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1 The Real Number System

1.1 A Concise Characterization of the Real Number
System

The set R of real numbers, with its usual ordering and algebraic operations
of addition and multiplication, is a Dedekind-complete ordered field.

We describe below what a field is, what an ordered field is, and what is
meant by saying that an ordered field is Dedekind-complete.

1.2 Fields

Definition A field is a set F on which are defined operations of addition
and multiplication, associating elements x+ y and xy of F to each pair x, y
of elements of F, for which the following axioms are satisfied:

(i) x + y = y + x for all x, y ∈ F (i.e., the operation of addition on F is
commutative);

(ii) (x+y)+z = x+(y+z) for all x, y, z ∈ F (i.e., the operation of addition
on F is associative);

(iii) there exists an element 0 of F with the property that 0 + x = x for all
x ∈ F (i.e., there exists a zero element for the operation of addition on
F);

(iv) given any x ∈ F, there exists an element −x of F satisfying x+(−x) = 0
(i.e., negatives of elements of F always exist);

(v) xy = yx for all x, y ∈ F (i.e., the operation of multiplication on F is
commutative);

(vi) (xy)z = x(yz) for all x, y, z ∈ F (i.e., the operation of multiplication
on F is associative);

(vii) there exists an element 1 of F with the property that 1x = x for all
x ∈ F (i.e., there exists an identity element for the operation of multi-
plication on F);

(viii) given any x ∈ F satisfying x 6= 0, there exists an element x−1 of F
satisfying xx−1 = 1;

(ix) x(y + z) = xy + xz for all x, y, z ∈ F (i.e., multiplication is distributive
over addition).
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The operations of subtraction and division are defined on a field F in
terms of the operations of addition and multiplication on that field in the
obvious fashion: x−y = x+(−y) for all elements x and y of F, and moreover
x/y = xy−1 provided that y 6= 0.

1.3 Ordered Fields

Definition An ordered field consists of a field F together with an ordering <
on that field that satisfies the following axioms:—

(x) if x and y are elements of F then one and only one of the three state-
ments x < y, x = y and y < x is true (i.e., the ordering satisfies the
Trichotomy Law);

(xi) if x, y and z are elements of F and if x < y and y < z then x < z (i.e.,
the ordering is transitive);

(xii) if x, y and z are elements of F and if x < y then x+ z < y + z;

(xiii) if x and y are elements of F which satisfy 0 < x and 0 < y then 0 < xy.

We can write x > y in cases where y < x. we can write x ≤ y in cases
where either x = y or x < y. We can write x ≥ y in cases where either x = y
or y < x.

Example The rational numbers, with the standard ordering, and the stan-
dard operations of addition, subtraction, multiplication, and division consti-
tute an ordered field.

Example Let Q(
√

2) denote the set of all numbers that can be represented in
the form b+c

√
2, where b and c are rational numbers. The sum and difference

of any two numbers belonging to Q(
√

2) themselves belong to Q(
√

2). Also
the product of any two numbers Q(

√
2) itself belongs to Q(

√
2) because, for

any rational numbers b, c, e and f ,

(b+ c
√

2)(e+ f
√

2) = (be+ 2cf) + (bf + ce)
√

2,

and both be + 2cf and bf + ce are rational numbers. The reciprocal of any
non-zero element of Q(

√
2) itself belongs to Q(

√
2), because

1

b+ c
√

2
=
b− c

√
2

b2 − 2c2
.

for all rational numbers b and c. It is then a straightforward exercise to verify
that Q(

√
2) is an ordered field.
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1.4 Least Upper Bounds

Let S be a subset of an ordered field F. An element u of F is said to be an
upper bound of the set S if x ≤ u for all x ∈ S. The set S is said to be
bounded above if such an upper bound exists.

Definition Let F be an ordered field, and let S be some subset of F which
is bounded above. An element s of F is said to be the least upper bound (or
supremum) of S (denoted by supS) if s is an upper bound of S and s ≤ u
for all upper bounds u of S.

Example The rational number 2 is the least upper bound, in the ordered
field of rational numbers, of the sets {x ∈ Q : x ≤ 2} and {x ∈ Q : x < 2}.
Note that the first of these sets contains its least upper bound, whereas the
second set does not.

The following property is satisfied in some ordered fields but not in others.

Least Upper Bound Property: given any non-empty subset
S of F that is bounded above, there exists an element supS of F
that is the least upper bound for the set S.

Definition A Dedekind-complete ordered field F is an ordered field which
has the Least Upper Bound Property.

1.5 Greatest Lower Bounds

Let S be a subset of an ordered field F. A lower bound of S is an element l of
F with the property that l ≤ x for all x ∈ S. The set S is said to be bounded
below if such a lower bound exists. A greatest lower bound (or infimum) for
a set S is a lower bound for that set that is greater than every other lower
bound for that set. The greatest lower bound of the set S (if it exists) is
denoted by inf S.

Let F be a Dedekind-complete ordered field. Then, given any non-empty
subset S of F that is bounded below, there exists a greatest lower bound (or
infimum) inf S for the set S. Indeed inf S = − sup{x ∈ R : −x ∈ S}.

Remark It can be proved that any two Dedekind-complete ordered fields are
isomorphic via an isomorphism that respects the ordering and the algebraic
operations on the fields. The theory of Dedekind cuts provides a construction
that yields a Dedekind-complete ordered field that can represent the system
of real numbers. For an account of this construction, and for a proof that
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these axioms are sufficient to characterize the real number system, see chap-
ters 27–29 of Calculus, by M. Spivak. The construction of the real number
system using Dedekind cuts is also described in detail in the Appendix to
Chapter 1 of Principles of Real Analysis by W. Rudin.

1.6 Bounded Sets of Real Numbers

The set R of real numbers, with its usual ordering algebraic operations, con-
stitutes a Dedekind-complete ordered field. Thus every non-empty subset S
of R that is bounded above has a least upper bound (or supremum) supS,
and every non-empty subset S of R that is bounded below has a greatest
lower bound (or infimum) inf S.

Let S be a non-empty subset of the real numbers that is bounded (both
above and below). Then the closed interval [inf S, supS] is the smallest
closed interval in the set R of real numbers that contains the set S. Indeed if
S ⊂ [a, b], where a and b are real numbers satisfying a ≤ b, then a ≤ inf S ≤
supS ≤ b, and therefore

S ⊂ [inf S, supS] ⊂ [a, b].

1.7 Absolute Values of Real Numbers

Let x be a real number. The absolute value |x| of x is defined so that

|x| =
{
x if x ≥ 0;
−x if x < 0;

Lemma 1.1 Let u and v be real numbers. Then |u + v| ≤ |u| + |v| and
|uv| = |u| |v|.

Proof Let u and v be real numbers. Then

−|u| ≤ u ≤ |u| and − |v| ≤ v ≤ |v|.

On adding inequalities, we find that

−(|u|+ |v|) = −|u| − |v| ≤ u+ v ≤ |u|+ |v|,

and thus
u+ v ≤ |u|+ |v| and − (u+ v) ≤ |u|+ |v|.

Now the value of |u + v| is equal to at least one of the numbers u + v and
−(u+ v). It follows that

|u+ v| ≤ |u|+ |v|
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for all real numbers u and v.
Next we note that |u| |v| is the product of one or other of the numbers u

and −u with one or other of the numbers v and −v, and therefore its value is
equal either to uv or to −uv. Because both |u| |v| and |uv| are non-negative,
we conclude that |uv| = |u| |v|, as required.

Lemma 1.2 Let u and v be real numbers. Then
∣∣∣|u| − |v|∣∣∣ ≤ |u− v|.

Proof It follows from Lemma 1.1 that

|u| = |v + (u− v)| ≤ |v|+ |u− v|.

Therefore |u| − |v| ≤ |u− v|. Interchanging u and v, we find also that

|v| − |u| ≤ |v − u| = |u− v|.

Now
∣∣∣|u| − |v|∣∣∣ is equal to one or other of the real numbers |u| − |v| and

|v| − |u|. It follows that
∣∣∣|u| − |v|∣∣∣ ≤ |u− v|, as required.

1.8 Convergence of Infinite Sequences of Real Num-
bers

An infinite sequence x1, x2, x3, . . . of real numbers associates to each positive
integer j a corresponding real number xj.

Definition An infinite sequence x1, x2, x3, . . . of real numbers is said to con-
verge to some real number p if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − p| < ε for all positive integers j
satisfying j ≥ N .

If an infinite sequence x1, x2, x3, . . . of real numbers converges to some real
number p, then p is said to be the limit of the sequence, and we can indicate
the convergence of the infinite sequence to p by writing ‘xj → p as j → +∞’,
or by writing ‘ lim

j→+∞
xj = p’.

Let x and p be real numbers, and let ε be a strictly positive real number.
Then |x − p| < ε if and only if both x − p < ε and p − x < ε. It follows
that |x− p| < ε if and only if p− ε < x < p + ε. The condition |x− p| < ε
essentially requires that the value of the real number x should agree with p
to within an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number p if and only if, given any positive
real number ε, there exists some positive integerN such that p−ε < xj < p+ε
for all positive integers j satisfying j ≥ N .
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Definition We say that an infinite sequence x1, x2, x3, . . . of real numbers is
bounded above if there exists some real number B such that xj ≤ B for all
positive integers j. Similarly we say that this sequence is bounded below if
there exists some real number A such that xj ≥ A for all positive integers j.
A sequence is said to be bounded if it is bounded above and bounded below.
Thus a sequence is bounded if and only if there exist real numbers A and B
such that A ≤ xj ≤ B for all positive integers j.

Lemma 1.3 Every convergent sequence of real numbers is bounded.

Proof Let x1, x2, x3, . . . be a sequence of real numbers converging to some
real number p. On applying the formal definition of convergence (with ε = 1),
we deduce the existence of some positive integerN such that p−1 < xj < p+1
for all j ≥ N . But then A ≤ xj ≤ B for all positive integers j, where A
is the minimum of x1, x2, . . . , xN−1 and p − 1, and B is the maximum of
x1, x2, . . . , xN−1 and p+ 1.

Proposition 1.4 Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite se-
quences of real numbers. Then the sum and difference of these sequences are
convergent, and

lim
j→+∞

(xj + yj) = lim
j→+∞

xj + lim
j→+∞

yj,

lim
j→+∞

(xj − yj) = lim
j→+∞

xj − lim
j→+∞

yj.

Proof Throughout this proof let p = lim
j→+∞

xj and q = lim
j→+∞

yj. It follows

directly from the definition of limits that lim
j→+∞

(−yj) = −q.
Let some strictly positive real number ε be given. We must show that

there exists some positive integer N such that |xj +yj−(p+q)| < ε whenever
j ≥ N . Now xj → p as j → +∞, and therefore, given any strictly positive
real number ε1, there exists some positive integer N1 with the property that
|xj − p| < ε1 whenever j ≥ N1. In particular, there exists a positive integer
N1 with the property that |xj − p| < 1

2
ε whenever j ≥ N1. (To see this, let

ε1 = 1
2
ε.) Similarly there exists some positive integer N2 such that |yj − q| <

1
2
ε whenever j ≥ N2. Let N be the maximum of N1 and N2. If j ≥ N then

|xj + yj − (p+ q)| = |(xj − p) + (yj − q)| ≤ |xj − p|+ |yj − q|
< 1

2
ε+ 1

2
ε = ε.

