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10 Stieltjes Measure

10.1 Stieltjes Content

Lemma 10.1 Let F :R→ R be a non-decreasing function of a real variable.
Then, for each real number s, there are well-defined real numbers F (s−) and
F (s+) characterized by the properties that

F (s−) = lim
x→s−

F (x) = sup{F (x) : x < s}

and
F (s+) = lim

x→s+
F (x) = inf{F (x) : x > s}.

Moreover F (s−) ≤ F (s) ≤ F (s+) for all real numbers s, and F (u+) ≤
F (v) ≤ F (w−) for all real numbers u, v and w satisfying u < v < w.

Proof Let s be a real number. The set {F (x) : x < s} is non-empty, and is
bounded above by F (s). This set therefore has a least upper bound F (s−),
and moreover F (s−) ≤ F (s).

Now let ε be any strictly positive real number. Then F (s−)− ε is not an
upper bound for the set {F (x) : x < s}, because F (s−) is the least upper
bound of this set. It follows that there exists some strictly positive real
number δ for which F (s−δ) > F (s−)−ε. Then F (s−)−ε < F (x) ≤ F (s−) for
all real numbers x satisfying s−δ < x < s. It follows that F (s−) = lim

x→s−
F (x).

An analogous argument shows that the set {F (x) : x > s} has a greatest
lower bound F (s+), and moreover F (s+) ≥ F (s) and F (s+) = lim

x→s+
F (x).

Now let u, v and w be real numbers satisfying u < v < w, Then the real
numbers F (u+) and F (w−) are the greatest lower bound and least upper
bound of the sets {F (x) : x > u} and {F (x) : x < w}, respectively, and F (v)
belongs to both of these sets. It follows that F (u+) ≤ F (v) ≤ F (w−), as
required.

The definition of F (s+) and F (s−) for each real number s ensures that,
given any given any real number s and any strictly positive real number ε,
there exist real numbers q and r satisfying q < s < r for which F (q) >
F (s−)− ε and F (r) < F (s+) + ε.

Definition Let F :R → R be a non-decreasing function of a real variable.
The Stieltjes content mF (I) of each bounded interval or singleton set I con-
tained in R with respect to the function F is then defined so that

mF ({v}) = F (v+)− F (v−),
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mF ([u, v]) = F (v+)− F (u−),

mF ([u, v)) = F (v−)− F (u−),

mF ((u, v]) = F (v+)− F (u+),

mF ((u, v)) = F (v−)− F (u+)

for all real numbers u and v satisfying u < v.

Proposition 10.2 Let F :R → R be a non-decreasing function of a real-
variable and, for any singleton set or bounded interval J , let mF (J) denote
the Stieltjes content of J with respect to the function F . Let a and b be real
numbers satisfying a < b, and let u0, u1, . . . , uN be a list of real numbers with
the property that

a = u0 < u1 < u2 < · · · < uN = b.

For each integer j between 0 and N , let Dj = {uj}, and, for each integer j
between 1 and N , let

Ej = (uj−1, uj) = {x ∈ R : uj−1 < x < uj}.

Then

mF ((a, b)) =
N−1∑
j=1

mF (Dj) +
N∑
j=1

mF (Ej).

Also

mF ([a, b)) =
N−1∑
j=0

mF (Dj) +
N∑
j=1

mF (Ej),

mF ((a, b]) =
N∑
j=1

mF (Dj) +
N∑
j=1

mF (Ej),

mF ([a, b]) =
N∑
j=0

mF (Dj) +
N∑
j=1

mF (Ej).

Proof

mF ((a, b)) = F (b−)− F (a+) = F (u−N)− F (u+0 )

= F (u+N−1)− F (u+0 ) + F (u−N)− F (u+N−1)

=
N−1∑
j=1

(F (u+j )− F (u+j−1)) +mF (EN)
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=
N−1∑
j=1

(mF (Dj) +mF (Ej)) +mF (EN)

=
N−1∑
j=1

mF (Dj) +
N∑
j=1

mF (Ej).

