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9 Modes of Convergence on Measure Spaces

9.1 Egorov’s Theorem

Proposition 9.1 Let (X,A, µ) be a measure space, and let E be a measur-
able subset of X, where µ(E) < +∞. Let f1, f2, f3, . . . be an infinite sequence
of measurable real-valued functions that converges on E to a measurable func-
tion f . Then, given any strictly positive real numbers ε and δ, there exists a
measurable subset F of E and a positive integer N such that µ(F ) < δ and
|fj(x)− f(x)| < ε whenever x ∈ E \ F and j ≥ N .

Proof Let strictly positive real numbers ε and δ be given and, for each
positive integer k, let

Ek =
+∞⋂
j=k

{x ∈ X : |fj(x)− f(x)| < ε}.

Let x ∈ E. Then lim
j→+∞

fj(x) = f(x), and therefore there exists some positive

integer k such that |fj(x)− f(x)| < ε whenever j ≥ k. But then x ∈ Ek. It

follows from this that E =
+∞⋃
k=1

Ek.

Now Ej ⊂ Ej+1 for all positive integers j. It follows from the countable
additivity of the measure µ that µ(E) = lim

k→+∞
µ(Ek) (see Lemma 7.25). Now

µ(E) < +∞. It follows that there exists some positive integer N that is large
enough to ensure that µ(EN) > µ(E)− δ. Let F = E \ EN . Then µ(F ) < δ
and |f(x)− fj(x)| < ε whenever x ∈ E \ F and j ≥ N , as required.

Let X be a set, and let E be a subset of X. Let f1, f2, f3, . . . be an infinite
sequence of real-valued functions on X, and let f be a real-valued function
on X. The sequence f1, f2, f3, . . . is said to converge uniformly on E to the
limit function f if, given any strictly positive real number ε, there exists
some positive integer N (independent of the choice of x in the set E) such
that |fj(x)− f(x)| < ε whenever x ∈ E and j ≥ N .

Sequences of functions that converge pointwise do not necessarily con-
verge uniformly. An infinite sequence f1, f2, f3, . . . of real-valued functions
on the set X is said to converge pointwise to the real-valued function f on
a subset E of X if, given any strictly positive real number ε, and given any
point x of E, there exists some positive integer N(x) (in general dependent
on the choice of both ε and x, such set E) such that |fj(x) − f(x)| < ε
whenever j ≥ N(x).
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Now let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X, and let f be a measurable
real-valued function on f . If there exists a subset F of X satisfying µ(F ) = 0,
and if the infinite sequence f1, f2, f3, . . . converges pointwise to f on the
complement X \ F of F in X, then the sequence f1, f2, f3, . . . is said to
converge pointwise almost everywhere on X.

Theorem 9.2 (Egorov’s Theorem) Let (X,A, µ) be a measure space, and
let E be a measurable subset of X, where µ(E) < +∞. Let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functions that converges pointwise
almost everywhere on E to a measurable function f . Then, given any strictly
positive real number δ, there exists a subset F of E such that µ(F ) < δ and
the sequence f1, f2, f3, . . . of real-valued functions converges uniformly to the
limit function f on E \ F .

Proof If the infinite sequence f1, f2, f3, . . . does not converge to f throughout
the set E, then there exists some subset E0 of E such that µ(E \ E0) = 0
and the sequence f1, f2, f3, . . . converges to the limit function f at all points
of E0, because the sequence f1, f2, f3, . . . does at least converge to f almost
everywhere on E. If then, for a given strictly positive real number δ, we
show the existence of a subset F0 of E0 such that µ(F0) < δ and the sequence
f1, f2, f3, . . . converges uniformly to f on E0 \ F0, and if we take F = F0 ∪
(E \E0), then µ(F ) < δ and the sequence f1, f2, f3, . . . of functions converges
uniformly to the limit function f on E \ F . Thus we may assume, without
loss of generality, that the sequence of functions f1, f2, f3, . . . converges to
the limit function throughout the set E.

Thus suppose that the sequence f1, f2, f3, . . . converges pointwise to the
limit function f throughout E, and let some strictly positive real number δ
be given. It follows on applying Proposition 9.1, that there exist positive
integers N1, N2, N3, . . . and measurable subsets F1, F2, F3. . . . of E such that
µ(Fk) < 2−kδ and |fj(x) − f(x)| < 1/k whenever x ∈ E \ Fk and j ≥ Nk.

Let F =
+∞⋃
k=1

Fk. Then

µ(F ) ≤
+∞∑
k=1

µ(Fk) < δ.