Thus xj + yj → p+ q as j → +∞.
On replacing yj by −yj for all positive integers j, and using the result

that −yj → −q as j → +∞, we see that Thus xj − yj → p− q as j → +∞,
as required.
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Lemma 1.5 Let x1, x2, x3, . . . be a convergent infinite sequence of real num-
bers, and let c be a real number. Then

lim
j→+∞

(cxj) = c lim
j→+∞

xj.

Proof Let some strictly positive real number ε be given. Then a strictly
positive real number ε1 can be chosen so that |c| ε1 ≤ ε. There then exists
some positive integer N such that |xj − p| < ε1 whenever j ≥ N , where
p = lim

j→+∞
xj. But then

|cxj − cp| < |c| ε1 ≤ ε

whenever j ≥ N . We conclude that lim
j→+∞

cxj = cp, as required.

Proposition 1.6 Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite se-
quences of real numbers. Then the product of these sequences is convergent,
and

lim
j→+∞

(xjyj) =

(
lim

j→+∞
xj

)(
lim

j→+∞
yj

)
.

Proof Let uj = xj − p and vj = yj − q for all positive integers j where
p = lim

j→+∞
xj and q = lim

j→+∞
yj. Then

lim
j→+∞

(ujvj) = lim
j→+∞

(xjyj − xjq − pyj + pq)

= lim
j→+∞

(xjyj)− q lim
j→+∞

xj − p lim
j→+∞

yj + pq

= lim
j→+∞

(xjyj)− pq.

Let some strictly positive real number ε be given. It follows from the
definition of limits that lim

j→+∞
uj = 0 and lim

j→+∞
vj = 0. Therefore there

exist positive integers N1 and N2 such that |uj| <
√
ε whenever j ≥ N1 and

|vj| <
√
ε whenever j ≥ N2. Let N be the maximum of N1 and N2. If j ≥ N

then |ujvj| < ε. Thus lim
j→+∞

ujvj = 0, and therefore lim
j→+∞

(xjyj) − pq = 0.

The result follows.

Proposition 1.7 Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite
sequences of real numbers, where yj 6= 0 for all positive integers j and
lim

j→+∞
yj 6= 0. Then the quotient of the sequences (xj) and (yj) is conver-

gent, and

lim
j→+∞

xj
yj

=
lim

j→+∞
xj

lim
j→+∞

yj
.
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Proof Let p = lim
j→+∞

xj and Let q = lim
j→+∞

yj. Then

xj
yj
− p

q
=
qxj − pyj

qyj

for all positive integers j. Now there exists some positive integer N1 such
that |yj − q| < 1

2
|q| whenever j ≥ N1. Then |yj| ≥ 1

2
|q| whenever j ≥ N1,

and therefore ∣∣∣∣xjyj − p

q

∣∣∣∣ ≤ 2

|q|2
|qxj − pyj|

whenever j ≥ N1.
Let some strictly positive real number ε be given. Applying Lemma 1.5

and Proposition 1.4, we find that

lim
j→+∞

(qxj − pyj) = q lim
j→+∞

xj − p lim
j→+∞

yj = qp− pq = 0.

Therefore there exists some positive integer N satisfying N ≥ N1 with the
property that

|qxj − pyj| < 1
2
|q|2ε

whenever j ≥ N . But then ∣∣∣∣xjyj − p

q

∣∣∣∣ < ε

whenever j ≥ N . Thus

lim
j→+∞

xj
yj

=
p

q
,

as required.

1.9 Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be strictly increas-
ing if xj+1 > xj for all positive integers j, strictly decreasing if xj+1 < xj for
all positive integers j, non-decreasing if xj+1 ≥ xj for all positive integers j,
non-increasing if xj+1 ≤ xj for all positive integers j. A sequence satisfy-
ing any one of these conditions is said to be monotonic; thus a monotonic
sequence is either non-decreasing or non-increasing.

Theorem 1.8 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.
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Proof Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Axiom that there
exists a least upper bound p for the set {xj : j ∈ N}. We claim that the
sequence converges to p.

Let some strictly positive real number ε be given. We must show that
there exists some positive integer N such that |xj − p| < ε whenever j ≥ N .
Now p − ε is not an upper bound for the set {xj : j ∈ N} (since p is the
least upper bound), and therefore there must exist some positive integer N
such that xN > p − ε. But then p − ε < xj ≤ p whenever j ≥ N , since
the sequence is non-decreasing and bounded above by p. Thus |xj − p| < ε
whenever j ≥ N . Therefore xj → p as j → +∞, as required.

If the sequence x1, x2, x3, . . . is non-increasing and bounded below then
the sequence −x1,−x2,−x3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence x1, x2, x3, . . . is also
convergent.

1.10 Subsequences of Sequences of Real Numbers

Definition Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form xj1 , xj2 , xj3 , . . .
where j1, j2, j3, . . . is an infinite sequence of positive integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The following
sequences are examples of subsequences of the above sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .

1.11 The Bolzano-Weierstrass Theorem

Theorem 1.9 (Bolzano-Weierstrass) Every bounded sequence of real
numbers has a convergent subsequence.

Proof Let a1, a2, a3, . . . be a bounded sequence of real numbers. We define
a peak index to be a positive integer j with the property that aj ≥ ak for all
positive integers k satisfying k ≥ j. Thus a positive integer j is a peak index
if and only if the jth member of the infinite sequence a1, a2, a3, . . . is greater
than or equal to all succeeding members of the sequence. Let S be the set of
all peak indices. Then

S = {j ∈ N : aj ≥ ak for all k ≥ j}.
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First let us suppose that the set S of peak indices is infinite. Arrange the
elements of S in increasing order so that S = {j1, j2, j3, j4, . . .}, where j1 <
j2 < j3 < j4 < · · ·. It follows from the definition of peak indices that aj1 ≥
aj2 ≥ aj3 ≥ aj4 ≥ · · · . Thus aj1 , aj2 , aj3 , . . . is a non-increasing subsequence
of the original sequence a1, a2, a3, . . .. This subsequence is bounded below
(since the original sequence is bounded). It follows from Theorem 1.8 that
aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original sequence.

Now suppose that the set S of peak indices is finite. Choose a positive
integer j1 which is greater than every peak index. Then j1 is not a peak
index. Therefore there must exist some positive integer j2 satisfying j2 > j1
such that aj2 > aj1 . Moreover j2 is not a peak index (because j2 is greater
than j1 and j1 in turn is greater than every peak index). Therefore there
must exist some positive integer j3 satisfying j3 > j2 such that aj3 > aj2 . We
can continue in this way to construct (by induction on j) a strictly increasing
subsequence aj1 , aj2 , aj3 , . . . of our original sequence. This increasing subse-
quence is bounded above (since the original sequence is bounded) and thus
is convergent, by Theorem 1.8. This completes the proof of the Bolzano-
Weierstrass Theorem.
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2 Convergence in Euclidean Spaces

2.1 Basic Properties of Vectors and Norms

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn) of real
numbers. The set Rn represents n-dimensional Euclidean space (with respect
to the standard Cartesian coordinate system). Let x and y be elements of
Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√
x21 + x22 + · · ·+ x2n.

The quantity x · y is the scalar product (or inner product) of x and y, and
the quantity |x| is the Euclidean norm of x. Note that |x|2 = x · x. The
Euclidean distance between two points x and y of Rn is defined to be the
Euclidean norm |y − x| of the vector y − x.

Proposition 2.1 (Schwarz’s Inequality) Let x and y be elements of Rn.
Then |x · y| ≤ |x||y|.

Proof We note that |λx + µy|2 ≥ 0 for all real numbers λ and µ. But

|λx + µy|2 = (λx + µy).(λx + µy) = λ2|x|2 + 2λµx · y + µ2|y|2.

Therefore λ2|x|2 + 2λµx · y + µ2|y|2 ≥ 0 for all real numbers λ and µ. In
particular, suppose that λ = |y|2 and µ = −x · y. We conclude that

|y|4|x|2 − 2|y|2(x · y)2 + (x · y)2|y|2 ≥ 0,

so that (|x|2|y|2 − (x · y)2) |y|2 ≥ 0. Thus if y 6= 0 then |y| > 0, and hence

|x|2|y|2 − (x · y)2 ≥ 0.

But this inequality is trivially satisfied when y = 0. Thus |x · y| ≤ |x||y|, as
required.

Proposition 2.2 (Triangle Inequality) Let x and y be elements of Rn. Then
|x + y| ≤ |x|+ |y|.
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Proof Using Schwarz’s Inequality, we see that

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

The result follows directly.

It follows immediately from the Triangle Inequality (Proposition 2.2) that

|z− x| ≤ |z− y|+ |y − x|

for all points x, y and z of Rn. This important inequality expresses the
geometric fact that the length of any triangle in a Euclidean space is less
than or equal to the sum of the lengths of the other two sides.

2.2 Convergence of Sequences in Euclidean Spaces

Definition A sequence x1,x2,x3, . . . of points in Rn is said to converge to a
point p if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some positive
integer N such that |xj − p| < ε whenever j ≥ N .

We refer to p as the limit lim
j→+∞

xj of the sequence x1,x2,x3, . . . .

Lemma 2.3 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1,x2,x3, . . . of points in Rn converges to p if and only if the ith
components of the elements of this sequence converge to pi for i = 1, 2, . . . , n.

Proof Let (xj)i denote the ith components of xj. Then |(xj)i−pi| ≤ |xj−p|
for i = 1, 2, . . . , n and for all positive integers j. It follows directly from the
definition of convergence that if xj → p as j → +∞ then (xj)i → pi as
j → +∞.

Conversely suppose that, for each integer i between 1 and n, (xj)i →
pi as j → +∞. Let ε > 0 be given. Then there exist positive integers
N1, N2, . . . , Nn such that |(xj)i−pi| < ε/

√
n whenever j ≥ Ni. Let N be the

maximum of N1, N2, . . . , Nn. If j ≥ N then j ≥ Ni for i = 1, 2, . . . , n, and
therefore

|xj − p|2 =
n∑

i=1

((xj)i − pi)2 < n

(
ε√
n

)2

= ε2.

Thus xj → p as j → +∞, as required.

12



2.3 Limit Points of Subsets of Euclidean Spaces

Definition Let X be a subset of n-dimensional Euclidean space Rn, and let
p ∈ Rn. The point p is said to be a limit point of the set X if, given any
δ > 0, there exists some point x of X such that 0 < |x− p| < δ.

Lemma 2.4 Let X be a subset of n-dimensional Euclidean space Rn. A
point p is a limit point of the set X if and only if, given any positive real
number δ, the set

{x ∈ X : |x− p| < δ}

is an infinite set.

Proof Suppose that, given any positive real number δ, the set

{x ∈ X : |x− p| < δ}

is an infinite set. Then, for each positive real number δ, the set thus deter-
mined by δ must consist of more than just the single point p, and therefore
there exists x ∈ X satisfying 0 < |x− p| < δ. Thus p is a limit point of the
set X.

Now let p be an arbitrary point of Rn. Suppose that there exists some
positive real number δ0 for which the set

{x ∈ X : |x− p| < δ0}

is finite. If this set does not contain any points of X distinct from the point p
then p is not a limit point of the set X. Otherwise let δ be the minimum
value of |x− p| as x ranges over all points of the finite set

{x ∈ X : |x− p| < δ0}

that are distinct from p. Then δ > 0, and |x−p| ≥ δ for all x ∈ X satisfying
x 6= p. Thus the point p is not a limit point of the set X. The result
follows.

Lemma 2.5 Let X be a subset of n-dimensional Euclidean space Rn and let
p ∈ Rn. Then the point p is a limit point of the set X if and only if there
exists an infinite sequence x1,x2,x3, . . . of points of X, all distinct from the
point p, such that lim

j→+∞
xj = p.

