
MAU22200, Hilary Term 2020.
Problems I: Interchanging limits and integrals

Worked Solutions to Problems

1. For each positive real number u let Let f :R→ R be defined as follows:

f(x) =


1

x
if x 6= 0 and x is rational;

x if x = 0 or x is irrational.

Is the function f Lebesgue-integrable on the interval [0, 1]? If so, what

is the value of
∫ 1

0
f(x) dx?

The function f is Lebesgue-integrable on the interval [0, 1]. Indeed
the set of rational numbers contained in [0, 1] is a set of measure zero.
Therefore the function f is equal almost everywhere to the identity
function g, where g(x) = x for all x ∈ [0, 1]. Moreover it follows from
this that ∫ 1

0

f(x) dx =

∫ 1

0

g(x) dx =

∫ 1

0

x dx = 1
2
.

2. For each positive real number u let fu:R→ R be the function of a real
variable defined so that

fu(x) =
u6

u8 + (x− u)4

for all real numbers x. We examine the behaviour of the integrals∫ 1

0
fu(x) dx. You may take it for granted that, for continuous func-

tions such as the functions fu, when integrated over bounded intervals,
the values of the integrals with respect to Lebesgue measure, as deter-
mined in the theory of the Lebesgue integral, coincide with the values
that result from applying the usual rules of differential and integral cal-
culus.

(a) Considering separately the cases when x = 0 and when x 6= 0, show
that lim

u→0+
fu(x) = 0 for all real numbers x. (In other words show that,

for each real x, the limit of fu(x) as u tends to zero from above is equal
to zero.)

[There is no need to use a ε–δ argument. Standard theorems concerning
limits of sums, differences, products, quotients and/or compositions of
functions can be applied.]
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First we note that

lim
u→0+

fu(0) = lim
u→0+

u6

u8 + u4
= lim

u→0+

u2

u4 + 1
=

lim
u→0+

u2

lim
u→0+

(u4 + 1)
=

0

1
= 0.

Thus the required result holds in the case when x = 0.

Now suppose that x 6= 0. Then

lim
u→0+

fu(x) =
lim
u→0+

u6

lim
u→0+

(
u8 + (x− u)4

) =
0

x4
= 0.

Thus lim
u→0+

fu(x) = 0 for all real numbers x.

(b) For each positive real number u, determine real numbers p(u) and
q(u) such that ∫ 1

0

fu(x) dx =

∫ q(u)

p(u)

1

1 + t4
dt.

[The value of the integral on the right hand side can be represented
by an expression involving the natural logarithm and inverse tangent
functions. You are neither required nor expected to carry though that
calculation, merely find the appropriate values of p(u) and q(u) for
given positive u.]

Note that, for all real numbers x, and for all positive real numbers u,

fu(x) =
u6

u8 + (x− u)4
=

1

u2

(
1 +

(
x

u2
− 1

u

)4
)

Substituting x = u2t + u, and applying the rule for integration by
substitution, we find that∫ 1

0

fu(x) dx =

∫ q(u)

p(u)

1

1 + t4
dt,

where

p(u) = −1

u
and q(u) =

1

u2
− 1

u
.
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(c) Is it the case that

lim
u→0+

∫ 1

0

fu(x) dx = 0?

[Briefly justify your answer.]

It is not the case that the limit of the integrals is equal to zero. The
function sending each real number t to 1/(1 + t4) is integrable on the
real line. Let

A =

∫ ∞
−∞

1

1 + t4
dt = 2

∫ +∞

0

1

1 + t4
dt = 2 lim

R→+∞

∫ R

0

1

1 + t4
dt.

Then A > 0. (In fact, A = π/
√

2, but this does not need to be proved
here.) Moreover, given any positive real number ε, there exists some
real number K such that

A− ε <
∫ s

−s

1

1 + t4
dt < A

whenever s > K. Now, given K, there exists some positive real num-
ber δ such that p(u) < −K and q(u) > K whenever 0 < u < δ, because
lim
u→0+

p(u) = −∞ and lim
u→0+

q(u) = +∞. It follows that

A− ε <
∫ 1

0

fu(x) dx < A

whenever 0 < u < δ, and therefore

lim
u→0+

∫ 1

0

fu(x) dx = A.

Note in particular that

lim
u→0+

∫ 1

0

fu(x) dx 6=
∫ 1

0

(
lim
u→0+

fu(x)

)
dx

in this example!

3. In this question let f : [0,+∞)→ R be a non-negative Lebesgue-measurable
function of a real variable, defined for all non-negative values of that
variable, with the property that∫ +∞

0

f(x) dx = 1.
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(a) Briefly explain how it follows from Lebesgue’s Dominated Conver-
gence Theorem that

lim
j→+∞

∫ +∞

j

f(x) dx = 0

(the limit being taken as j tends to infinity through positive integer
values). [No reference should be made to Levi’s Monotone Convergence
Theorem.]