Then

mF ([a, b)) = F (b−)− F (a−)

= F (a+)− F (a−) + F (b−)− F (a−)

= mF (D0) +mF ((a, b))

=
N−1∑
j=0

mF (Dj) +
N∑
j=1

mF (Ej),

mF ((a, b]) = F (b+)− F (a+)

= F (b+)− F (b−) + F (b−)− F (a+)

= mF (DN) +mF ((a, b))

=
N∑
j=1

mF (Dj) +
N∑
j=1

mF (Ej)

and

mF ([a, b]) = F (b+)− F (a−)

= F (a+)− F (a−) + F (b+)− F (a+)

= mF (D0) +mF ((a, b])

=
N∑
j=0

mF (Dj) +
N∑
j=1

mF (Ej),

This establishes all the required identities.

Proposition 10.3 Let F :R → R be a non-decreasing function of a real-
variable and, for any singleton set or bounded interval J , let mF (J) denote
the Stieltjes content of J with respect to the function F . Let a and b be real
numbers satisfying a < b, and let u0, u1, . . . , uN be a list of real numbers with
the property that

a = u0 < u1 < u2 < · · · < uN = b.
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For each integer j between 0 and N , let Dj = {uj}, and, for each integer j
between 1 and N , let

Ej = (uj−1, uj) = {x ∈ R : uj−1 < x < uj}.

Also let J be an interval or singleton set whose endpoints are included in the
list u0, u1, . . . , uN , and let

S(J) = {j ∈ Z : 0 ≤ j ≤ N and Dj ⊂ J},
T (J) = {j ∈ Z : 1 ≤ j ≤ N and Ej ⊂ J}.

Then
mF (J) =

∑
j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej).

Proof An integer j between 0 and N belongs to S(J) if and only if uj ∈ J ,
and an integer j between 1 and N belongs to T (J) if and only if (uj−1, uj) ⊂
J .

The proof is accomplished through a case-by-case analysis.
First suppose that J is a singleton set. Then J = {uk} for some integer k

between 1 and N . In this case S(J) = {uk}, T (J) = ∅ and

mF (J) = mF = mF (Dk) =
∑

j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej).

In the remaining cases, suppose that J takes one of the forms (a, b), [a, b),
(a, b] or [a, b], where a and b are real numbers and a < b. There then exist
integers p and q between 1 and N satisfying p < q for which a = up and
b = uq.

Suppose then that J = (a, b) = (up, uq). Then

S(J) = {k ∈ Z : p < k < q} and T (J) = {k ∈ Z : p < k ≤ q}.

Then Proposition 10.2 ensures that

mF ((a, b)) =

q−1∑
j=p+1

mF (Dj) +

q∑
j=p+1

mF (Ej)

=
∑

j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej).

The same strategy applies in the remaining cases. In the case where
J = [a, b) = [up, uq) we have

S(J) = {k ∈ Z : p ≤ k < q} and T (J) = {k ∈ Z : p < k ≤ q},
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in the case where J = (a, b] = (up, uq] we have

S(J) = {k ∈ Z : p < k ≤ q} and T (J) = {k ∈ Z : p < k ≤ q},

in the case where J = [a, b] = [up, uq] we have

S(J) = {k ∈ Z : p ≤ k ≤ q} and T (J) = {k ∈ Z : p < k ≤ q},

and in each of these three cases the required identity follows on applying the
relevant identity stated in Proposition 10.2.

Proposition 10.4 Let F :R → R be a non-decreasing function of a real-
variable and, for any singleton set or bounded interval K, let mF (K) de-
note the Stieltjes content of K with respect to the function F . Also J ,
J (1), J (2), . . . , J (s) be bounded intervals or singleton sets contained in the set R
of real numbers. Suppose that J (1), J (2), . . . , J (s) are pairwise disjoint and that

J =
s⋃

r=1

J (r). Then

mF (J) =
s∑

r=1

mF (J (r)).

Proof Let u0, u1, . . . , uN be a list of real numbers, listed in increasing order,
that contains the endpoints of each of the singleton sets or bounded intervals
J , J (1), J (2), . . . , J (s). For each integer j between 0 and N , let Dj = {uj},
and, for each integer j between 1 and N , let

Ej = (uj−1, uj) = {x ∈ R : uj−1 < x < uj}.