Proof Suppose that p is a limit point of X. Then, for each positive integer j,
there exists a point xj of X for which 0 < |xj − p| < 1/j. The points xj

13



satisfying this condition then constitute an infinite sequence x1,x2,x3, . . . of
points of X, all distinct from the point p, that converge to the point p.

Conversely suppose that p is some point of Rn that is the limit of some
infinite sequence x1,x2,x3, . . . of points of X that are all distinct from the
point p. Let some positive number δ be given. The definition of convergence
ensures that there exists a positive integer N such that |xj−p| < δ whenever
j ≥ N . Moreover |xj−p| > 0 for all positive integers j. Thus 0 < |xj−p| < δ
when the positive integer j is sufficiently large. Thus the point p is a limit
point of the set X, as required.

Definition Let X be a subset of n-dimensional Euclidean space Rn. A
point p of X is said to be an isolated point of X if it is not a limit point of
X.

Let X be a subset of n-dimensional Euclidean space Rn, and let p ∈ X. It
follows immediately from the definition of isolated points that the point p is
an isolated point of the set X if and only if there exists some strictly positive
real number δ for which

{x ∈ X : |x− p| < δ} = {p}.

2.4 The Multidimensional Bolzano-Weierstrass Theo-
rem

We introduce some terminology and notation for discussing convergence
along subsequences of bounded sequences of points in Euclidean spaces.
This will be useful in proving the multi-dimensional version of the Bolzano-
Weierstrass Theorem.

Definition Let x1,x2,x3, . . . be an infinite sequence of points in Rn, let J
be an infinite subset of the set N of positive integers, and let p be a point of
Rn. We say that p is the limit of xj as j tends to infinity in the set J , and
write “xj → p as j → +∞ in J” if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some positive
integer N such that |xj − p| < ε whenever j ∈ J and j ≥ N .

The one-dimensional version of the Bolzano-Weierstrass Theorem (The-
orem 1.9) is equivalent to the following statement:

Given any bounded infinite sequence x1, x2, x3, . . . of real num-
bers, there exists an infinite subset J of the set N of positive
integers and a real number p such that xj → p as j → +∞ in J .

14



Given an infinite subset J of N, the elements of J can be labelled as
k1, k2, k3, . . ., where k1 < k2 < k3 < · · ·, so that k1 is the smallest positive
integer belonging of J , k2 is the next smallest, etc. Therefore any standard
result concerning convergence of sequences of points can be applied in the
context of the convergence of subsequences of a given sequence of points.

The following result is therefore a direct consequence of the one-dimen-
sional Bolzano-Weierstrass Theorem (Theorem 1.9):

Given any bounded infinite sequence x1, x2, x3, . . . of real num-
bers, and given an infinite subset J of the set N of positive inte-
gers, there exists an infinite subset K of J and a real number p
such that xj → p as j → +∞ in K.

The above statement in fact corresponds to the following assertion:—

Given any bounded infinite sequence x1, x2, x3, . . . of real num-
bers, and given any subsequence

xk1 , xk2 , xk3 , · · ·

of the given infinite sequence, there exists a convergent subse-
quence

xkm1
, xkm2

, xkm3
, . . .

of the given subsequence. Moreover this convergent subsequence
of the given subsequence is itself a convergent subsequence of the
given infinite sequence, and it contains only members of the given
subsequence of the given sequence.

The basic principle can be presented purely in words as follows:

Given a bounded sequence of real numbers, and given a subse-
quence of that original given sequence, there exists a convergent
subsequence of the given subsequence. Moreover this subsequence
of the subsequence is a convergent subsequence of the original
given sequence.

We employ this principle in the following proof of the Multidimensional
Bolzano-Weierstrass Theorem.

Theorem 2.6 (Multidimensional Bolzano-Weierstrass Theorem)
Every bounded sequence of points in a Euclidean space has a convergent sub-
sequence.

15



Proof Let x1,x2,x3, . . . be a bounded infinite sequence of points in Rn, and,
for each positive integer j, and for each integer i between 1 and n, let (xj)i
denote the ith component of xj. Then

xj =
(

(xj)1, (xj)2, . . . , (xj)n

)
.

for all positive integers j. It follows from the one-dimensional Bolzano-
Weierstrass Theorem (Theorem 1.9) that there exists an infinite subset J1 of
the set N of positive integers and a real number p1 such that (xj)1 → p1 as
j → +∞ in J1. Let k be an integer between 1 and n− 1. Suppose that there
exists an infinite subset Jk of N and real numbers p1, p2, . . . , pk such that, for
each integer i between 1 and k, (xj)i → pi as j → +∞ in Jk. It then follows
from the one-dimensional Bolzano-Weierstrass Theorem that there exists an
infinite subset Jk+1 of Jk and a real number pk+1, such that (xj)k+1 → pk+1

as j → +∞ in Jk+1. Moreover the requirement that Jk+1 ⊂ Jk then ensures
that, for each integer i between 1 and k + 1, (xj)i → pi as j → +∞ in Jk+1.
Repeated application of this result then ensures the existence of an infinite
subset Jn of N and real numbers p1, p2, . . . , pn such that, for each integer i
between 1 and n, (xj)i → pi as j → +∞ in Jn.

Let
Jn = {k1, k2, k3, . . .},

where k1 < k2 < k3 < · · ·. Then lim
j→+∞

(xkj)i = pi for i = 1, 2, . . . , n. It then

follows from Proposition 2.3 that lim
j→+∞

xkj = p. The result follows.

2.5 Cauchy Sequences in Euclidean Spaces

Definition A sequence x1,x2,x3, . . . of points of n-dimensional Euclidean
space Rn is said to be a Cauchy sequence if the following condition is satisfied:

given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − xk| < ε for all positive integers j
and k satisfying j ≥ N and k ≥ N .

Lemma 2.7 Every Cauchy sequence of points of n-dimensional Euclidean
space Rn is bounded.

Proof Let x1,x2,x3, . . . be a Cauchy sequence of points in Rn. Then there
exists some positive integer N such that |xj − xk| < 1 whenever j ≥ N
and k ≥ N . In particular, |xj| ≤ |xN | + 1 whenever j ≥ N . Therefore
|xj| ≤ R for all positive integers j, where R is the maximum of the real
numbers |x1|, |x2|, . . . , |xN−1| and |xN | + 1. Thus the sequence is bounded,
as required.
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Theorem 2.8 (Cauchy’s Criterion for Convergence) An infinite sequence of
points of n-dimensional Euclidean space Rn is convergent if and only if it is
a Cauchy sequence.

Proof First we show that convergent sequences in Rn are Cauchy sequences.
Let x1,x2,x3, . . . be a convergent sequence of points in Rn, and let p =
lim

j→+∞
xj. Let some strictly positive real number ε be given. Then there

exists some positive integer N such that |xj − p| < 1
2
ε for all j ≥ N . Thus

if j ≥ N and k ≥ N then |xj − p| < 1
2
ε and |xk − p| < 1

2
ε, and hence

|xj − xk| = |(xj − p)− (xk − p)| ≤ |xj − p|+ |xk − p| < ε.

Thus the sequence x1,x2,x3, . . . is a Cauchy sequence.
Conversely we must show that any Cauchy sequence x1,x2,x3, . . . in Rn

is convergent. Now Cauchy sequences are bounded, by Lemma 2.7. The se-
quence x1,x2,x3, . . . therefore has a convergent subsequence xk1 ,xk2 ,xk3 , . . .,
by the multidimensional Bolzano-Weierstrass Theorem (Theorem 2.6). Let
p = limj→+∞ xkj . We claim that the sequence x1,x2,x3, . . . itself converges
to p.

Let some strictly positive real number ε be given. Then there exists some
positive integer N such that |xj − xk| < 1

2
ε whenever j ≥ N and k ≥ N

(since the sequence is a Cauchy sequence). Let m be chosen large enough to
ensure that km ≥ N and |xkm − p| < 1

2
ε. Then

|xj − p| ≤ |xj − xkm |+ |xkm − p| < 1
2
ε+ 1

2
ε = ε

whenever j ≥ N . It follows that xj → p as j → +∞, as required.

17



3 Open and Closed Sets in Euclidean Spaces

3.1 Open Sets in Euclidean Spaces

Definition Given a point p of Rn and a non-negative real number r, the
open ball B(p, r) in Rn of radius r about p is defined to be the subset of Rn

defined so that
B(p, r) = {x ∈ Rn : |x− p| < r}.

(Thus B(p, r) is the set consisting of all points of Rn that lie within a sphere
of radius r centred on the point p.)

The open ball B(p, r) of radius r about a point p of Rn is bounded by
the sphere of radius r about p. This sphere is the set

{x ∈ Rn : |x− p| = r}.

Definition A subset V of Rn is said to be an open set (in Rn) if, given
any point p of V , there exists some strictly positive real number δ such that
B(p, δ) ⊂ V , where B(p, δ) is the open ball in Rn of radius δ about the
point p, defined so that

B(p, δ) = {x ∈ Rn : |x− p| < δ}.

Example Let H = {(x, y, z) ∈ R3 : z > c}, where c is some real number.
ThenH is an open set in R3. Indeed let p be a point ofH. Then p = (u, v, w),
where w > c. Let δ = w − c. If the distance from a point (x, y, z) to the
point (u, v, w) is less than δ then |z − w| < δ, and hence z > c, so that
(x, y, z) ∈ H. Thus B(p, δ) ⊂ H, and therefore H is an open set.

The previous example can be generalized. Given any integer i between 1
and n, and given any real number ci, the sets

{(x1, x2, . . . , xn) ∈ Rn : xi > ci}

and
{(x1, x2, . . . , xn) ∈ Rn : xi < ci}

are open sets in Rn.

Example Let

V = {(x, y, z) ∈ R3 : x2 + y2 + z2 < 9}.
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Then the subset V of R3 is the open ball of radius 3 in R3 about the origin.
This open ball is an open set. Indeed let x be a point of V . Then |x| < 3.
Let δ = 3 − |x|. Then δ > 0. Moreover if y is a point of R3 that satisfies
|y − x| < δ then

|y| = |x + (y − x)| ≤ |x|+ |y − x| < |x|+ δ = 3,

and therefore y ∈ V . This proves that V is an open set.

More generally, an open ball of any positive radius about any point of
a Euclidean space Rn of any dimension n is an open set in that Euclidean
space. A more general result is proved below (see Lemma 3.1).

3.2 Open Sets in Subsets of Euclidean Spaces

Definition Let X be a subset of Rn. Given a point p of X and a non-
negative real number r, the open ball BX(p, r) in X of radius r about p is
defined to be the subset of X defined so that

BX(p, r) = {x ∈ X : |x− p| < r}.

(Thus BX(p, r) is the set consisting of all points of X that lie within a sphere
of radius r centred on the point p.)

Definition Let X be a subset of Rn. A subset V of X is said to be open in X
if, given any point p of V , there exists some strictly positive real number δ
such that BX(p, δ) ⊂ V , where BX(p, δ) is the open ball in X of radius δ
about on the point p. The empty set ∅ is also defined to be an open set in
X.

Example Let U be an open set in Rn. Then for any subset X of Rn, the
intersection U ∩X is open in X. (This follows directly from the definitions.)
Thus for example, let S2 be the unit sphere in R3, given by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and let N be the subset of S2 given by

N = {(x, y, z) ∈ Rn : x2 + y2 + z2 = 1 and z > 0}.