The required result is thus established once we prove that the infinite se-
quence f1, f2, f3, . . . of measurable functions converges uniformly to the limit
function f on the set E \ F .

Let some strictly positive real number ε be given. Then some positive
integer k can be chosen large enough to ensure that 1/k < ε. Let N = Nk.
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Now E \ F ⊂ E \ Fk. It follows that |fj(x)− f(x)| < ε whenever x ∈ E \ F
and j ≥ N . Thus the functions f1, f2, f3, . . . do indeed converge uniformly
to the limit function f on E \ F . The result follows.

9.2 Almost Uniform Convergence

Definition Let (X,A, µ) be a measure space, let E be a measurable subset of
E, let f1, f2, f3, . . . be an infinite sequence of measurable real-valued functions
on X, and let f be a measurable real-valued function on X. The infinite
sequence f1, f2, f3, . . . is said to converge almost uniformly on E if, given any
positive real number δ, there exists a measurable subset F of E such that
µ(F ) < δ and the infinite sequence f1, f2, f3, . . . converges uniformly to the
limit function f on E \ F .

Egorov’s Theorem (Theorem 9.2) ensures that if (X,A, µ) is a measure
space, and if E is a measurable subset of X whose measure µ(E) is finite,
then any infinite sequence of measurable real-valued functions that converges
pointwise almost everywhere on E also converges almost uniformly on E.

Example For each positive integer j, let fj:R→ R be defined so that

fj(x) =

{
1 if j − 1 < x ≤ j;
0 otherwise.

Then the infinite sequence f1, f2, f3, . . . converges pointwise to the zero func-
tion throughout the real line R but does not converge almost uniformly with
respect to Lebesgue measure on the real line.

Lemma 9.3 Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X, and let f be a measurable
real-valued function on X. Suppose that the infinite sequence f1, f2, f3, . . .
of functions converges almost uniformly to the limit function f . Then the
sequence f1, f2, f3, . . . converges to f pointwise almost everywhere.

Proof Let F be the subset of X consisting of those points x for which the
infinite sequence f1(x), f2(x), f3(x), . . . does not converge to f(x). We must
show that µ(F ) = 0.

Now the infinite sequence f1, f2, f3, . . . converges almost uniformly on
X to the limit function f , and therefore, given any strictly positive real
number δ, there exists some measurable set Fδ such that µ(Fδ) < δ and
lim

j→+∞
fj(x) = f(x) for all x ∈ X \ Fδ. But then F ⊂ Fδ, and consequently

µ(F ) ≤ µ(Fδ) < δ. We conclude therefore that µ(F ) < δ for all positive real
numbers δ. It follows that µ(F ) = 0, as required.
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9.3 Convergence in Measure

Definition Let (X,A, µ) be a measure space, and let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functgions on X, and let f be
a measurable real-valued function on X. The sequence f1, f2, f3, . . . is said
to converge in measure to the function f if, given any strictly positive real
numbers ε and δ, there exists some positive integer N such that

µ ({x ∈ X : |fj(x)− f(x)| ≥ ε}) < δ

whenever j ≥ N .

The following result follows immediately from the relevant definitions.

Lemma 9.4 Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X, and let f be a measurable
real-valued function on X. Then the infinite sequence f1, f2, f3, . . . converges
in measure to the limit function f if and only if, given any strictly positive
real number ε,

lim
j→+∞

µ ({x ∈ X : |fj(x)− f(x)| ≥ ε}) = 0.

Proposition 9.5 Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functions on X, and let f and f̃
be a measurable real-valued functions on X. Suppose that the infinite sequence
f1, f2, f3, . . . converges in measure both to the the function fs and also to the
function f̃ . Then the functions f and f̃ are equal almost everywhere.

Proof For each positive integer j and positive real number ε, let

Ej,ε = {x ∈ X : |fj(x)− f(x)| ≥ ε},

Ẽj,ε = {x ∈ X : |fj(x)− f̃(x)| ≥ ε}.

Then
lim

j→+∞
µ(Ej,ε)→ 0 and lim

j→+∞
µ(Ẽj,ε)→ 0.