Also, for each interval or singleton set K whose endpoints are included in
the list u0, u1, . . . , uN , let

S(K) = {j ∈ Z : 0 ≤ j ≤ N and Dj ⊂ I},
T (K) = {j ∈ Z : 1 ≤ j ≤ N and Ej ⊂ I}.

Then
mF (K) =

∑
j∈S(K)

mF (Dj) +
∑

j∈T (K)

mF (Ej)

for any such interval K.
In particular

mF (J) =
∑

j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej)
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and
mF (J (r)) =

∑
j∈S(J(r))

mF (Dj) +
∑

j∈T (J(r))

mF (Ej)

for r = 1, 2, . . . , s.
Now the sets J (1), J (2), . . . , J (s) are pairwise disjoint, and the union of

these pairwise disjoint sets is the set J . It follows that if j is an integer
between 0 and N for which Dj ⊂ J then there is exactly one integer r
between 1 and s for which Dj ⊂ J (r), and therefore each integer j in S(J)
belongs to exactly one of the sets S(J (1)), S(J (2)), . . . , S(J (s)). Similarly if j
is an integer between 1 and N for which Ej ⊂ J then there is exactly one
integer r between 1 and s for which Ej ⊂ J (r). and therefore each integer j
in T (J) belongs to exactly one of the sets T (J (1)), T (J (2)), . . . , T (J (s)). It
follows that

mF (J) =
∑

j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej)

=
s∑

r=1

∑
j∈S(J(r))

mF (Dj) +
s∑

r=1

∑
j∈T (J(r))

mF (Ej)

=
s∑

r=1

mF (J (r)),

as required.

The following two propositions are the analogues, for Stieltjes measures,
of Proposition 7.5 and Proposition 7.6.

Proposition 10.5 Let F :R → R be a non-decreasing function of a real-
variable and, for any singleton set or bounded interval K, let mF (K) denote
the Stieltjes content of K with respect to the function F . Let J be a bounded
interval or singleton set in the real line R, and let J1, J2, . . . , Js be a finite
collection of sets each of which is a bounded interval or singleton set in R.

Suppose that J ⊂
s⋃

k=1

Jk. Then mF (J) ≤
s∑

k=1

mF (Jk).

Proof The collection of subsets of R consisting of the empty set, the single-
ton sets that are of the form {c} for some real number c, and the bounded
intervals is a semiring of subsets of R. Proposition 10.4 establishes that
Stieljes content is finitely additive on this semiring and is thus a true content
function on the semiring. The required result therefore follows immediately
on applying Proposition 6.19.
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Proposition 10.6 Let F :R → R be a non-decreasing function of a real-
variable and, for any singleton set or bounded interval K, let mF (K) denote
the Stieltjes content of K with respect to the function F . Let J be a bounded
interval or singleton set in the real line R, and let J1, J2, . . . , Js be a finite
collection of sets each of which is a bounded interval or singleton set in R.
Suppose that the sets J1, J2, . . . , Js are pairwise disjoint and are contained in

J . Then
s∑

k=1

mF (Jk) ≤ mF (J).

Proof The collection of subsets of R consisting of the empty set, the single-
ton sets that are of the form {c} for some real number c, and the bounded
intervals is a semiring of subsets of R. Proposition 10.4 establishes that
Stieljes content is finitely additive on this semiring and is thus a true content
function on the semiring. The required result therefore follows immediately
on applying Proposition 6.20.

Lemma 10.7 Let F :R→ R be a non-decreasing function of a real-variable.
Let {v} be a singleton set in the real line. Then, given any positive real
number ε, there exists an open interval V such that v ∈ V and mF (V ) <
mF ({v}) + ε, where mF ({v}) and mF (V ) denote the Stieltjes content of the
sets {v} and V respectively with respect to the function F .

Proof The Stieltjes measure mF ({v}) of the singleton set {v} is defined by
the identity mF ({v}) = F (v+)− F (v−), where

F (v+) = inf{F (x) : x > v} and F (v−) = inf{F (x) : x < v}

(see Lemma 10.1). It follows that, given any strictly positive real number ε,
there exist real numbers u and w satisfying u < v < w for which F (u) >
F (v−) − 1

2
ε and F (w) < F (v+) + 1

2
ε. Let V = (u,w). Then V is an open

interval and

mF (V ) = F (w−)− F (u+) ≤ F (w)− F (u)

< F (v+)− F (v−) + ε = mF ({v}) + ε,

as required.