Then N is open in S2, since N = H ∩ S2, where H is the open set in R3

given by
H = {(x, y, z) ∈ R3 : z > 0}.
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Note that N is not itself an open set in R3. Indeed the point (0, 0, 1) belongs
to N , but, for any δ > 0, the open ball (in R3) of radius δ about (0, 0, 1)
contains points (x, y, z) for which x2 + y2 + z2 6= 1. Thus the open ball of
radius δ about the point (0, 0, 1) is not a subset of N .

Lemma 3.1 Let X be a subset of Rn, and let p be a point of X. Then, for
any positive real number r, the open ball BX(p, r) in X of radius r about p
is open in X.

Proof Let x be an element of BX(p, r). We must show that there exists
some δ > 0 such that BX(x, δ) ⊂ BX(p, r). Let δ = r− |x−p|. Then δ > 0,
since |x− p| < r. Moreover if y ∈ BX(x, δ) then

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r,

by the Triangle Inequality, and hence y ∈ BX(p, r). Thus BX(x, δ) ⊂
BX(p, r). This shows that BX(p, r) is an open set, as required.

Lemma 3.2 Let X be a subset of Rn, and let p be a point of X. Then, for
any non-negative real number r, the set {x ∈ X : |x−p| > r} is an open set
in X.

Proof Let x be a point of X satisfying |x− p| > r, and let y be any point
of X satisfying |y − x| < δ, where δ = |x− p| − r. Then

|x− p| ≤ |x− y|+ |y − p|,

by the Triangle Inequality, and therefore

|y − p| ≥ |x− p| − |y − x| > |x− p| − δ = r.

Thus BX(x, δ) is contained in the given set. The result follows.

Proposition 3.3 Let X be a subset of Rn. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open in X;

(ii) the union of any collection of open sets in X is itself open in X;

(iii) the intersection of any finite collection of open sets in X is itself open
in X.
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Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. This proves (i).

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself open in X.
Let x ∈ U . Then x ∈ V for some set V belonging to the collection A. It
follows that there exists some δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U ,
and thus BX(x, δ) ⊂ U . This shows that U is open in X. This proves (ii).

Finally let V1, V2, V3, . . . , Vk be a finite collection of subsets of X that
are open in X, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let x ∈ V . Now x ∈ Vj for j = 1, 2, . . . , k, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now BX(x, δ) ⊂ BX(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus BX(x, δ) ⊂ V .
Thus the intersection V of the sets V1, V2, . . . , Vk is itself open in X. This
proves (iii).

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2 about the
origin with the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 about the origin with
the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set

{(x, y, z) ∈ R3 : (x− n)2 + y2 + z2 < 1
4

for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of radius 1
2

about
the points (n, 0, 0) for all integers n.

Example For each positive integer k, let

Vk = {(x, y, z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k about the origin, and is therefore
an open set in R3. However the intersection of the sets Vk for all positive
integers k is the set {(0, 0, 0)}, and thus the intersection of the sets Vk for all
positive integers k is not itself an open set in R3. This example demonstrates
that infinite intersections of open sets need not be open.
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Proposition 3.4 Let X be a subset of Rn, and let U be a subset of X. Then
U is open in X if and only if there exists some open set V in Rn for which
U = V ∩X.

Proof First suppose that U = V ∩X for some open set V in Rn. Let u ∈ U .
Then the definition of open sets in Rn ensures that there exists some positive
real number δ such that

{x ∈ Rn : |x− u| < δ} ⊂ V.

Then
{x ∈ X : |x− u| < δ} ⊂ U.

This shows that U is open in X.
Conversely suppose that the subset U of X is open in X. For each point u

of U there exists some positive real number δu such that

{x ∈ X : |x− u| < δu} ⊂ U.

For each u ∈ U , let B(u, δu) denote the open ball in Rn of radius δu about
the point u, so that

B(u, δu) = {x ∈ Rn : |x− u| < δu}

for all u ∈ U , and let V be the union of all the open balls B(u, δu) as u
ranges over all the points of U . Then V is an open set in Rn.

Indeed every open ball in Rn is an open set (Lemma 3.1), and any union
of open sets in Rn is itself an open set (Proposition 3.3). The set V is a union
of open balls. It is therefore a union of open sets, and so must itself be an
open set.

Now B(u, δu) ∩ X ⊂ U . for all u ∈ U . Also every point of V belongs
to B(u, δu) for at least one point u of U . It follows that V ∩ X ⊂ U . But
u ∈ B(u, δu) and B(u, δu) ⊂ V for all u ∈ U , and therefore U ⊂ V , and thus
U ⊂ V ∩X. It follows that U = V ∩X, as required.

3.3 Convergence of Sequences and Open Sets

Lemma 3.5 A sequence x1,x2,x3, . . . of points in Rn converges to a point p
if and only if, given any open set U which contains p, there exists some
positive integer N such that xj ∈ U for all j satisfying j ≥ N .

Proof Suppose that the sequence x1,x2,x3, . . . has the property that, given
any open set U which contains p, there exists some positive integer N such
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that xj ∈ U whenever j ≥ N . Let ε > 0 be given. The open ball B(p, ε) of
radius ε about p is an open set by Lemma 3.1. Therefore there exists some
positive integer N such that xj ∈ B(p, ε) whenever j ≥ N . Thus |xj−p| < ε
whenever j ≥ N . This shows that the sequence converges to p.

Conversely, suppose that the sequence x1,x2,x3, . . . converges to p. Let
U be an open set which contains p. Then there exists some ε > 0 such that
the open ball B(p, ε) of radius ε about p is a subset of U . Thus there exists
some ε > 0 such that U contains all points x of Rn that satisfy |x− p| < ε.
But there exists some positive integer N with the property that |xj −p| < ε
whenever j ≥ N , since the sequence converges to p. Therefore xj ∈ U
whenever j ≥ N , as required.

3.4 Closed Sets in Euclidean Spaces

Let X be a subset of Rn. A subset F of X is said to be closed in X if and
only if its complement X \ F in X is open in X. (Recall that X \ F = {x ∈
X : x 6∈ F}.)

Example The sets {(x, y, z) ∈ R3 : z ≥ c}, {(x, y, z) ∈ R3 : z ≤ c}, and
{(x, y, z) ∈ R3 : z = c} are closed sets in R3 for each real number c, since the
complements of these sets are open in R3.

Example Let X be a subset of Rn, and let x0 be a point of X. Then the
sets {x ∈ X : |x − x0| ≤ r} and {x ∈ X : |x − x0| ≥ r} are closed for
each non-negative real number r. In particular, the set {x0} consisting of
the single point x0 is a closed set in X. (These results follow immediately
using Lemma 3.1 and Lemma 3.2 and the definition of closed sets.)

Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the complements
of those sets).

Indeed let A be some collection of subsets of a set X, and let x be a point
of X. Then

x ∈ X \
⋃
S∈A

S ⇐⇒ x 6∈
⋃
S∈A

S
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⇐⇒ for all S ∈ A, x 6∈ S
⇐⇒ for all S ∈ A, x ∈ X \ S
⇐⇒ x ∈

⋂
S∈A

(X \ S),

and therefore
X \

⋃
S∈A

S =
⋂
S∈A

(X \ S).

Again let x be a point of X. Then

x ∈ X \
⋂
S∈A

S ⇐⇒ x 6∈
⋂
S∈A

S

⇐⇒ there exists S ∈ A for which x 6∈ S
⇐⇒ there exists S ∈ A for which x ∈ X \ S
⇐⇒ x ∈

⋃
S∈A

(X \ S),

and therefore
X \

⋂
S∈A

S =
⋃
S∈A

(X \ S).

The following result therefore follows directly from Proposition 3.3.

Proposition 3.6 Let X be a subset of Rn. The collection of closed sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both closed in X;

(ii) the intersection of any collection of closed sets in X is itself closed in
X;

(iii) the union of any finite collection of closed sets in X is itself closed in
X.

Lemma 3.7 Let X be a subset of Rn, and let F be a subset of X which is
closed in X. Let x1,x2,x3, . . . be a sequence of points of F which converges
to a point p of X. Then p ∈ F .

Proof The complement X \F of F in X is open, since F is closed. Suppose
that p were a point belonging to X \F . It would then follow from Lemma 3.5
that xj ∈ X \ F for all values of j greater than some positive integer N ,
contradicting the fact that xj ∈ F for all j. This contradiction shows that p
must belong to F , as required.

24



3.5 Closed Sets and Limit Points

Lemma 3.8 A subset F of n-dimensional Euclidean space Rn is closed in
Rn if and only if it contains its limit points.

Proof Let F be a closed set in Rn and let p be a limit point of F . It follows
from Lemma 2.5 that there exists an infinite sequence of points of F that
converges to the point p. It then follows from Lemma 3.7 that p ∈ F . Thus
if the set F is closed then it contains its limit points.

Conversely let F be a subset of Rn that contains its limit points. Let
p ∈ Rn \ F . Then p is not a limit point of F . It follows from the definition
of limit points that there exists some positive real number δ for which

{x ∈ F : 0 < |x− p| < δ} = ∅.

It then follows from this that the open ball in Rn of radius δ about the
point p is contained in the complement of F . We conclude therefore that
the complement of F in Rn is open in Rn, and thus F is closed in Rn, as
required.
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4 Limits and Continuity for Functions of Sev-

eral Variables

4.1 Continuity of Functions of Several Real Variables

Definition Let X and Y be a subsets of Rm and Rn respectively. A function
f :X → Y from X to Y is said to be continuous at a point p of X if and
only if the following criterion is satisfied:—

given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x) − f(p)| < ε whenever
x ∈ X satisfies |x− p| < δ.

The function f :X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.

X

Yp

f(p)

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f

δ

ε

Lemma 4.1 Let X, Y and Z be subsets of Rm, Rn and Rk respectively, and
let f :X → Y and g:Y → Z be functions satisfying f(X) ⊂ Y . Suppose that
f is continuous at some point p of X and that g is continuous at f(p). Then
the composition function g ◦ f :X → Z is continuous at p.

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(y)−
g(f(p))| < ε for all y ∈ Y satisfying |y − f(p)| < η. But then there exists
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some δ > 0 such that |f(x)− f(p)| < η for all x ∈ X satisfying |x− p| < δ.
It follows that |g(f(x)) − g(f(p))| < ε for all x ∈ X satisfying |x − p| < δ,
and thus g ◦ f is continuous at p, as required.

Lemma 4.2 Let X and Y be a subsets of Rm and Rn respectively, and let
f :X → Y be a continuous function from X to Y . Let x1,x2,x3, . . . be a
sequence of points of X which converges to some point p of X. Then the
sequence f(x1), f(x2), f(x3), . . . converges to f(p).

Proof Let ε > 0 be given. Then there exists some δ > 0 such that |f(x)−
f(p)| < ε for all x ∈ X satisfying |x − p| < δ, since the function f is
continuous at p. Also there exists some positive integerN such that |xj−p| <

X

Y

p

f(p)

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f

xN

f(xN)

δ whenever j ≥ N , since the sequence x1,x2,x3, . . . converges to p. Thus if
j ≥ N then |f(xj) − f(p)| < ε. Thus the sequence f(x1), f(x2), f(x3), . . .
converges to f(p), as required.

Let X and Y be a subsets of Rm and Rn respectively, and let f :X → Y
be a function from X to Y . Then

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where f1, f2, . . . , fn are functions from X to R, referred to as
the components of the function f .
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Proposition 4.3 Let X and Y be a subsets of Rm and Rn respectively, and
let p ∈ X. A function f :X → Y is continuous at the point p if and only if
its components are all continuous at p.

