2
r,
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and therefore
|θ(x)− p| ≤ |θ(x)− z|+ |z− p| < r.

We have thus shown that if x ∈ Rn satisfies |x − p| ≤ r then x ∈ X and
|θ(x)− p| < r. We conclude therefore that θ maps the closed set F into its
interior, where

F = {x ∈ Rn : |x− p| ≤ r}.

Moreover
|θ(u)− θ(v)| = |ψ(u)− ψ(v)| ≤ 1

2
|u− v|

for all u ∈ F and v ∈ F . It then follows from Theorem 9.1 that there exists
a point x of F for which θ(x) = x. It then follows from results previously
established that |x− p| < r and ϕ(x) = y.

We have now established that, given any point y of Rn satisfying |y−q| <
s, where q = ϕ(p), there exists a point x of X satisfying |x − p| < r for
which ϕ(x) = y. Accordingly let

Y = {y ∈ Rn : |y − ϕ(p)| < s}.

Then
Y ⊂ ϕ({x ∈ Rn : |x− p| < r}).

It therefore follows (on applying Proposition 9.3) that there is a well-defined
function µ:Y → Rn characterized by the properties that |µ(y)− p| < r and
y = ϕ(µ(y)) for all y ∈ Y . Moreover this function µ is differentiable, and
(Dµ)ϕ(x) = (Dϕ)−1x for all x ∈ µ(Y ).

Now the function µ:Y → Rn is continuous, because it is differentiable.
Also the coefficients of the Jacobian matrix representing the derivative of ϕ
at points x of µ(Y ) are continuous functions of x on µ(Y ). It follows that
the coefficients of the inverse of the Jacobian matrix of the function ϕ are
also continuous functions of x on µ(Y ). Each coefficient of the Jacobian
matrix of the function µ is thus the composition of the continuous function µ
with a continuous real-valued function on µ(Y ), and must therefore itself be a
continuous real-valued function on Y . It follows that the function µ:Y → Rn

is continuously differentiable on Y . This completes the proof.

9.3 The Implicit Function Theorem

Theorem 9.5 (Implicit Function Theorem) Let X be an open set in
Rn, let f1, f2, . . . , fm be continuously differentiable real-valued functions on
X, where m < n, let

S = {x ∈ X : fi(x) = 0 for i = 1, 2, . . . ,m},
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and let p be a point of S. Suppose that the matrix

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

...
∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xm


is invertible at the point p. Then there exists an open neighbourhood V
of p and continuously differentiable functions h1, h2, . . . , hm of n − m real
variables, defined around (pm+1, . . . , pn) in Rn−m, such that

S ∩ V = {(x1, x2, . . . , xn) ∈ V :

xi = hi(xm+1, . . . , xn) for i = 1, 2, . . . ,m}.

Proof Let ϕ:X → Rn be the continuously differentiable function defined
such that

ϕ(x) =
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
for all x ∈ X. (Thus the ith Cartesian component of the function ϕ is equal
to fi for i ≤ m, but is equal to xi for m < i ≤ n.) Let J be the Jacobian
matrix of ϕ at the point p, and let Ji,j denote the coefficient in the ith row
and jth column of J . Then

Ji,j =
∂fi
∂xj

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Also Ji,i = 1 if i > m, and Ji,j = 0 if
i > m and j 6= i.

We show that the derivative (Dϕ)p of the function ϕ at the point p is
an invertible linear operator on Rn. Let v1, v2, . . . , vn be real numbers, and
let v = (v1, v2, . . . , vn). Consider the the m × m matrix whose coefficient
in the ith row and jth column is the corresponding coefficient Ji,j of the
Jacobian matrix of the function ϕ at the point p. The hypotheses of the
Implicit Function Theorem require that this m × m matrix be invertible.
Consequently there exist real numbers w1, w2, . . . , wm such that, for each
integer i between 1 and m,

m∑
j=1

Ji,jwj = vi −
n∑

j=m+1

Ji,jvj.
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Let wj = vj for all integers j for which m+ 1 ≤ j ≤ n. Then

vi =
m∑
j=1

Ji,jwj +
n∑

j=m+1

Ji,jwj =
n∑
j=1

Ji,jwj

for each integer i between 1 and m. Moreover vi =
n∑
j=1

Ji,jwj for each integer i

between m+1 and n because, as already noted, Ji,i = 1 if i > m, and Ji,j = 0
if i > m and j 6= i. It follows that (Dϕ)pw = v, where w = (w1, w2, . . . , wn).
Now if u is any vector in Rn satisfying the equation (Dϕ)pu = v, and if
u = (u1, u2, . . . , un), then ui = vi = wi for all integers i greater than m, and
consequently

m∑
j=1

Ji,juj = vi −
n∑

j=m+1

Ji,jvj =
m∑
j=1

Ji,jwj.

