
Course MAU23203—Michaelmas Term 2020.
Worked Solutions for Assignment I.

1. Let X be a closed subset of R2, let f :X → R be a continuous real-valued
function on X, and let

Y = {(x, y, z) ∈ R3 : (x, y) ∈ X and z = f(x, y)}.

Prove that the set Y is a closed subset of R3.

First Solution

Let (p, q, r) be a point of R3 \ Y . Consider first the case in which
(p, q) 6∈ X. In that case there exists some positive real number δ such
that the open disk in R2 of radius δ centred on (p, q) is contained in
the complement of X, because X is closed in R2. Then, for all points
(x, y, z) of the open ball of radius δ about the point (p, q, r), the point
(x, y) belongs to R2 \X. Consequently the open ball of radius δ about
the point (p, q, r) is contained in the complement of Y .

Next consider the case in which (p, q, r) ∈ R3 \Y and (p, q) ∈ X. Then
r 6= f(p, q). The continuity of the function f ensures the existence of
a positive number η small enough to ensure that |f(x, y) − f(p, q)| <
1
2
|r − f(p, q)| whenever (x, y) ∈ X and

√
(x− p)2 + (y − q)2 < η. Let

δ be the minimum of η and 1
2
|r − f(p, q)|. Then δ > 0, and if the

point (x, y, z) lies within a distance δ of (p, q, r) and if (x, y) ∈ X then
|f(x, y)− f(p, q)| < 1

2
|r − f(p, q)|. Also |z − r| < δ, and consequently

|z − f(p, q)| > |r − f(p, q)| − δ ≥ 1
2
|r − f(p, q)|.

It follows that z 6= f(x, y). Consequently the open ball of radius δ
about the point (p, q, r) is contained in the complement of the set Y .
Combining the results of the two cases discussed above, we conclude
that the complement of the set Y is open, and therefore the set Y itself
is closed.

Second Solution

Let
Z = {(x, y, z) ∈ R3 : (x, y) ∈ X}.

Then Z is closed in R3, because it is the preimage of the closed set X
under the continuous function from R3 to R2 that maps each point
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(x, y, z) of R3 to (x, y). The set Y is a subset of the closed set Z. It
follows that, given any point (p, q, r) of R3 \ Z, there exists some open
ball of positive radius centred on that point that is wholly contained
within the complement of the set Z and is therefore wholly contained
within the complement of the set Y .

Now let (p, q, r) be a point of Z \ Y . Then r 6= f(p, q). First suppose
that r > f(p, q). Let c = 1

2
(r + f(p, q)). Then f(p, q) < c < r. Now

{(x, y) ∈ X : f(x, y) < c}

is open in X, because it is the preimage of the open interval (−∞, c)
under the continuous map f . Consequently there exists some positive
real number η such that f(x, y) < c for all points (x, y) of X that lie
within a distance η of the the point (p, q). Let

V = {(x, y, z) ∈ R3 :
√

(x− p)2 + (y − q)2 < η and z > c}.

Then the set V is open in R3 because it is the intersection of the open
set {(x, y, z) ∈ R3 : z > c} with the preimage of the open disk in R2 of
radius η about the point (p, q) under the continuous map from R3 to R2

that sends each point (x, y, z) of R3 to (x, y), and the preimage of the
open disk of radius η centred on the point (p, q), being the preimage of
an open set under a continuous map, must itself be open in R3. Also
V ∩Y = ∅. The point (p, q, r) belongs to the open set V . Consequently
there exists an open ball of positive radius centred on the point (p, q, r)
that is wholly contained within the open set V . This open ball is then
wholly contained in the complement of the set Y .

Now let (p, q, r) be a point of Z \ Y for which r < f(p, q). In this case
take c = 1

2
(r + f(p, q)), as before. Then r < c < f(p, q). There then

exists some positive real number η such that f(x, y) > c for all points
(x, y) of X that lie within a distance η of the point (p, q). Take

W = {(x, y, z) ∈ R3 :
√

(x− p)2 + (y − q)2 < η and z < c}.

Then W is open in R3, and W ∩ Y = ∅. The point (p, q, r) belongs
to the open set W . Consequently there exists an open ball of positive
radius centred on the point (p, q, r) that is wholly contained within the
open set W . This open ball is then wholly contained in the complement
of the set W .