Proof Note that the ith component fi of f is given by fi = πi ◦ f , where
πi:Rn → R is the continuous function which maps (y1, y2, . . . , yn) ∈ Rn

onto its ith coordinate yi. Now any composition of continuous functions is
continuous, by Lemma 4.1. Thus if f is continuous at p, then so are the
components of f .

Conversely suppose that the components of f are continuous at p ∈ X.
Let ε > 0 be given. Then there exist positive real numbers δ1, δ2, . . . , δn such
that |fi(x) − fi(p)| < ε/

√
n for x ∈ X satisfying |x − p| < δi. Let δ be the

minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies |x− p| < δ then

|f(x)− f(p)|2 =
n∑

i=1

|fi(x)− fi(p)|2 < ε2,

and hence |f(x) − f(p)| < ε. Thus the function f is continuous at p, as
required.

Lemma 4.4 The functions s:R2 → R and m:R2 → R defined by s(x, y) =
x+ y and m(x, y) = xy are continuous.

Proof Let (u, v) ∈ R2. We first show that s:R2 → R is continuous at (u, v).
Let ε > 0 be given. Let δ = 1

2
ε. If (x, y) is any point of R2 whose distance

from (u, v) is less than δ then |x− u| < δ and |y − v| < δ, and hence

|s(x, y)− s(u, v)| = |x+ y − u− v| ≤ |x− u|+ |y − v| < 2δ = ε.

This shows that s:R2 → R is continuous at (u, v).
Next we show that m:R2 → R is continuous at (u, v). Now

m(x, y)−m(u, v) = xy − uv = (x− u)(y − v) + u(y − v) + (x− u)v.

for all points (x, y) of R2. Thus if the distance from (x, y) to (u, v) is less
than δ then |x − u| < δ and |y − v| < δ, and hence |m(x, y) − m(u, v)| <
δ2 + (|u|+ |v|)δ. Let ε > 0 be given. If δ > 0 is chosen to be the minimum of
1 and ε/(1 + |u|+ |v|) then δ2 + (|u|+ |v|)δ ≤ (1 + |u|+ |v|)δ ≤ ε, and thus
|m(x, y)−m(u, v)| < ε for all points (x, y) of R2 whose distance from (u, v)
is less than δ. This shows that m:R2 → R is continuous at (u, v).

Proposition 4.5 Let X be a subset of Rn, and let f :X → R and g:X → R
be continuous functions from X to R. Then the functions f + g, f − g and
f · g are continuous. If in addition g(x) 6= 0 for all x ∈ X then the quotient
function f/g is continuous.
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Proof Note that f + g = s ◦ h and f · g = m ◦ h, where h:X → R2,
s:R2 → R and m:R2 → R are given by h(x) = (f(x), g(x)), s(u, v) = u + v
and m(u, v) = uv for all x ∈ X and u, v ∈ R. It follows from Proposition 4.3,
Lemma 4.4 and Lemma 4.1 that f + g and f · g are continuous, being com-
positions of continuous functions. Now f − g = f + (−g), and both f and
−g are continuous. Therefore f − g is continuous.

Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r:R \ {0} → R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. Thus the function 1/g is a composition
of continuous functions and is thus continuous. But then, using the fact that
a product of continuous real-valued functions is continuous, we deduce that
f/g is continuous.

Example Consider the function f :R2 \ {(0, 0)} → R2 defined by

f(x, y) =

(
x

x2 + y2
,
−y

x2 + y2

)
.

The continuity of the components of the function f follows from straightfor-
ward applications of Proposition 4.5. It then follows from Proposition 4.3
that the function f is continuous on R2 \ {(0, 0)}.

Lemma 4.6 Let X be a subset of Rm, let f :X → Rn be a continuous func-
tion mapping X into Rn, and let |f |:X → R be defined such that |f |(x) =
|f(x)| for all x ∈ X. Then the real-valued function |f | is continuous on X.

Proof Let x and p be elements of X. Then

|f(x)| = |(f(x)− f(p)) + f(p)| ≤ |f(x)− f(p)|+ |f(p)|

and
|f(p)| = |(f(p)− f(x)) + f(x)| ≤ |f(x)− f(p)|+ |f(x)|,

and therefore ∣∣∣|f(x)| − |f(p)|
∣∣∣ ≤ |f(x)− f(p)|.

The result now follows from the definition of continuity, using the above
inequality. Indeed let p be a point of X, and let some positive real number ε
be given. Then there exists a positive real number δ small enough to ensure
that |f(x)− f(p)| < ε for all x ∈ X satisfying |x− p| < δ. But then∣∣∣|f(x)| − |f(p)|

∣∣∣ ≤ |f(x)− f(p)| < ε

for all x ∈ X satisfying |x− p| < δ, and thus the function |f | is continuous,
as required.
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4.2 Limits of Functions of Several Real Variables

Definition Let X be a subset of m-dimensional Euclidean space Rm, let
f :X → Rn be a function mapping the set X into n-dimensional Euclidean
space Rn, let p be a limit point of the set X, and let q be a point in Rn. The
point q is said to be the limit of f(x), as x tends to p in X, if and only if
the following criterion is satisfied:—

given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x)− q| < ε whenever x ∈ X
satisfies 0 < |x− p| < δ.

Let X be a subset of m-dimensional Euclidean space Rm, let f :X → Rn

be a function mapping the set X into n-dimensional Euclidean space Rn,
let p be a limit point of the set X, and let q be a point of Rn. If q is the
limit of f(x) as x tends to p in X then we can denote this fact by writing
lim
x→p

f(x) = q.

Proposition 4.7 Let X be a subset of Rm, let p be a limit point of X, and
let q be a point of Rn. A function f :X → Rn has the property that

lim
x→p

f(x) = q

if and only if
lim
x→p

fi(x) = qi

for i = 1, 2, . . . , n, where f1, f2, . . . , fn are the components of the function f
and q = (q1, q2, . . . , qn).

Proof Suppose that lim
x→p

f(x) = q. Let i be an integer between 1 and n, and

let some positive real number ε be given. Then there exists some positive
real number δ such that |f(x) − q| < ε whenever 0 < |x − p| < δ. It then
follows from the definition of the Euclidean norm that

|fi(x)− qi| ≤ |f(x)− q| < ε

whenever 0 < |x − p| < δ. Thus if lim
x→p

f(x) = q then lim
x→p

fi(x) = qi for

i = 1, 2, . . . , n.
Conversely suppose that

lim
x→p

fi(x) = qi
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for i = 1, 2, . . . , n. Let ε > 0 be given. Then there exist positive real
numbers δ1, δ2, . . . , δn such that 0 < |fi(x)− qi| < ε/

√
n for x ∈ X satisfying

0 < |x − p| < δi. Let δ be the minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies
0 < |x− p| < δ then

|f(x)− q|2 =
n∑

i=1

|fi(x)− qi|2 < ε2,

and hence |f(x)− q| < ε. Thus

lim
x→p

f(x) = q,

as required.

Proposition 4.8 Let X be a subset of m-dimensional Euclidean space Rm,
let f :X → Rn and g:X → Rn be functions mapping X into n-dimensional
Euclidean space Rn, let p be a limit point of X, and let q and r be points of
Rn. Suppose that

lim
x→p

f(x) = q

and
lim
x→p

g(x) = r.

Then
lim
x→p

(f(x) + g(x)) = q + r.

Proof Let some strictly positive real number ε be given. Then there exist
strictly positive real numbers δ1 and δ2 such that

|f(x)− q| < 1
2
ε

whenever x ∈ X satisfies 0 < |x− p| < δ1 and

|g(x)− r| < 1
2
ε

whenever x ∈ X satisfies 0 < |x− p| < δ2. Let δ be the minimum of δ1 and
δ2. Then δ > 0, and if x ∈ X satisfies 0 < |x− p| < δ then

|f(x)− q| < 1
2
ε

and
|g(x)− r| < 1

2
ε,
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and therefore

|f(x) + g(x)− (q + r)| ≤ |f(x)− q|+ |g(x)− r|
< 1

2
ε+ 1

2
ε = ε.

It follows that
lim
x→p

(f(x) + g(x)) = q + r,

as required.

Definition Let f :X → Rn be a function mapping some subset X of m-
dimensional Euclidean space Rm into Rn, and let p be a limit point of X.
We say that f(x) remains bounded as x tends to p in X if strictly positive
constants C and δ can be determined so that |f(x)| ≤ C for all x ∈ X
satisfying 0 < |x− p| < δ.

Proposition 4.9 Let f :X → Rn be a function mapping some subset X of
Rm into Rn, let h:X → R be a real-valued function on X, and let p be a
limit point of X. Suppose that lim

x→p
f(x) = 0. Suppose also that h(x) remains

bounded as x tends to p in X. Then

lim
x→p

(
h(x)f(x)

)
= 0.

Proof Let some strictly positive real number ε be given. Now h(x) remains
bounded as x tends to p in X, and therefore positive constants C and δ0 can
be determined so that |h(x)| ≤ C for all x ∈ X satisfying 0 < |x− p| < δ0.
A strictly positive real number ε0 can then be chosen small enough to ensure
that Cε0 < ε. There then exists a strictly positive real number δ1 that is
small enough to ensure that |f(x)| < ε0 whenever 0 < |x − p| < δ1. Let
δ be the minimum of δ0 and δ1. Then δ > 0, and if 0 < |x − p| < δ then
|h(x)| ≤ C and |f(x)| < ε0, and therefore

|h(x)f(x)| < Cε0 < ε.

The result follows.

Proposition 4.10 Let f :X → Rn be a function mapping some subset X of
Rm into Rn, let h:X → R be a real-valued function on X, and let p be a
limit point of X. Suppose that lim

x→p
h(x) = 0. Suppose also that f(x) remains

bounded as x tends to p in X. Then

lim
x→p

(h(x)f(x)) = 0.
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Proof Let some strictly positive real number ε be given. Now f(x) remains
bounded as x tends to p in X, and therefore positive constants C and δ0 can
be determined such that |f(x)| ≤ C for all x ∈ X satisfying 0 < |x−p| < δ0.
A strictly positive real number ε0 can then be chosen small enough to ensure
that Cε0 < ε. There then exists a strictly positive real number δ1 that is
small enough to ensure that |h(x)| < ε0 whenever 0 < |x − p| < δ1. Let
δ be the minimum of δ0 and δ1. Then δ > 0, and if 0 < |x − p| < δ then
|f(x)| ≤ C and |h(x)| < ε0, and therefore

|h(x)f(x)| < Cε0 < ε.

The result follows.

Proposition 4.11 Let X be a subset of Rm, let f :X → Rn and g:X → Rn

be functions mapping X into Rn, and let p be a limit point of X. Suppose
that lim

x→p
f(x) = 0. Suppose also that g(x) remains bounded as x tends to p

in X. Then
lim
x→p

(
f(x) · g(x)

)
= 0.

Proof Let some strictly positive real number ε be given. Now g(x) remains
bounded as x tends to p in X, and therefore positive constants C and δ0 can
be determined such that |g(x)| ≤ C for all x ∈ X satisfying 0 < |x−p| < δ0.
A strictly positive real number ε0 can then be chosen small enough to ensure
that Cε0 < ε. There then exists a strictly positive real number δ1 that is
small enough to ensure that |f(x)| < ε0 whenever 0 < |x−p| < δ1. Let δ be
the minimum of δ0 and δ1. Then δ > 0, and if 0 < |x−p| < δ then |f(x)| < ε0
and |g(x)| ≤ C. It then follows from Schwarz’s Inequality (Proposition 2.1)
that

|f(x) · g(x)| ≤ |f(x)| |g(x)| < Cε0 < ε.