Lemma 10.8 Let F :R→ R be a non-decreasing function of a real-variable.
Let J be a bounded interval of positive length in the real line, and let a = inf J
and b = sup J . Then, given any positive real number ε, there exists an open
interval V such that J ⊂ V and mF (V ) < mF (J) + ε, where mF (J) and
mF (V ) denote the Stieltjes content of the sets J and V respectively with
respect to the function F .
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Proof The endpoints a and b of the interval J satisfy a < b, and J coincides
with exactly one of the intervals (a, b), [a, b), (a, b] and [a, b]. And the Stieltjes
measures of these intervals are defined so that

mF ((a, b) = F (b−)− F (a+), mF ([a, b) = F (b−)− F (a−),

mF ((a, b] = F (b+)− F (a+), mF ([a, b] = F (b+)− F (a−).

Also the definitions of F (a−) and F (b+) ensure that there exist real numbers
u and v satisfying u < a < b < v for which F (u) > F (a−) − 1

2
ε and

F (w) < F (b+) + 1
2
ε.

In the case where J = (a, b) we can take V = J .
Suppose next that J = [a, b). In this case take V = (u, b). Then mF (J) =

F (b−)− F (a−) and

mF (V ) = F (b−)− F (u+) ≤ F (b−)− F (u)

< F (b−)− F (a−) + 1
2
ε < mF (J) + ε.

Next suppose next that J = (a, b]. In this case take V = (a, w). Then
mF (J) = F (b+)− F (a+) and

mF (V ) = F (w−)− F (a+) ≤ F (w)− F (a+)

< F (b+)− F (a+) + 1
2
ε < mF (J) + ε.

Finally suppose next that J = [a, b]. In this case take V = (u,w). Then
mF (J) = F (b+)− F (a−) and

mF (V ) = F (w−)− F (u+) ≤ F (w)− F (u)

< F (b+)− F (a−) + ε = mF (J) + ε.

We have now verified the existence of the open set V with the required
properties in all cases.

Lemma 10.9 Let F :R→ R be a non-decreasing function of a real-variable.
Let J be a bounded interval or singleton set in the real line, and let a =
inf J and b = sup J . Then, given any positive real number ε, there exists a
closed interval K such that mF (K) > mF (J) + ε, where mF (J) and mF (K)
denote the Stieltjes content of the sets J and K respectively with respect to
the function F .

Proof The endpoints a and b of the interval J satisfy a ≤ b, and either J is a
singleton set or else J coincides with exactly one of the intervals (a, b), [a, b),
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(a, b] and [a, b]. And the Stieltjes measures of these intervals are defined so
that

mF ((a, b) = F (b−)− F (a+), mF ([a, b) = F (b−)− F (a−),

mF ((a, b] = F (b+)− F (a+), mF ([a, b] = F (b+)− F (a−).

Also the definitions of F (a+) and F (b−) ensure that there exist real numbers
u and v satisfying a < u < v < b for which F (u) < F (a+) + 1

2
ε and F (w) >

F (b−)− 1
2
ε.

In the case where J is a singleton set or a closed interval we can take
K = J .

Suppose next that J = (a, b]. In this case take K = [u, b]. Then mF (J) =
F (b+)− F (a+) and

mF (K) = F (b+)− F (u−) ≥ F (b+)− F (u)

> F (b+)− F (a+)− 1
2
ε > mF (J)− ε.

Next suppose next that J = [a, b). In this case take K = [a, w]. Then
mF (J) = F (b−)− F (a−) and

mF (K) = F (w+)− F (a−) ≥ F (w)− F (a−)

> F (b−)− F (a−)− 1
2
ε > mF (J)− ε.

Finally suppose next that J = (a, b). In this case take V = [u,w]. Then
mF (J) = F (b−)− F (a+) and

mF (K) = F (w+)− F (u−) ≥ F (w)− F (u)

> F (b−)− F (a+)− ε = mF (J)− ε.

We have now verified the existence of the open set V with the required
properties in all cases.