It then follows from the invertibility of the m × m matrix with coefficient
Ji,j in the ith row and jth column that ui = wi for all integers i between 1
and m. We have already noted that ui = wi for all integers i between m+ 1
and n. Consequently u = w. We conclude therefore that the vector w is
the unique vector in Rn that satisfies the equation (Dϕ)pw = v. We have
accordingly established that the derivative (Dϕ)p:Rn → Rn of the function ϕ
at the point p is an invertible linear operator on Rn.

The Inverse Function Theorem (Theorem 9.4) now ensures the existence
of a continuously differentiable function µ:Y → Rn, defined over an open
set Y in Rn, with the properties that µ(Y ) is an open subset of X, p ∈ µ(Y )
and ϕ(µ(y)) = y for all y ∈ Y .

Let y be a point of Y , and let y = (y1, y2, . . . , yn). Then y = ϕ(µ(y)),
and therefore yi = fi(µ(y)) for i = 1, 2, . . . ,m. Also yi is equal to the ith
component of µ(y) for all integers i between m+ 1 and n.

Now p ∈ µ(Y ). Therefore there exists some point q of Y satisfying
µ(q) = p. Now p ∈ S, and therefore fi(p) = 0 for i = 1, 2, . . . ,m. But
qi = fi(µ(q)) = fi(p) when 1 ≤ i ≤ m. It follows that qi = 0 when
1 ≤ i ≤ m. Also the definitions of the functions ϕ and µ ensure that qi = pi
for each integer i between m+ 1 and n.

Let gi denote the ith Cartesian component of the continuously differ-
entiable function µ:Y → Rn for i = 1, 2, . . . , n. Then gi:Y → R is a
continuously differentiable real-valued function on Y for i = 1, 2, . . . , n. If
(y1, y2, . . . , yn) ∈ Y then

(y1, y2, . . . , yn) = ϕ(µ(y1, y2, . . . , yn)).
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It then follows from the definition of the function ϕ that yi is the ith Cartesian
component of µ(y1, y2, . . . , yn) when i > m, and thus

yi = gi(y1, y2, . . . , yn) when m+ 1 ≤ i ≤ n.

Also µ(Y ) is an open set, and p ∈ µ(Y ). It follows that there exists some
positive real number δ such that H(p, δ) ⊂ µ(Y ). where

H(p, δ)

= {(x1, x2, . . . , xn) ∈ Rn : pi − δ < xi < pi + δ for i = 1, 2, . . . , n}.

Let V = H(p, δ) and let

D = {(z1, z2, . . . , zn−m) ∈ Rn−m : pm+j − δ < zj < pm+j + δ

for j = 1, 2, . . . , n−m}.

Also let hi:D → R be defined so that

hi(z1, z2, . . . , zn−m) = gi(0, 0, . . . , 0, z1, z2, . . . , zn−m)

for i = 1, 2, . . . ,m.
Let x ∈ V , where x = (x1, x2, . . . , xn). Then x ∈ µ(Y ). There therefore

exists q′ ∈ Y for which µ(q′) = x. But the properties of the function µ
ensure that q′ = ϕ(µ(q′)). It follows that

x = µ(q′) = µ(ϕ(µ(q′))) = µ(ϕ(x)).

Thus

(x1, x2, . . . , xn) = µ(ϕ(x))

= µ
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

On equating Cartesian components we find that

xi = gi

(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

for i = 1, 2, . . . , n.
In particular, if x ∈ V ∩ S then

f1(x) = f2(x) = · · · = fm(x) = 0,

and therefore

xi = gi

(
0, 0, . . . , 0, xm+1, . . . , xn

)
= hi

(
xm+1, . . . , xn

)
.
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for i = 1, 2, . . . ,m. It follows that

V ∩ S ⊂ {(x1, x2, . . . , xn) ∈ V :

xi = hi(xm+1, . . . , xn) for i = 1, 2, . . . ,m}.

