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Course MAU23203: Michaelmas Term 2019.
Assignment 2.

1. This question concerns differentiation of a function of two real variables
from first principles. Accordingly you may use freely any results con-
cerning limits of functions stated and proved in Section 4 of the module
notes, but you should not appeal to any lemma, proposition, theorem
or corollary included in Section 9 of the notes.

(a) Let p and q be real numbers. Then there exist real numbers r and
s and a real-valued function u:R2 → R of two real variables, where the
constants r and s and the function u depend on and are uniquely deter-
mined by the values of p and q for which the following two properties
both hold:

x3 − 3xy2 = p3 − 3pq2 + r(x− p)− s(y − q) + u(x, y)

for all real numbers x and y, and also

lim
(x,y)→(p,q)

1√
(x− p)2 + (y − q)2

u(x, y) = 0.

Determine the constants r and s and the function u, where those con-
stants and that function are expressed in terms of the values of the
constants p and q.

(b) By making a straightforward substitution in the result proved in
(a), or otherwise, determine the unique real-valued function v:R2 → R
for which the following two properties both hold:

3x2y − y3 = 3p2q − q3 + s(x− p) + r(y − q) + v(x, y)

for all real numbers x and y, and also

lim
(x,y)→(p,q)

1√
(x− p)2 + (y − q)2

v(x, y) = 0.

(c) Let ϕ:R2 → R2 be the function from R2 to itself defined such that

ϕ

(
x
y

)
=

(
x3 − 3xy2

3x2y − y3

)
Applying the results obtained in parts (a) and (b) of this question,
determine, in terms of the values of p and q, the 2 × 2 matrix that
represents the derivative of the function ϕ at a point (p, q) of R2.
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