Proposition 10.10 Let F :R → R be a non-decreasing function of a real-
variable and, for any singleton set or bounded interval K, let mF (K) denote
the Stieltjes content of K with respect to the function F . Let I be a bounded
interval or singleton set in the real line R, and let C be a countable collection
of subsets of R each of which is a bounded interval or singleton set. Suppose
that I ⊂

⋃
B∈C J . Then mF (I) ≤

∑
B∈C

mF (J).

Proof There is nothing to prove if
∑
J∈C

m(B) = +∞. We may therefore

restrict our attention to the case where
∑
J∈C

m(B) < +∞. Moreover the
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result is an immediate consequence of Proposition 10.5 if the collection C is
finite. It therefore only remains to prove the result in the case where the
collection C is infinite, but countable. In that case there exists an infinite
sequence J1, J2, J3, . . . of sets, each of which is a bounded interval or singleton
set, with the property that each set in the collection C occurs exactly once
in the sequence. Let some positive real number ε be given. It follows from
Lemma 10.9 that there exists a closed interval or singleton set K such that
K ⊂ I and mF (K) ≥ mF (I) − ε. Also, for each k ∈ N, it follows from
Lemma 10.7 and Lemma 10.8 that there exists a bounded open interval Vk

such that Jk ⊂ Vk and mF (Vk) < mF (Jk) + 2−kε. Then K ⊂
+∞⋃
k=1

Vk, and

thus {V1, V2, V3, . . .} is a collection of open sets in the real line R which
covers the closed bounded set K. It follows from the compactness of K
that there exists a finite collection k1, k2, . . . , ks of positive integers such that
K ⊂ Vk1 ∪ Vk2 ∪ · · · ∪ Vks . It then follows from Proposition 10.5 that

mF (K) ≤ mF (Vk1) +mF (Vk2) + · · ·+mF (Vks).

Now
1

2k1
+

1

2k2
+ · · ·+ 1

2ks
≤

+∞∑
k=1

1

2k
= 1,

and therefore

mF (K) ≤ mF (Vk1) +mF (Vk2) + · · ·+mF (Vks)

≤ mF (Jk1) +mF (Jk2) + · · ·+mF (Jks) + ε

≤
+∞∑
k=1

mF (Jk) + ε.

Also mF (A) < mF (K) + ε. It follows that

mF (I) ≤
+∞∑
k=1

mF (Jk) + 2ε.

Moreover this inequality holds no matter how small the value of the positive
real number ε. It follows that

mF (I) ≤
+∞∑
k=1

mF (Jk),

as required.
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10.2 Lebesgue-Stieltjes Outer Measure

Let J be the semiring of subsets of the real line consisting of the empty set
together with all singleton sets and bounded intervals contained in the set R
of real numbers. Also let the empty set be assigned Stieltjes content equal to
zero, so thatmF (∅) = 0. Then Stieltjes measure determines a finitely additive
content function mF :J → [0,+∞) on the semiring J (see Proposition 10.4).
The result of (f) Moreover this content function is countably subadditive.
(Proposition 10.10).

We say that a collection C of subsets of the real line R covers a subset E
of R if E ⊂

⋃
J∈C J , (where

⋃
J∈C J denotes the union of all the sets belonging

to the collection C). Given any subset E of R, we shall denote by CCI(E) the
set of all countable collections, made up of bounded intervals and singleton
sets, that cover the set E.

Definition Let F :R → R be a non-decreasing function of a real-variable
and, for any singleton set or bounded interval K, let mF (K) denote the
Stieltjes content of K with respect to the function F . Let E be a subset
of R. We define the Lebesgue-Stieltjes outer measure µ∗F (E) of E to be
the infimum, or greatest lower bound, of the quantities

∑
J∈C

mF (J), where

this infimum is taken over all countable collections C, made up of bounded
intervals and singleton sets, that cover the set E. Thus

µ∗F (E) = inf

{∑
J∈C

mF (J) : C ∈ CCI(E)

}
.