Let functions f1, f2, f3, . . . be defined on [0,+∞) so that

fj(x) =

{
f(x) if 0 ≤ x < j;
0 if x ≥ j.

Then the functions fj and f − fj are all measurable, and 0 ≤ f(x) −
fj(x) ≤ f(x) for all non-negative real numbers x and for all positive
integers j. Moreover lim

j→+∞
(f(x) − fj(x)) = 0 for all non-negative real

numbers x. It follows from Lebesgue’s Dominated Convergence Theo-
rem that

lim
j→+∞

∫ +∞

j

f(x) dx = lim
j→+∞

∫ +∞

0

(f(x)− fj(x)) dx

=

∫ +∞

0

lim
j→+∞

(f(x)− fj(x) dx = 0,

as required.

(b) Briefly explain how it follows from Levi’s Monotone Convergence
Theorem that

lim
j→+∞

∫ +∞

j

f(x) dx = 0

(the limit being taken as j tends to infinity through positive integer
values). [No reference should be made to Lebesgue’s Dominated Con-
vergence Theorem.]

Let functions f1, f2, f3, . . . be defined on [0,+∞) so that

fj(x) =

{
f(x) if 0 ≤ x < j;
0 if x ≥ j.

Then the functions fj are all measurable, and for each non-negative
real number x, the infinite sequence f1(x), f2(x), f3(x), . . . converges to
f(x). It follows from Levi’s Monotone Convergence Theorem that

lim
j→+∞

∫ +∞

0

fj(x) dx =

∫ +∞

0

f(x) dx,
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and therefore

lim
j→+∞

∫ +∞

j

f(x) dx = lim
j→+∞

∫ +∞

0

(f(x)− fj(x)) dx

=

∫ +∞

0

f(x) dx− lim
j→+∞

∫ +∞

0

fj(x)) dx = 0,

as required.

4. Let f1, f2, f3, . . . be an infinite sequence of non-negative Lebesgue-mea-
surable functions of a real variable, define for all real numbers x. Sup-
pose that

∫ +∞
−∞ fj(x) dx < +∞ for all j, that fj(x) ≥ fj+1(x) for all real

numbers x and all positive integers j and that lim
j→+∞

fj(x) = 0 for all

real numbers x. Prove that there cannot exist any real number K with
the property that ∫ +∞

−∞
e−fj(x) dx ≤ K

for all positive integers j.

Let real-valued functions g1, g2, g3, . . . be defined on R so that gj(x) =
e−fj(x) for all real numbers x. Then, for each real number x, the infinite
sequence g1(x), g2(x), g3(x) . . . is non-decreasing, 0 < gj(x) ≤ 1 for all
j, and lim

j→+∞
gj(x) = 1. It follows from Levi’s Monotone Convergence

Theorem that

lim
j→+∞

∫ +∞

−∞
e−fj(x) dx = lim

j→+∞

∫ +∞

−∞
gj(x) dx

=

∫ +∞

−∞
lim

j→+∞
gj(x) dx = +∞.

Therefore, given any positive real number K, there exists some positive
integer N such that ∫ +∞

−∞
e−fj(x) dx > K

whenever j ≥ N . The result follows.

Alternative Proof
Let K be a positive constant, and let a Lebesgue-measurable set E
be chosen in R for which K < µ(E) < +∞, where µ(E) denotes the
Lebesgue measure of E. (This measurable set E could, for example, be
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a bounded interval of length exceeeding K.) Also let real-valued func-
tions g1, g2, g3, . . . be defined on R so that gj(x) = e−fj(x) for all real
numbers x. It follows from Egorov’s Theorem that the infinite sequence
g1, g2, g3, . . . of real-valued functions converges almost uniformly on E,
and therefore there exists a subset F of E such that µ(F ) < µ(E)−K
and the infinite sequence g1, g2, g3, . . . of measurable real-valued func-
tions converges uniformly on E \ F . Now µ(E \ F ) ≥ µ(E) − µ(F ) >
K. Choose some positive real number ε small enough to ensure that
(1− ε)µ(E \ F ) > K. Then there exists some positive integer N such
that gj(x) > 1− ε whenever x ∈ E \F and j ≥ N , because the infinite
sequence g1, g2, g3, . . . of real-valued functions converges uniformly on
E \ F . But then∫ +∞

−∞
e−fj(x) dx =

∫
R
gj dµ ≥

∫
E\F

gj dµ ≥ (1− ε)µ(E \ F ) > K

whenever j ≥ N . The result follows.
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