Now let x be a point of V whose Cartesian components x1, x2, . . . , xn
satisfy the equations

xi = hi(xm+1, . . . , xn)

for i = 1, 2, . . . ,m. Then xi = gi(y) for i = 1, 2, . . . ,m, where

y = (0, 0, . . . , 0, xm+1, . . . , xn).

However it follows from an identity established at an earlier point of the
proof that

yi = gi(y1, y2, . . . , yn)

for all integers i between m + 1 and n. Consequently xi = gi(y) for all
integers i between 1 and n, and therefore x = µ(y).

The properties that characterize of the function µ then ensure that

ϕ(x) = y = (0, . . . , 0, xm+1, . . . , xn).

Moreover, for each integer i between 1 and m, the ith component function
of ϕ is the function fi. It follows therefore that fi(x) = 0 for each integer i
between 1 and m, and therefore x ∈ V ∩ S. We can conclude therefore that

V ∩ S = {(x1, x2, . . . , xn) ∈ V :

xi = hi(xm+1, . . . , xn) for i = 1, 2, . . . ,m}.

This completes the proof of the Implicit Function Theorem.

The three following results are special cases of the Implicit Function The-
orem, and cover those standard cases in which the theorem is applied to
continuously differentiable scalar-valued and vector-valued functions of two
or three real variables.

These results are basic building blocks for establishing secure logical foun-
dations for that part of the field of differential geometry that is concerned
with the theory of curves and surfaces in low-dimensional Euclidean spaces.
Curves and surfaces specified in terms of continuously differentiable func-
tions, and their higher-dimensional analogues in finite-dimensional Euclidean
spaces, are examples of submanifolds of the Euclidean spaces that contain
them. The Implicit Function Theorem generalizes the results concerning
curves and surfaces expressed in the following corollaries so as to apply to
submanifolds of Euclidean spaces of any finite dimension.
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Corollary 9.6 Let f be a continuously differentiable real-valued function de-
fined over an open set in R2, and let (p, q) be a point of the domain of the
function f . Suppose that f(p, q) = 0 and

∂f

∂y
6= 0

at the point (p, q). Then there exists an open set V in R2, where (p, q) ∈ V ,
and a continuously differentiable function h of a single real variable, defined
around the real number p, such that

{(x, y) ∈ V : f(x, y) = 0} = {(x, y) ∈ V : y = h(x)}.

Corollary 9.7 Let f be a continuously differentiable real-valued function de-
fined over an open set in R3, and let (p, q, r) be a point of the domain of the
function f . Suppose that f(p, q, r) = 0 and

∂f

∂z
6= 0

at the point (p, q, r). Then there exists an open set V in R3, where (p, q, r) ∈
V , and a continuously differentiable function h of two real variables, defined
around the point (p, q) ∈ R2, such that

{(x, y, z) ∈ V : f(x, y, z) = 0} = {(x, y, z) ∈ V : z = h(x, y)}.

Corollary 9.8 Let v and w be continuously differentiable real-valued func-
tions defined over an open set in R3, and let (p, q, r) be a point of the common
domain of the functions v and w. Suppose that v(p, q, r) = 0, w(p, q, r) = 0
and

∂v

∂y

∂w

∂z
− ∂v

∂z

∂w

∂y
6= 0

at the point (p, q, r). Then there exists an open set V in R3, where (p, q, r) ∈
V , and continuously differentiable functions f and g of a single real variable,
defined around the real number p, such that

{(x, y, z) ∈ V : v(x, y, z) = w(x, y, z) = 0}
= {(x, y, z) ∈ V : y = f(x) and z = g(x)}.

Note that the condition imposed on the first order partial derivatives of
the function v and w in the statement of Corollary 9.8, requiring the value
of

∂v

∂y

∂w

∂z
− ∂v

∂z

∂w

∂y
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to be non-zero at the point (p, q, r) is a necessary and sufficient condition for
ensuring that the matrix 

∂v

∂y

∂v

∂z
∂w

∂y

∂w

∂z


of functions is an invertible matrix when those functions are evaluated at the
point (p, q, r).
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