The result follows.

Proposition 4.12 Let X be a subset of Rm, let f :X → Rn be a function
mapping X into Rn, let h:X → R be a real-valued function on X, let p be a
limit point of X, let q be a point of Rn and let s be a real number. Suppose
that

lim
x→p

f(x) = q

and
lim
x→p

h(x) = s.

Then
lim
x→p

h(x)f(x) = sq.
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Proof The functions f and h satisfy the equation

h(x)f(x) = h(x)
(
f(x)− q

)
+ (h(x)− s)q + sq,

where
lim
x→p

(
f(x)− q

)
= 0 and lim

x→p

(
h(x)− s

)
= 0.

Moreover there exists a strictly positive constant δ0 such that |h(x)− s| < 1
for all x ∈ X satisfying 0 < |x−p| < δ0. But it then follows from the Triangle
Inequality that |h(x)| < |s| + 1 for all x ∈ X satisfying 0 < |x − p| < δ0.
Thus h(x) remains bounded as x tends to p in X. It follows that

lim
x→p

(h(x)(f(x)− q)) = 0

(see Proposition 4.10). Similarly

lim
x→p

(h(x)− s) q = 0.

It follows that

lim
x→p

(h(x)f(x))

= lim
x→p

(h(x)(f(x)− q)) + lim
x→p

((
h(x)− s

)
q
)

+ sq

= 0 + sq,

as required.

Lemma 4.13 Let X and Y be subsets of Rm and Rn respectively, let p be a
limit point of X, let q be a point of Y , let f :X → Y be a function satisfying
f(X) ⊂ Y , and let g:Y → Rk be a function from Y to Rk. Suppose that

lim
x→p

f(x) = q

and that the function g is continuous at q. Then

lim
x→p

g(f(x)) = g(q).

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(y)−
g(q)| < ε for all y ∈ Y satisfying |y − q| < η, because the function g is
continuous at q. But then there exists some δ > 0 such that |f(x)− q| < η
for all x ∈ X satisfying 0 < |x− p| < δ. It follows that |g(f(x))− g(q)| < ε
for all x ∈ X satisfying 0 < |x− p| < δ, and thus

lim
x→p

g(f(x)) = g(q),

as required.
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Proposition 4.14 Let X be a subset of Rm, let f :X → Rn and g:X → Rn

be functions mapping X into Rn, let p be a limit point of X, and let q and
r be points of Rn. Suppose that

lim
x→p

f(x) = q

and
lim
x→p

g(x) = r.

Then
lim
x→p

(f(x) · g(x)) = q · r.

Proof The functions f and g satisfy the equation

f(x) · g(x) = (f(x)− q) · g(x) + q · (g(x)− r) + q · r,

where
lim
x→p

(
f(x)− q

)
= 0 and lim

x→p

(
g(x)− r

)
= 0.

Moreover there exists a strictly positive constant δ0 such that |g(x)− r| < 1
for all x ∈ X satisfying 0 < |x−p| < δ0. But it then follows from the Triangle
Inequality that |g(x)| < |r| + 1 for all x ∈ X satisfying 0 < |x − p| < δ0.
Thus g(x) remains bounded as x tends to p in X. It follows that

lim
x→p

((
f(x)− q

)
· g(x)

)
= 0

(see Proposition 4.11). Similarly

lim
x→p

(
q ·
(
g(x)− r

))
= 0.

It follows that

lim
x→p

(f(x) · g(x))

= lim
x→p

((
f(x)− q

)
· g(x)

)
+ lim

x→p

(
q ·
(
g(x)− r

))
+ q · r

= q · r,

as required.

Proposition 4.15 Let X be a subset of Rm, let f :X → R and g:X →
R be real-valued functions on X, and let p be a limit point of the set X.

35



Suppose that lim
x→p

f(x) and lim
x→p

g(x) both exist. Then so do lim
x→p

(f(x)+g(x)),

lim
x→p

(f(x)− g(x)) and lim
x→p

(f(x)g(x)), and moreover

lim
x→p

(f(x) + g(x)) = lim
x→p

f(x) + lim
x→p

g(x),

lim
x→p

(f(x)− g(x)) = lim
x→p

f(x)− lim
x→p

g(x),

lim
x→p

(f(x)g(x)) = lim
x→p

f(x)× lim
x→p

g(x),

If moreover g(x) 6= 0 for all x ∈ X and lim
x→p

g(x) 6= 0 then

lim
x→p

f(x)

g(x)
=

lim
x→p

f(x)

lim
x→p

g(x)
.

First Proof It follows from Proposition 4.8 (applied in the case when the
target space is one-dimensional) that

lim
x→p

(f(x) + g(x)) = lim
x→p

f(x) + lim
x→p

g(x).

Replacing the function g by −g, we deduce that

lim
x→p

(f(x)− g(x)) = lim
x→p

f(x)− lim
x→p

g(x).

It follows from Proposition 4.12 (applied in the case when the target space
is one-dimensional), or alternatively from Proposition 4.14, that

lim
x→p

(f(x)g(x)) = lim
x→p

f(x)× lim
x→p

g(x).

Now suppose that g(x) 6= 0 for all x ∈ X and that lim
x→p

g(x) 6= 0. Let

e:R \ {0} → R be the reciprocal function defined so that e(t) = 1/t for
all non-zero real numbers t. Then the reciprocal function e is continuous.
Applying the result of Lemma 4.13, we find that

lim
x→p

1

g(x)
= lim

x→p
e(g(x)) = e

(
lim
x→p

g(x)

)
=

1

lim
x→p

g(x)
.

It follows that

lim
x→p

f(x)

g(x)
=

lim
x→p

f(x)

lim
x→p

g(x)
,

as required.
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Second Proof Let q = lim
x→p

f(x) and r = lim
x→p

g(x), and let h:X → R2 be

defined such that
h(x) = (f(x), g(x))

for all x ∈ X. Then
lim
x→p

h(x) = (q, r)

(see Proposition 4.7).
Let s:R2 → R and m:R2 → R be the functions from R2 to R defined such

that s(u, v) = u+ v and m(u, v) = uv for all u, v ∈ R. Then the functions s
and m are continuous (see Lemma 4.4). Also f + g = s ◦h and f · g = m ◦ f .
It follows from this that

lim
x→p

(f(x) + g(x)) = lim
x→p

s(f(x), g(x)) = lim
x→p

s(h(x))

= s

(
lim
x→p

h(x)

)
= s(q, r) = q + r,

and

lim
x→p

(f(x)g(x)) = lim
x→p

m(f(x), g(x)) = lim
x→p

m(h(x))

= m

(
lim
x→p

h(x)

)
= m(q, r) = qr

(see Lemma 4.13).
Also

lim
x→p

(−g(x)) = −r.

It follows that
lim
x→p

(f(x)− g(x)) = q − r.

Now suppose that g(x) 6= 0 for all x ∈ X and that lim
x→p

g(x) 6= 0. Rep-

resenting the function sending x ∈ X to 1/g(x) as the composition of the
function g and the reciprocal function e:R \ {0} → R, where e(t) = 1/t for
all non-zero real numbers t, we find, as in the first proof, that the function
sending each point x of X to

lim
x→p

(
1

g(x)

)
=

1

r
.

It then follows that

lim
x→p

f(x)

g(x)
=
q

r
,

as required.
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Proposition 4.16 Let X and Y be subsets of Rm and Rn respectively, and
let f :X → Y and g:Y → Rk be functions satisfying f(X) ⊂ Y . Let p be a
limit point of X in Rm, let q be a limit point of Y in Rn let r be a point of
Rk. Suppose that the following three conditions are satisfied:

(i) lim
x→p

f(x) = q;

(ii) lim
y→q

g(y) = r;

(iii) there exists some positive real number δ0 such that f(x) 6= q for all
x ∈ X satisfying 0 < |x− p| < δ0.

Then
lim
x→p

g(f(x)) = r.

Proof Let some positive real number ε be given. Then there exists some
positive real number η such that |g(y) − r| < ε whenever y ∈ Y satisfies
0 < |y − q| < η. There then exists some positive real number δ1 such that
|f(x)− q| < η whenever x ∈ X satisfies 0 < |x− p| < δ1. Also there exists
some positive real number δ0 such that f(x) 6= q whenever x ∈ X satisfies
0 < |x − p| < δ0. Let δ be the minimum of δ0 and δ1. Then δ > 0, and
0 < |f(x)− q| < η whenever x ∈ X satisfies 0 < |x− p| < δ. But this then
ensures that |g(f(x))− r| < ε whenever x ∈ X satisfies 0 < |x−p| < δ. The
result follows.

Proposition 4.17 Let X be a subset of Rm, let f :X → Rn be a function
mapping the set X into Rn, and let p be a point of the set X that is also
a limit point of X. Then the function f is continuous at the point p if and
only if lim

x→p
f(x) = f(p).

Proof The result follows directly on comparing the relevant definitions.

Let X be a subset of m-dimensional Euclidean space Rm, and let p be a
point of the set X. Suppose that the point p is not a limit point of the set X.
Then there exists some strictly positive real number δ0 such that |x−p| ≥ δ0
for all x ∈ X satisfying x 6= p. The point p is then said to be an isolated
point of X.

Let X be a subset of m-dimensional Euclidean space Rm. The definition
of continuity then ensures that any function f :X → Rn mapping the set X
into n-dimensional Euclidean space Rn is continuous at any isolated point of
its domain X.
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4.3 Continuous Functions and Open Sets

Let X and Y be subsets of Rm and Rn, and let f :X → Y be a function
from X to Y . We recall that the function f is continuous at a point p of X
if, given any ε > 0, there exists some δ > 0 such that |f(x) − f(p)| < ε
for all points x of X satisfying |x − p| < δ. Thus the function f :X → Y
is continuous at p if and only if, given any ε > 0, there exists some δ > 0
such that the function f maps BX(p, δ) into BY (f(p), ε) (where BX(p, δ)
and BY (f(p), ε) denote the open balls in X and Y of radius δ and ε about
p and f(p) respectively).

Given any function f :X → Y , we denote by f−1(V ) the preimage of a
subset V of Y under the map f , defined by f−1(V ) = {x ∈ X : f(x) ∈ V }.

Proposition 4.18 Let X and Y be subsets of Rm and Rn, and let f :X → Y
be a function from X to Y . The function f is continuous if and only if f−1(V )
is open in X for every open subset V of Y .

Proof Suppose that f :X → Y is continuous. Let V be an open set in Y .
We must show that f−1(V ) is open in X. Let p ∈ f−1(V ). Then f(p) ∈
V . But V is open, hence there exists some ε > 0 with the property that
BY (f(p), ε) ⊂ V . But f is continuous at p. Therefore there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε) (see the remarks above).
Thus f(x) ∈ V for all x ∈ BX(p, δ), showing that BX(p, δ) ⊂ f−1(V ). This
shows that f−1(V ) is open in X for every open set V in Y .

X

Yp

f(p)

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))
V

f−1(V )

f
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Conversely suppose that f :X → Y is a function with the property that
f−1(V ) is open in X for every open set V in Y . Let p ∈ X. We must
show that f is continuous at p. Let ε > 0 be given. Then BY (f(p), ε) is

X

Yp

f(p)

f−1(BY (f(p), ε))

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f

an open set in Y , by Lemma 3.1, hence f−1 (BY (f(p), ε)) is an open set
in X which contains p. It follows that there exists some δ > 0 such that
BX(p, δ) ⊂ f−1 (BY (f(p), ε)). Thus, given any ε > 0, there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε). We conclude that f is
continuous at p, as required.