Let F :R→ R be a non-decreasing function of a real-variable and, for any
singleton set or bounded interval J , let mF (J) denote the Stieltjes content
of J with respect to the function F . The Lebesgue-Stieltjes outer measure
µ∗F (E) of a subset E of the real line R is then the greatest extended real
number l with the property that l ≤

∑
J∈C

mF (J) for any countable collection C,

made up of bounded intervals and singleton sets, that covers the set E. In
particular, µ∗F (E) = +∞ if and only if

∑
J∈C

mF (J) = +∞ for every countable

collection C, made up of bounded intervals and singleton sets, that covers
the set E.

Note that µ∗F (E) ≥ 0 for all subsets E of R.

Lemma 10.11 Let F :R→ R be a non-decreasing function of a real-variable
and, for any singleton set or bounded interval K, let mF (K) denote the
Stieltjes content of K with respect to the function F . Let E be a bounded
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interval or singleton set in R. Then µ∗F (E) = mF (E), where mF (E) is the
content of the set E.

Proof It follows from Proposition 10.10 that mF (E) ≤
∑
J∈C

mF (J) for any

countable collection, made up of bounded intervals and singleton sets, that
covers the set E. Therefore mF (E) ≤ µ∗F (E). But the collection {E} made
up of the single set E is itself a countable collection of bounded intervals
or singleton sets covering E, and therefore µ∗F (E) ≤ mF (E). It follows that
µ∗F (E) = mF (E), as required.

Lemma 10.12 Let F :R→ R be a non-decreasing function of a real-variable
and, for any singleton set or bounded interval K, let mF (K) denote the
Stieltjes content of K with respect to the function F . Let E and G be subsets
of R. Suppose that E ⊂ F . Then µ∗F (E) ≤ µ∗F (G).

Proof Any countable collection, made up of bounded intervals and singleton
sets, that covers the set G will also cover the set E, and therefore CCI(G) ⊂
CCI(E). It follows that

µ∗F (G) = inf

{∑
J∈C

mF (J) : C ∈ CCI(G)

}

≥ inf

{∑
J∈C

mF (J) : C ∈ CCI(E)

}
= µ∗F (E),

as required.

Proposition 10.13 Let F :R → R be a non-decreasing function of a real-
variable and, for any singleton set or bounded interval K, let mF (K) denote
the Stieltjes content of K with respect to the function F . Let E be a countable
collection of subsets of R. Then

µ∗F

(⋃
E∈E

E
)
≤
∑
E∈E

µ∗F (E).

Proof Let K = N in the case where the countable collection E is infinite,
and let K = {1, 2, . . . ,m} in the case where the collection E is finite and
has m elements. Then there exists a bijective function ϕ:K → E . We define
Ek = ϕ(k) for all k ∈ K. Then E = {Ek : k ∈ K}, and any subset of R
belonging to the collection E is of the form Ek for exactly one element k of
the indexing set K.
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Let some positive real number ε be given. Then corresponding to each
element k of K there exists a countable collection Ck, made up of bounded
intervals and singleton sets, covering the set Ek for which∑

J∈Ck

mF (J) < µ∗F (Ek) +
ε

2k
.

Let C =
⋃

k∈K Ck. Then C is a collection, made up of bounded intervals and
singleton sets, that covers the union

⋃
E∈E E of all the sets in the collection E .

Moreover every bounded interval or singleton set belonging to the collection C
belongs to at least one of the collections Ck, and therefore belongs to exactly
one of the collections Dk, where Dk = Ck \

⋃
j<k Cj. It follows that

µ∗F

(⋃
E∈E

E
)
≤

∑
J∈C

mF (J) =
∑
k∈K

∑
J∈Dk

mF (J)

≤
∑
k∈K

∑
J∈Ck

mF (J) ≤
∑
k∈K

(
µ∗F (Ek) +

ε

2k

)
≤

∑
k∈K

µ∗F (Ek) + ε

Thus µ∗F
(⋃

E∈E E
)
≤
∑
k∈K

µ∗F (Ek) + ε, no matter how small the value of ε. It

follows that µ∗F
(⋃

E∈E E
)
≤
∑
k∈K

µ∗F (Ek), as required.

Proposition 10.14 Let F :R → R be a non-decreasing function of a real-
variable and, for any singleton set or bounded interval K, let mF (K) denote
the Stieltjes content of K with respect to the function F . Let J be a bounded
interval or singleton set in R. Then

µ∗F (A) = µ∗F (A ∩ J) + µ∗F (A \ J)

for all subsets A of R.