We conclude therefore that, given any point (p, q, r) of the complement
of the set Y , there exists an open ball of positive radius centred on that
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point that is wholly contained within the complement of the set Y .
Consequently the complement of Y in R3 is an open set, and therefore
the set Y itself is a closed subset of R3.

Third Solution

Let
Z = {(x, y, z) ∈ R3 : (x, y) ∈ X}.

Then Z is closed in R3, because it is the preimage of the closed set X
under the continuous function from R3 to R2 that maps each point
(x, y, z) of R3 to (x, y). The set Y is a subset of the closed set Z. It
follows [as in the Second Solution above] that, given any point (p, q, r)
of R3 \Z, there exists some open ball of positive radius centred on that
point that is wholly contained within the complement of the set Z and
is therefore wholly contained within the complement of the set Y .

Now let g:Z → R be the continuous function from Z to R defined so
that g(x, y, z) = z−f(x, y). Then the function g, being the difference of
two continuous functions, is itself a continuous function. Then Z \Y =
g−1(R \ {0}). Now the set R \ {0} of non-zero real numbers is open in
R, and the preimage of an open set under a continuous function with
domain Z is itself open in Z. Consequently Z \ Y is open in Z and
therefore, given any point of p of Z \ Y , there exists some open ball
of positive radius centred on the point p whose intersection with the
set Z is wholly contained in Z \ Y . This open ball is then contained in
the complement R3 \ Y in R3 of the set Y , because Y ⊂ Z.

It follows from these results that the complement of the set Y is an
open subset of R3, and therefore the set Y itself is a closed subset of
R3.

Fourth Solution

A subset of R3 is closed in R3 if and only if the limit of any convergent
sequence whose members belong to the subset in question belongs to
that subset.

For each positive integer j let (xj, yj, zj) be the jth member of a con-
vergent sequence of points of Y , and let (p, q, r) = lim

j→+∞
(xj, yj, zj).

Then (xj, yj) ∈ X for all positive integers j. The set X is closed and
(p, q) = lim

j→+∞
(xj, yj). It follows that (p, q) ∈ X. Moreover

r = lim
j→+∞

zj = lim
j→+∞

f(xj, yj) = f

(
lim

j→+∞
xj, lim

j→+∞
yj

)
= f(p, q),
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because the function f is continuous and the limit of the images of
the members of a convergent sequence of points under a continuous
function is the image of the limit of that convergent sequence of points.
It follows that (p, q, r) ∈ Y . This result establishes that the set Y is
closed in R3.

2. Let f : (0,+∞) → R be a real-valued function defined over the set of
positive real numbers with the properties that f(x) > 0 for all positive
real numbers x and lim

x→0+
f(x) = 0. (In other words, f(x) tends to zero

as x tends to zero in the set of positive real numbers.) Let

X = {(x, y) ∈ R2 : −f(x) ≤ y ≤ f(x)},

let p1,p2,p3, . . . be an infinite sequence of points that all belong to the
set X, and let pj = (xj, yj) for each positive integer j. Suppose that
lim

j→+∞
xj = 0. Prove that

lim
j→+∞

pj = (0, 0).

Solution

The function f is continuous, and the limit of the images of the mem-
bers of a convergent sequence of points under a continuous function
is the image of the limit of that convergent sequence of points. Now
lim

j→+∞
xj = 0 and lim

x→0+
f(x) = 0. It follows that lim

j→+∞
f(xj) = 0.

Now −f(xj) ≤ yj ≤ f(xj) for all positive integers j, and

lim
j→+∞

−f(xj) = − lim
j→+∞

f(xj) = 0.

It follows from the Squeeze Theorem (or Sandwich Theorem) of cal-
culus, or analysis, in a single real variable, that lim

j→+∞
yj = 0. Also a

sequence of points in 2-dimensional space R2 is convergent if and only
if its components are convergent, in which case the components of the
limit of the sequence of points is the point whose components are the
limits of the corresponding sequences of components. Consequently

lim
j→+∞

pj = lim
j→+∞

(xj, yj) =

(
lim

j→+∞
xj, lim

j→+∞
yj

)
= (0, 0),

as required.
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