Let X be a subset of Rn, let f :X → R be continuous, and let c be some
real number. Then the sets {x ∈ X : f(x) > c} and {x ∈ X : f(x) < c}
are open in X, and, given real numbers a and b satisfying a < b, the set
{x ∈ X : a < f(x) < b} is open in X.

4.4 Limits and Neighbourhoods

Definition Let X be a subset of m-dimensional Euclidean space Rm, and
let p be a point of X. A subset N of X is said to be a neighbourhood of p
in X if there exists some strictly positive real number δ for which

{x ∈ X : |x− p| < δ} ⊂ N.
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Lemma 4.19 Let X be a subset of m-dimensional Euclidean space Rm, and
let p be a point of X that is not an isolated point of X. Let f :X → Rn be a
function mapping X into some Euclidean space Rn, and let q ∈ Rn. Then

lim
x→p

f(x) = q

if and only if, given any positive real number ε, there exists a neighbourhood N
of p in X such that

|f(x)− q| < ε

for all points x of N that satisfy x 6= p.

Proof This result follows directly from the definitions of limits and neigh-
bourhoods.

Remark Let X be a subset of m-dimensional Euclidean space Rm, and let
p be a limit point of X that does not belong to X. Let f :X → Rn be a
function mapping X into some Euclidean space Rn, and let q ∈ Rn. Then

lim
x→p

f(x) = q

if and only if, given any positive real number ε, there exists a neighbour-
hood N of p in X ∪ {p} such that

|f(x)− q| < ε

for all points x of N that satisfy x 6= p. Thus the result of Lemma 4.19 can
be extended so as to apply to limits of functions taken at limit points of the
domain that do not belong to the domain of the function.

4.5 The Multidimensional Extreme Value Theorem

Proposition 4.20 Let X be a closed bounded set in Rm, and let f :X → Rn

be a continuous function mapping X into Rn. Then there exists a point w
of X such that |f(x)| ≤ |f(w)| for all x ∈ X.

Proof Let g:X → R be defined such that

g(x) =
1

1 + |f(x)|

for all x ∈ X. Now the function mapping each x ∈ X to |f(x)| is continuous
(see Lemma 4.6) and quotients of continuous functions are continuous where
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they are defined (see Lemma 4.5). It follows that the function g:X → R is
continuous.

Let
m = inf{g(x) : x ∈ X}.

Then there exists an infinite sequence x1,x2,x3, . . . in X such that

g(xj) < m+
1

j

for all positive integers j. It follows from the multidimensional Bolzano-
Weierstrass Theorem (Theorem 2.6) that this sequence has a subsequence
xk1 ,xk2 ,xk3 , . . . which converges to some point w of Rm.

Now the point w belongs to X because X is closed (see Lemma 3.7). Also

m ≤ g(xkj) < m+
1

kj

for all positive integers j. It follows that g(xkj) → m as j → +∞. It then
follows from Lemma 4.2 that

g(w) = g

(
lim

j→+∞
xkj

)
= lim

j→+∞
g(xkj) = m.

Then g(x) ≥ g(w) for all x ∈ X, and therefore |f(x)| ≤ |f(w)| for all x ∈ X,
as required.

Theorem 4.21 (The Multidimensional Extreme Value Theorem)
Let X be a closed bounded set in Rm, and let f :X → R be a continuous
real-valued function defined on X. Then there exist points u and v of X
such that f(u) ≤ f(x) ≤ f(v) for all x ∈ X.

Proof It follows from Proposition 4.20 that the function f is bounded on
X. It follows that there exists a real number C large enough to ensure that
f(x) +C > 0 for all x ∈ X. It then follows from Proposition 4.20 that there
exists some point v of X such that

f(x) + C ≤ f(v) + C.

for all x ∈ X. But then f(x) ≤ f(v) for all x ∈ X. Applying this result
with f replaced by −f , we deduce that there exists some u ∈ X such that
−f(x) ≤ −f(u) for all x ∈ X. The result follows.
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4.6 Uniform Continuity for Functions of Several Real
Variables

Definition Let X be a subset of Rm. A function f :X → Rn from X to
Rn is said to be uniformly continuous if, given any ε > 0, there exists some
δ > 0 (which does not depend on either x′ or x) such that |f(x′)− f(x)| < ε
for all points x′ and x of X satisfying |x′ − x| < δ.

Theorem 4.22 Let X be a subset of Rm that is both closed and bounded.
Then any continuous function f :X → Rn is uniformly continuous.

Proof Let ε > 0 be given. Suppose that there did not exist any δ > 0 such
that |f(x′)− f(x)| < ε for all points x′,x ∈ X satisfying |x′− x| < δ. Then,
for each positive integer j, there would exist points uj and vj in X such
that |uj −vj| < 1/j and |f(uj)− f(vj)| ≥ ε. But the sequence u1,u2,u3, . . .
would be bounded, since X is bounded, and thus would possess a subsequence
uj1 ,uj2 ,uj3 , . . . converging to some point p (Theorem 2.6). Moreover p ∈ X,
since X is closed. The sequence vj1 ,vj2 ,vj3 , . . . would also converge to p,
since

lim
k→+∞

|vjk − ujk | = 0.

But then the sequences

f(uj1), f(uj2), f(uj3), . . .

and
f(vj1), f(vj2), f(vj3), . . .

would both converge to f(p), since f is continuous (Lemma 4.2), and thus

lim
k→+∞

|f(ujk)− f(vjk)| = 0.

But this is impossible, since uj and vj have been chosen so that

|f(uj)− f(vj)| ≥ ε

for all j. We conclude therefore that there must exist some positive real
number δ such that such that |f(x′) − f(x)| < ε for all points x′,x ∈ X
satisfying |x′ − x| < δ, as required.
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4.7 Norms on Vector Spaces

Definition A norm ‖.‖ on a real or complex vector space X is a function,
associating to each element x of X a corresponding real number ‖x‖, such
that the following conditions are satisfied:—

(i) ‖x‖ ≥ 0 for all x ∈ X,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,

(iii) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and for all scalars λ,

(iv) ‖x‖ = 0 if and only if x = 0.

A normed vector space (X, ‖.‖) consists of a a real or complex vector space X,
together with a norm ‖.‖ on X.

The Euclidean norm |.| is a norm on Rn defined so that

|(x1, x2, . . . , xn)| =
√
x21 + x22 + · · ·x2n

for all (x1, x2, . . . , xn). There are other useful norms on Rn. These include
the norms ‖.‖1 and ‖.‖sup, where

‖(x1, x2, . . . , xn)‖1 = |x1|+ |x2|+ · · ·+ |xn|

and
‖(x1, x2, . . . , xn)‖sup = maximum(|x1|, |x2|, . . . , |xn|)

for all (x1, x2, . . . , xn).

Definition Let ‖.‖ and ‖.‖∗ be norms on a real vector space X. The norms
‖.‖ and ‖.‖∗ are said to be equivalent if and only if there exist constants c
and C, where 0 < c ≤ C, such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖

for all x ∈ X.

Lemma 4.23 If two norms on a real vector space are equivalent to a third
norm then they are equivalent to each other.
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Proof let ‖.‖∗ and ‖.‖∗∗ be norms on a real vector space X that are both
equivalent to a norm ‖.‖ on X. Then there exist constants c∗, c∗∗, C∗ and
C∗∗, where 0 < c∗ ≤ C∗ and 0 < c∗∗ ≤ C∗∗, such that

c∗‖x‖ ≤ ‖x‖∗ ≤ C∗‖x‖

and
c∗∗‖x‖ ≤ ‖x‖∗∗ ≤ C∗∗‖x‖

for all x ∈ X. But then

c∗∗
C∗
‖x‖∗ ≤ ‖x‖∗∗ ≤

C∗∗
c∗
‖x‖∗.

for all x ∈ X, and thus the norms ‖.‖∗ and ‖.‖∗∗ are equivalent to one another.
The result follows.

We shall show that all norms on a finite-dimensional real vector space are
equivalent.

Lemma 4.24 Let ‖.‖ be a norm on Rn. Then there exists a positive real
number C with the property that ‖x‖ ≤ C|x| for all x ∈ Rn.

Proof Let e1, e2, . . . , en denote the basis of Rn given by

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), · · · ,

en = (0, 0, 0, . . . , 1).

Let x be a point of Rn, where

x = (x1, x2, . . . , xn).

Using Schwarz’s Inequality, we see that

‖x‖ =

∥∥∥∥∥
n∑

j=1

xjej

∥∥∥∥∥ ≤
n∑

j=1

|xj| ‖ej‖

≤

(
n∑

j=1

x2j

) 1
2
(

n∑
j=1

‖ej‖2
) 1

2

= C|x|,

where
C2 = ‖e1‖2 + ‖e2‖2 + · · ·+ ‖en‖2

and

|x| =

(
n∑

j=1

x2j

) 1
2

for all (x1, x2, . . . , xn) ∈ Rn. The result follows.
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Lemma 4.25 Let ‖.‖ be a norm on Rn. Then there exists a positive con-
stant C such that

|‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤ C|x− y|

for all x,y ∈ Rn.

Proof Let x,y ∈ Rn. Then

‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.

It follows that
‖x‖ − ‖y‖ ≤ ‖x− y‖

and
‖y‖ − ‖x‖ ≤ ‖x− y‖,

and therefore ∣∣∣‖y‖ − ‖x‖∣∣∣ ≤ ‖x− y‖

for all x,y ∈ Rn. The result therefore follows from Lemma 4.24.

Theorem 4.26 Any two norms on Rn are equivalent.

Proof Let ‖.‖ be any norm on Rn. We show that ‖.‖ is equivalent to the
Euclidean norm |.|. Let Sn−1 denote the unit sphere in Rn, defined by

Sn−1 = {x ∈ Rn : |x| = 1}.

Now it follows from Lemma 4.25 that the function x 7→ ‖x‖ is continuous.
Also Sn−1 is a compact subset of Rn, since it is both closed and bounded.
It therefore follows from the Extreme Value Theorem (Theorem 4.21) that
there exist points u and v of Sn−1 such that ‖u‖ ≤ ‖x‖ ≤ ‖v‖ for all
x ∈ Sn−1. Set c = ‖u‖ and C = ‖v‖. Then 0 < c ≤ C (since it follows
from the definition of norms that the norm of any non-zero element of Rn is
necessarily non-zero).

If x is any non-zero element of Rn then λx ∈ Sn−1, where λ = 1/|x|. But
‖λx‖ = |λ| ‖x‖ (see the the definition of norms). Therefore c ≤ |λ| ‖x‖ ≤ C,
and hence c|x| ≤ ‖x‖ ≤ C|x| for all x ∈ Rn, showing that the norm ‖.‖ is
equivalent to the Euclidean norm |.| on Rn. If two norms on a vector space
are equivalent to a third norm, then they are equivalent to each other. It
follows that any two norms on Rn are equivalent, as required.
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5 Compactness and the Heine-Borel Theo-

rem

5.1 Compact Subsets of Euclidean Spaces

Definition Let K be a subset of n-dimensional Euclidean space Rn. A
collection C of open sets in Rn is said to cover K if

K =
⋃

V ∈C
V.

In other words, a collection C of open sets in Rn is said to cover K if
and only if each point of K belongs to at least one open set belonging to the
collection C.

Definition A subset K of Rn is said to be compact if, given any collection of
open sets in Rn which covers K, there exists some finite subcollection which
also covers K.

Lemma 5.1 Let F and K be subsets of Rn where F is closed, K is compact
and F ⊂ K. Then F is compact.