Proof First we deal with the case when µ∗F (A) = +∞, and this case either
µ∗F (A∩J) = +∞ or else µ∗F (A\J) = +∞ because otherwise the subadditivity
of Lebesgue-Stieltjes outer measure (Proposition 10.13) would ensure that
µ∗F (A), being non-negative and less than the sum of two finite quantities,
would itself be a finite quantity. The stated result is thus valid in cases
where µ∗F (A) = +∞.

Now suppose that µ∗F (A) < +∞. Let some positive real number ε be
given. It then follows from the definition of Lebesgue-Stieltjes outer measure
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that there exists a collection (Ci : i ∈ I) of sets, made up of bounded intervals
and singleton sets, which is indexed by a countable set I, and for which∑

i∈I

mF (Ci) < µ∗F (A) + ε.

Then, for each i ∈ I, Proposition 7.4 guarantees the existence of a finite list
Di,1, Di,2, . . . Di,q(i) of sets, made up of bounded intervals and singleton sets,
satisfying the following conditions:

• the sets Di,1, Di,2, . . . Di,q(i) are pairwise disjoint;

• Ci is the union of all the sets Di,k for which 1 ≤ k ≤ q(i);

• Ci ∩ J is the union of those sets Di,k with 1 ≤ k ≤ q(i) for which
Di,k ⊂ Ci ∩ J .

For each i ∈ I, let L(i) denote the set of integers between 1 and q(i) for
which Di,k 6⊂ Ci ∩ J . and let I0 denote the subset of I consisting of those
i ∈ I for which L(i) is non-empty. Then

Ci \ J ⊂
⋃

k∈L(i)
Di,k

for all i ∈ I0, and

A \ J ⊂
⋃

i∈I0
(Ci \ J),

and therefore
A \ J ⊂

⋃
i∈I0

⋃
k∈L(i)

Di,k

It then follows from the definition of Lebesgue-Stieltjes outer measure that

µ∗F (A \ J) ≤
∑
i∈I0

∑
k∈L(i)

mF (Di,k),

where mF (Di,k) denotes the content of the set Di,k for all i ∈ I and for all
integers k in the range 1 ≤ k ≤ q(i). But, for each i ∈ I0, the content mF (Ci)
of the set Ci is equal to the sum of the contents mF (Di,k) of the sets Di,k for
all integer values of k satisfying 1 ≤ k ≤ q(i) (see Proposition 7.3), whilst
the content mF (Ci ∩ J) of the set Ci ∩ J is equal to the sum of the contents
mF (Di,k) of those sets Di,k with 1 ≤ k ≤ q(i) for which Di,k ⊂ Ci ∩ J . It
follows that, for all i ∈ I0,∑

k∈L(i)

mF (Di,k) = mF (Ci)−mF (Ci ∩ J).
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Also mF (Ci) = mF (Ci ∩ J) for all i ∈ I \ I0. It follows that

µ∗F (A \ J) ≤
∑
i∈I0

∑
k∈L(i)

mF (Di,k)

=
∑
i∈I0

(mF (Ci)−mF (Ci ∩ J))

=
∑
i∈I

(mF (Ci)−mF (Ci ∩ J)).

The definition of definition of Lebesgue-Stieltjes outer measure also ensures
that

µ∗F (A ∩ J) ≤
∑
i∈I

mF (Ci ∩ J).

Adding these two inequalities, we find that

µ∗F (A ∩ J) + µ∗F (A \ J) ≤
∑
i∈I

µ(Ci) < µ∗F (A) + ε.

We have now shown that

µ∗F (A ∩ J) + µ∗F (A \ J) < µ∗F (A) + ε

for all strictly positive numbers ε. It follows that

µ∗F (A ∩ J) + µ∗F (A \ J) ≤ µ∗F (A).

The reverse inequality

µ∗F (A) ≤ µ∗F (A ∩ J) + µ∗F (A \ J),

is a consequence of Proposition 10.13. It follows that

µ∗F (A) = µ∗F (A ∩ J) + µ∗F (A \ J),

as required.
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