Now if x is a point of X, j is a positive integer, ε is a positive real number, and
if |f(x)− f̃(x)| ≥ 2ε, then either |fj(x)−f(x)| ≥ ε or else |fj(x)− f̃(x)| ≥ ε.
It follows that

{x ∈ X : |f(x)− f̃(x)| ≥ 2ε} ⊂ Ej,ε ∪ Ẽj,ε
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for all positive integers j, and therefore

µ
(
{x ∈ X : |f(x)− f̃(x)| ≥ 2ε}

)
≤ µ(Ej,ε) + µ(Ẽj,ε)

for all positive integers j. Taking limits as j → +∞, we conclude that

µ
(
{x ∈ X : |f(x)− f̃(x)| ≥ 2ε}

)
= 0

for all positive real numbers ε. Now

{x ∈ X : f(x) 6= f̃(x)} =
+∞⋃
k=1

{x ∈ X : |f(x)− f̃(x)| ≥ 2/k}.

It follows that {x ∈ X : f(x) 6= f̃(x)} is expressible as a countable union
of subsets of X that are each of measure zero, and thus must itself be of
measure zero. The result follows.

Proposition 9.6 Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functions on X, and let f be a
measurable real-valued function on X. Suppose that the infinite sequence
f1, f2, f3, . . . converges almost uniformly on X to the limit function f . Then
the sequence f1, f2, f3, . . . converges in measure on X to the limit function f .

Proof Let strictly positive real numbers ε and δ be given. There then exists
a measurable subset F of X such that µ(F ) < δ and f1, f2, f3, . . . converges
uniformly to f on X \ F . There then exists some positive integer N such
that |fj(x)− f(x)| < ε whenever x ∈ X \ F and j ≥ N . But then

{x ∈ X : |fj(x)− f(x)| ≥ ε} ⊂ F

whenever j ≥ N . But µ(F ) < δ. It follows that

µ ({x ∈ X : |fj(x)− f(x)| ≥ ε}) < δ

whenever j ≥ N . Thus f1, f2, f3, . . . converges in measure to the limit func-
tion f , as required.

9.4 Sequences of Functions that are Cauchy in Mea-
sure

Definition Let (X,A, µ) be a measure space, and let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functions on X. The sequence
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f1, f2, f3, . . . is said to to be Cauchy in measure if, given any positive real
numbers ε and δ, there exists some positive integer N such that

µ ({x ∈ X : |fj(x)− fk(x)| ≥ ε}) < δ

whenever j ≥ N and k ≥ N .

Lemma 9.7 Let (X,A, µ) be a measure space, and let f1, f2, f3, . . . be a se-
quence of measurable real-valued functions on X that converges in measure
to some limit function. Then the infinite sequence f1, f2, f3, . . . of functions
is Cauchy in measure.

Proof For all positive integers j and k and positive real numbers ε, let

Ej,ε = {x ∈ X : |fj(x)− f(x)| ≥ ε}

and
Gj,k,ε = {x ∈ X : |fj(x)− fk(x)| ≥ ε}.

Let strictly positive real numbers ε and δ be given. Then there exists
some positive integer N such that µ(Ej, 1

2
ε) <

1
2
δ whenever j ≥ N , because

the sequence f1, f2, f3, . . . converges in measure to the function f . Now if
x ∈ X, if j and k are positive integers, and if |fj(x)− fk(x)| ≥ ε then either
|fj(x)− f(x)| ≥ 1

2
ε or else |fk(x)− f(x)| ≥ 1

2
ε. It follows that

Gj,k,ε ⊂ Ej, 1
2
ε ∪ Ek, 1

2
ε

for all positive integers j and k, and therefore

µ(Gj,k,ε) ≤ µ(Ej, 1
2
ε) + µ(Ek, 1

2
ε) <

1
2
δ + 1

2
δ = δ

whenever j ≥ N and k ≥ N . The result follows.

Proposition 9.8 Let (X,A, µ) be a measure space, and let f1, f2, f3, . . . be
a sequence of measurable real-valued functions on X that is Cauchy in mea-
sure. Then the sequence f1, f2, f3, . . . has a subsequence that converges almost
uniformly on X.

Proof The sequence f1, f2, f3, . . . is Cauchy in measure, and therefore there
exists an infinite sequence j1, j2, j3, . . . of positive integers, where

j1 < j2 < j3 < · · · ,
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such that, for each positive integer k,

µ

({
x ∈ X : |fr(x)− fs(x)| ≥ 1

2k

})
<

1

2k

whenever r ≥ jk and s ≥ jk. It then follows in particular that µ(Ek) < 2−k

for all positive integers k, where

Ek =

{
x ∈ X : |fjk(x)− fjk+1

(x)| ≥ 1

2k

}
.