Proof Let C be any collection of open sets in Rn covering F . On adjoining
the open set Rn \F to C, we obtain a collection of open sets which covers the
compact set K. The compactness of K ensures that some finite subcollection
of this collection covers K. The open sets in this subcollection that belong
to C then constitute a finite subcollection of C that covers F . Thus F is
compact, as required.

Lemma 5.2 Let ϕ:Rm → Rn be a continuous function between Euclidean
spaces Rm and Rn, and let K be a compact subset of Rm. Then ϕ(K) is a
compact subset of Rn.

Proof Let C be a collection of open sets in Rn which covers ϕ(K). Then K is
covered by the collection of all open sets of the form ϕ−1(V ) for some V ∈ C.
It follows from the compactness of K that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to C such that

K ⊂ ϕ−1(V1) ∪ ϕ−1(V2) ∪ · · · ∪ ϕ−1(Vk).

But then ϕ(K) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that ϕ(K) is compact.

Lemma 5.3 Let f :K → R be a continuous real-valued function on a com-
pact subset K of Rn. Then f is bounded above and below on K.
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Proof The range f(K) of the function f is covered by some finite collection
I1, I2, . . . , Ik of open intervals of the form (−m,m), where m ∈ N, since f(K)
is compact (Lemma 5.2) and R is covered by the collection of all intervals of
this form. It follows that f(K) ⊂ (−M,M), where (−M,M) is the largest of
the intervals I1, I2, . . . , Ik. Thus the function f is bounded above and below
on K, as required.

Proposition 5.4 Let f :K → R be a continuous real-valued function on a
compact subset K of Rn. Then there exist points u and v of K such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ K.

Proof Let m = inf{f(x) : x ∈ K} and M = sup{f(x) : x ∈ K}. There
must exist v ∈ K satisfying f(v) = M , for if f(x) < M for all x ∈ K then
the function x 7→ 1/(M − f(x)) would be a continuous real-valued function
on K that was not bounded above, contradicting Lemma 5.3. Similarly
there must exist u ∈ K satisfying f(u) = m, since otherwise the function
x 7→ 1/(f(x)−m) would be a continuous function on K that was not bounded
above, again contradicting Lemma 5.3. But then f(u) ≤ f(x) ≤ f(v) for all
x ∈ K, as required.

Proposition 5.5 Let K be a compact subset of a Euclidean space Rn. Then
K is closed in Rn.

Proof Let p be a point of Rn that does not belong to K, and let f(x) =
|x−p| for all x ∈ Rn. It follows from Proposition 5.4 that there is a point q
of K such that f(x) ≥ f(q) for all x ∈ K, because K is compact. Now
f(q) > 0, since q 6= p. Let δ satisfy 0 < δ ≤ f(q). Then the open ball of
radius δ about the point p is contained in the complement of K, because
f(x) < f(q) for all points x of this open ball. It follows that the complement
of K is an open set in Rn, and thus K itself is closed in Rn.

Let F be a subset of n-dimensional Euclidean space Rn. For each x ∈ Rn,
we denote by d(x, F ) the (Euclidean) distance from the point x to the set F .
This distance d(x, F ) is defined so that

d(x, F ) = inf{|x−w| : w ∈ F}.

Lemma 5.6 Let F be a subset of Rn. Then

|d(x, F )− d(y, F )| ≤ |x− y|

for all x,y ∈ F , and thus the function sending points x on Rn to their
distance d(x, F ) from the set F is a continuous real-valued function on Rn.
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Proof Let ε be a real number satisfying ε > 0, and let x and y be points of
Rn. Then there exists z ∈ F for which |y− z| < d(y, F ) + ε. It follows from
the Triangle Inequality that

d(x, F ) ≤ |x− z| ≤ |x− y|+ |y − z| < |x− y|+ d(y, F ) + ε

and thus
d(x, F )− d(y, F ) < |x− y|+ ε.

Now the inequality just obtained must hold for all positive real numbers ε,
and the left hand side of the inequality is independent of the value of ε. It
must therefore be the case that

d(x, F )− d(y, F ) ≤ |x− y|.

Interchanging the roles of x and y, we see also that

d(y, F )− d(x, F ) ≤ |x− y|.

It follows that
|d(x, F )− d(y, F )| ≤ |x− y|.

This inequality ensures that the function that sends points x of Rn to their
distance d(x, F ) from the set F is a continuous function on Rn, as re-
quired.

Given a subset F of Rn and a positive real number δ, we denote by B(F, δ)
the δ-neighbourhood of the set F in Rn, defined so that

B(F, δ) = {x ∈ Rn : d(x, F ) < δ}.

Proposition 5.7 Let K and V be subsets of Rn, where K is compact, V is
open and K ⊂ V . Then there exists some positive real number δ for which
B(K, δ) ⊂ V .

Proof Let F = Rn \V , and let f(x) = d(x, F ) for all x ∈ Rn, where d(x, F )
denotes the distance from the point x to the set F . Now the function f is
a continuous real-valued function on Rn. Moreover f(x) > 0 for all x ∈ V ,
and therefore f(x) > 0 for all x ∈ K. It then follows from Proposition 5.4
that there exists some point u of K with the property that f(u) ≤ f(x) for
all x ∈ K. Let δ = f(u). Then |x − z| ≥ δ for all x ∈ K and z ∈ F . It
follows that B(x, δ) ⊂ V for all x ∈ K, where B(x, δ) denotes the open ball
of radius δ centred on the point x. Therefore B(K, δ) ⊂ V , as required.
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Alternative Proof For each point w of K there exists some positive real
number δw such that B(w, 2δw) ⊂ V where B(w, 2δw) denotes the open ball
of radius 2δw centred on the point w for each w ∈ K. Now the collection
(B(w, δw) : w ∈ K) of open balls constitutes an open cover of the compact
set K. The definition of compactness therefore ensures that there exist points
w1,w2, . . . ,wm (finite in number) such that

K ⊂
m⋃
j=1

B(wj, δwj
).

Let δ be the minimum of the positive real numbers δwj
for j = 1, 2, . . . ,m.

Then δ > 0. Moreover the Triangle Inequality ensures that

B(z, δ) ⊂ B(wj, 2δwj
) ⊂ V

for all z ∈ B(wj, δwj
), and therefore

⋃
z∈K B(z, δ) ⊂ V . But

⋃
z∈K B(z, δ) =

B(K, δ), because a point x of Rn belongs to B(K, δ) if and only if |x−z| < δ
for some z ∈ K. Thus B(K, δ) ⊂ V , as required.

5.2 The Heine-Borel Theorem

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the least upper bound principle which states that, given any non-empty
set S of real numbers which is bounded above, there exists a least upper
bound (or supremum) supS for the set S.

Theorem 5.8 (Heine-Borel in One Dimension) Let a and b be real numbers
satisfying a < b. Then the closed bounded interval [a, b] is a compact subset
of R.

Proof Let C be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, b] is covered by finitely many of these open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is covered
by some finite collection of open sets belonging to C, and let s = supS. Now
s ∈ W for some open set W belonging to C. Moreover W is open in R, and
therefore there exists some δ > 0 such that (s − δ, s + δ) ⊂ W . Moreover
s − δ is not an upper bound for the set S, hence there exists some τ ∈ S
satisfying τ > s− δ. It follows from the definition of S that [a, τ ] is covered
by some finite collection V1, V2, . . . , Vr of open sets belonging to C.
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Let t ∈ [a, b] satisfy τ ≤ t < s+ δ. Then

[a, t] ⊂ [a, τ ] ∪ (s− δ, s+ δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W,

and thus t ∈ S. In particular s ∈ S, and moreover s = b, since otherwise s
would not be an upper bound of the set S. Thus b ∈ S, and therefore [a, b]
is covered by a finite collection of open sets belonging to C, as required.

Definition We define a closed n-dimensional block in Rn to be a subset of
Rn that is a product of closed bounded intervals.

Thus a subset K of Rn is a closed n-dimensional block if and only if
there exist real numbers a1, a2, . . . , an and b1, b2, . . . , bn such that ai ≤ bi for
i = 1, 2, . . . , n and

K = [a1, b1]× [a2, b2]× · · · × [an, bn].

Proposition 5.9 A closed n-dimensional block is a compact set.

Proof We prove the result by induction on the dimension n of the Euclidean
space. The result when n = 1 is the one-dimensional Heine-Borel Theorem
(Theorem 5.8). Thus suppose as our induction hypothesis that n > 1 and
that that every closed (n − 1)-dimensional block in Rn−1 is a compact set.
Let K be an n-dimensional block in Rn, and let

K = [a1, b1]× [a2, b2]× · · · × [an, bn],

where a1, a2, . . . , an and b1, b2, . . . , bn are real numbers that satisfy ai ≤ bi for
i = 1, 2, . . . , n. Let p:Rn → R be the projection function defined such that

p(x1, x2, . . . , xn) = xn

for all (x1, x2, . . . , xn) ∈ Rn. The induction hypothesis then ensures that Kz

is a compact set for all z ∈ [an, bn], where

Kz = {x ∈ K : p(x) = z}.

Let C be a collection of open sets in Rn that covers K. The compactness
of Kz ensures that, for each real number z satisfying an ≤ z ≤ bn there
exists a finite subcollection Cz of C such that Kz ⊂

⋃
V ∈Cz V . Let Wz =⋃

V ∈Cz V . (The set Wz is thus the union of the open sets belonging to the
finite subcollection Cz of C.)

Now Kz is compact, Wz is open, and Kz ⊂ Wz. It follows that there ex-
ists some positive real number δz such that B(K, δz) ⊂ Wz, where B(K, δz)
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denotes the δ-neighbourhood of K in Rn i.e., the subset of Rn consisting of
those points of Rn that lie within a distance δz of the set Kz (see Proposi-
tion 5.7). But then

{x ∈ K : z − δz < p(x) < z + δz} ⊂ Wz

for all z ∈ [an, bn]. Now the collection of all open intervals in R that are
of the form (z − δz, z + δz) constitute an open cover of the closed bounded
interval [an, bn]. It follows from the one-dimensional Heine-Borel Theorem
(Theorem 5.8) that there exist z1, z2, . . . , zm ∈ [an, bn] such that

[an, bn] ⊂
m⋃
j=1

(zj − δzj , zj + δzj).

But then

K ⊂
n⋃

j=1

Wzj .

Moreover
n⋃

j=1

Wzj is the union of all the open sets that belong to the collection

D obtained by amalgamating the finite collections Cz1 , Cz2 , . . . , Czm . Then D
is a finite subcollection of C which covers the n-dimensional block K. The
result follows.

Theorem 5.10 (Multidimensional Heine-Borel Theorem) A subset
of a Euclidean space is compact if and only if it is both closed and bounded.

Proof Let K be a compact subset of n-dimensional Euclidean space. The
function that maps each point x of Rn to its Euclidean distance |x| from the
origin is then a bounded function on K (Lemma 5.3) and therefore K is a
bounded set. Moreover it follows from Proposition 5.5 that K is closed in
Rn.

Conversely let K be a subset of Rn that is both closed and bounded.
Then there exists some positive real number R large enough to ensure that
K ⊂ H, where

H = {(x1, x2, . . . , xn) ∈ Rn : −R ≤ xi ≤ R for i = 1, 2, . . . , n}.

Now H is a closed n-dimensional block in Rn. It follows from Proposition 5.9
that H is a compact subset of Rn. Thus K is a closed subset of a compact set.
It follows from Lemma 5.1 that K is a compact subset of Rn, as required.
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