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6 Continuous Functions on Closed Bounded
Sets

6.1 The Multidimensional Extreme Value Theorem

Lemma 6.1 Let X be a closed bounded set in R™, and let f: X — R be a
continuous real-valued function defined on X . Suppose that the set of values
of the function f on X is bounded below. Then there exists a point u of X
such that f(x) > f(u) for allx € X.

Proof Let
m = inf{f(x):x € X}.

Then there exists an infinite sequence X1, X, X3, ... in X such that
1
f(Xj) <m -+ ;

for all positive integers j. It follows from the multidimensional Bolzano-
Weierstrass Theorem (Theorem 3.2) that this sequence has a subsequence
Xky s Xkys Xks, - - - Which converges to some point u of R™.

Now the point u belongs to X because X is closed (see Lemma 4.7). Also

1
m < f(Xp;) <m+ —
kj

for all positive integers j. It follows that 411111 f(xx;) = m. Consequently
Jj—+oo

) =1t x, ) =t sGo,) = m

Jj—+oo Jj—+oo

(see Lemma 5.2). It follows therefore that f(x) > f(u) for all x € X, Thus
the function f attains a minimum value at the point u of X, which is what
we were required to prove. |}

Lemma 6.2 Let X be a closed bounded set in R™, and let p: X — R™ be
a continuous function mapping X into R™. Then there exists a positive real
number M with the property that |p(x)| < M for all x € X.

Proof Let g: X — R be defined such that

1
1+ ()]

9(x)
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for all x € X. Now the real-valued function mapping each x € X to |¢(x)] is
continuous (see Lemma 5.6) and quotients of continuous real-valued functions
are continuous where they are defined (see Lemma 5.5). It follows that
the function ¢g: X — R is continuous. Moreover the values of this function
are bounded below by zero. Consequently there exists some point w of X
with the property that g(x) > g(w) for all x € X (see Lemma 6.1). Let
M = |p(w)|. Then |p(x)| < M for all x € X. The result follows. |}

Theorem 6.3 (The Multidimensional Extreme Value Theorem)
Let X be a closed bounded set in R™, and let f: X — R be a continuous

real-valued function defined on X. Then there exist points u and v of X
such that f(u) < f(x) < f(v) forallx € X.

Proof It follows from Lemma 6.2 that there exists positive real number M
with the property that —M < f(x) < M for all x € X. Thus the set of
values of the function f is bounded above and below on X. Consequently
there exist points u and v where the functions f and — f respectively attain
their minimum values on the set X (see Lemma 6.1). The result follows. |}

6.2 Uniform Continuity for Functions of Several Real
Variables

Definition Let X be a subset of R™. A function ¢: X — R" from X to R"
is said to be uniformly continuous if, given any positive real number ¢, there
exists some positive real number § (whose value does not depend on either
y or z) such that |o(y) — ¢(z)| < € for all points y and z of X satisfying
ly —z| < 6.

Theorem 6.4 Let X be a subset of R™ that is both closed and bounded.
Then any continuous function ¢: X — R™ is uniformly continuous.

Proof Let some positive real number € be given. Suppose that there did not
exist any positive real number ¢ small enough to ensure that |¢(y) — ¢(z)| <
e for all points y and z of the set X satisfying |y — z| < 6. Then, for
each positive integer j, there would exist points u; and v; in X such that
lu; — v;| < 1/j and [p(u;) — ¢(v;)| > €. But the sequence uy,uy, us, ...
would be bounded, since X is bounded, and thus would possess a subsequence
Ug,, Ug,, Uy, - - . converging to some point p (Theorem 3.2). Moreover p € X
because X is closed in R". The sequence vy, , Vi,, Vi,, . . . would also converge
to p, because

A [viy = | =0.
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But then the sequences

90<uk1>>f<uk2)7f<uk3), -

and
(Vi ), fF(Vin)s (Vg )s - - -

would both converge to ¢(p), because ¢ is continuous (see Lemma 5.2).

Therefore
lim | (uy,;) — ¢(vi,)| = 0.

j—+oo

But, assuming that no positive real number ¢ could be found satisfying
the stated requirements, the points u; and v; had been chosen for all positive
integers j so that |u; — v;| < 1/j and |p(u;) — ¢(v;)| > €. Consequently
¢(ug,;) and ¢(vg,) could not both converge to ¢(p) as j increases to infinity.
Thus the assumption that no positive real number § would have the required
property would lead to a contradiction. We conclude therefore that, in order
to avoid arriving at this contradiction, there must exist some positive real
number ¢ such that |p(y) — ¢(z)| < ¢ for all points y and z of the set X
satisfying |y — z| < d, as required. |}
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