Let Fk =
+∞⋃
p=k

Ep for all positive integers k. Then

µ(Fk) ≤
+∞∑
p=k

µ(Ep) ≤
+∞∑
p=k

1

2p
=

1

2k−1
.

for all positive integers k.
Let k be a positive integer, and let x ∈ X \ Fk. Then x 6∈ Ep for all

integers p satisfying p ≥ k, and therefore |fjp(x) − fjp+1(x)| < 2−p for all
p ≥ k. Thus if p and q are integers satisfying k ≤ p < q then

|fjp(x)− fjq(x)| <
q−1∑
r=p

1

2r
<

1

2p−1
.

It follows that, given any positive real number ε, there exists some positive
integer M such that |fjp(x) − fjq(x)| < ε for all integers p and q satisfying
M ≤ p < q. Thus f1(x), f2(x), f3(x), . . . is a Cauchy sequence of real num-
bers. The completeness of the real number system ensures that every Cauchy
sequence of real numbers is convergent. It follows that f(x) is well-defined
for all x ∈ X \ Fk, where f(x) = lim

p→+∞
fjp(x).

Now we showed that |fjp(x)−fjq(x)| < 21−p whenever x 6∈ Fk and k ≤ p <
q. Taking limits as q → +∞, it follows that |fjp(x)− f(x)| ≤ 21−p whenever
p ≥ k. Therefore, given any positive real number ε, there exists a positive
integer Mk, independent of the choice of x, such that |fjp(x) − f(x)| < ε
for all x ∈ X \ Fk and for all integers p satisfying p ≥ Mk. The sequence
fj1 , fj2 , fj3 , . . . of real-valued functions therefore converges uniformly onX\Fk
to the limit function f .

Now f(x) is well-defined for all positive integers k and for all points x
of X \ Fk. It is therefore well-defined for all points x of X \ F∞, where

F∞ =
+∞⋂
k=1

Fk. Now F∞ is a measurable set, and µ(F∞) ≤ µ(Fk) ≤ 21−k for

95



all positive integers. It follows that µ(F∞) = 0. Thus the limit function f is
defined almost everywhere on X. Also, given any positive real number δ, the
positive integer k can be chosen large enough to ensure that µ(Fk) < δ. The
sequence fj1 , fj2 , fj3 , . . . then converges uniformly to the limit function f on
X \Fk. The sequence fj1 , fj2 , fj3 , . . . is therefore almost uniformly convergent
on X. Moreover it is a subsequence of the given sequence f1, f2, f3, . . .. The
result follows.

Proposition 9.9 Let (X,A, µ) be a measure space, and let f1, f2, f3, . . . be a
sequence of measurable real-valued functions on X that is Cauchy in measure.
Then the sequence f1, f2, f3, . . . converges in measure to some measurable
real-valued function f on X.

Proof The sequence f1, f2, f3, . . . of functions is Cauchy in measure and
therefore has a subsequence fj1 , fj2 , fj3 , . . . that converges almost uniformly
on X to some measurable real-valued function f (Proposition 9.8). We show
that the sequence f1, f2, f3, . . . converges in measure to this limit function f .

Let strictly positive real numbers ε and δ be given. The subsequence
fj1 , fj2 , fj3 , . . . converges in measure on X to the limit function f , because
it converges almost uniformly to f on X (Proposition 9.6). Therefore there
exists some positive integer M such that

µ
(
{x ∈ X : |fjk(x)− f(x)| ≥ 1

2
ε}
)
< 1

2
δ

whenever k ≥M . Also there exists some positive integer N such that

µ
(
{x ∈ X : |fp(x)− fq(x)| ≥ 1

2
ε}
)
< 1

2
δ

whenever p ≥ N and q ≥ N , because the infinite sequence f1, f2, f3, . . . is
Cauchy in measure on X. Choose a positive integer k large enough to ensure
that k ≥M and jk ≥ N , and let g = fjk . Also let

Fj = {x ∈ X : |fj(x)− g(x)| ≥ 1
2
ε}

for all positive integers j, and let

G = {x ∈ X : |g(x)− f(x)| ≥ 1
2
ε}.

Then µ(Fj) <
1
2
δ whenever j ≥ N . Also µ(G) < 1

2
δ. Now if x ∈ X, and if

|fj(x)− g(x)| < 1
2
ε and |g(x)− f(x)| < 1

2
ε then

|fj(x)− f(x)| ≤ |fj(x)− g(x)|+ |g(x)− f(x)| < ε.
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Thus
{x ∈ X : |fj(x)− f(x)| ≥ ε} ⊂ Fj ∪G

for all positive integers j. It follows that if j ≥ N then

µ ({x ∈ X : |fj(x)− f(x)| ≥ ε}) ≤ µ(Fj ∪G) ≤ µ(Fj) + µ(G) < δ.

Thus the infinite sequence f1, f2, f3, . . . of measurable real-valued functions
converges in measure to the limit function f , as required.

9.5 Convergence in Mean

Definition Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X, where

∫
X
|fj| dµ < +∞

for all positive integers j, and let f be a measurable real-valued function on
X. We say that the infinite sequence f1, f2, f3, . . . of functions converges in
mean to the function f if, given any strictly positive real number ε, there
exists some positive integer N such that∫

X

|fj − f | dµ < ε

whenever j ≥ N .

Definition Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite
sequence of measurable real-valued functions on X, where

∫
X
|fj| dµ < +∞

for all positive integers j. We say that the infinite sequence f1, f2, f3, . . .
of functions is Cauchy in mean if given any strictly positive real number ε,
there exists some positive integer N such that∫

X

|fj − fk| dµ < ε

whenever j ≥ N and k ≥ N .

Proposition 9.10 Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functions on X, where

∫
X
|fj| dµ <

+∞ for all positive integers j, and let f be a measurable real-valued func-
tion on X. Suppose that the infinite sequence f1, f2, f3, . . . of functions on
X is Cauchy in mean and also converges almost everywhere on X to the
limit function f . Then the infinite sequence f1, f2, f3, . . . of functions on X
converges in mean to the function f .
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Proof Let some strictly positive real number ε be given, and let ε0 satisfy
0 < ε0 < ε. The infinite sequence f1, f2, f3, . . . of functions is Cauchy in mean,
hence there exists some positive integer N such that

∫
X
|fj − fk| dµ < ε0

whenever j ≥ N and k ≥ N . Taking limits as k → +∞, and applying
Fatou’s Lemma (Lemma 8.25), we find that∫

X

|fj − f | dµ =

∫
X

(
lim

k→+∞
|fj − fk|

)
dµ

≤ lim inf
k→+∞

∫
X

|fj − fk| dµ ≤ ε0 < ε

whenever j ≥ N , Therefore lim
j→+∞

∫
X
|fj − f | dµ = 0, and thus fj converges

to f in mean, as required.

Lemma 9.11 Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an infi-
nite sequence of measurable real-valued functions on X, where

∫
X
|fj| dµ <

+∞ for all positive integers j, and let f be a measurable real-valued function
on X. Suppose that the infinite sequence f1, f2, f3, . . . of functions on X is
converges in mean to the limit function f . Then this infinite sequence of
functions also converges in measure to the function f .

Proof Let
Ej,ε = {x ∈ X : |fj(x)− f(x)| ≥ ε}

and let χj,ε denote the characteristic function of the set Ej,ε for all positive
integers j and for all positive real numbers ε. Then |fj(x)− f(x)| ≥ εχj,ε(x)
for all x ∈ X, positive integers j and positive real numbers ε, and therefore∫

X

|fj − f | dx ≥ εµ(Ej,ε)

for all positive integers j and for all positive real number ε.
Now let positive real numbers ε and δ be given. The sequence f1, f2, f3, . . .

is Cauchy in mean. It follows that there exists some positive integer N such
that

∫
X
|fj−f | dµ < εδ whenever j ≥ N . Then µ(Ej,ε) < δ whenever j ≥ N .

The result follows.

Lemma 9.12 Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an infi-
nite sequence of measurable real-valued functions on X, where

∫
X
|fj| dµ <

+∞ for all positive integers j. Suppose that the infinite sequence f1, f2, f3, . . .
of functions on X is Cauchy in mean. Then this infinite sequence of functions
is also Cauchy in measure.
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Proof Let
Ej,k,ε = {x ∈ X : |fj(x)− fk(x)| ≥ ε}

and let χj,k,ε denote the characteristic function of the set Ej,k,ε for all positive
integers j and k and for all positive real numbers ε. Then |fj(x)− fk(x)| ≥
εχj,k,ε(x) for all x ∈ X, positive integers j and k and positive real numbers ε,
and therefore ∫

X

|fj − fk| dx ≥ εµ(Ej,k,ε)

for all positive integers j and k and for all positive real number ε.
Now let positive real numbers ε and δ be given. The sequence f1, f2, f3, . . .

is Cauchy in mean. It follows that there exists some positive integer N such
that

∫
X
|fj − fk| dµ < εδ whenever j ≥ N and k ≥ N . Then µ(Ej,k,ε) < δ

whenever j ≥ N and k ≥ N . The result follows.

Proposition 9.13 Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an
infinite sequence of measurable real-valued functions on X, where

∫
X
|fj| dµ <

+∞ for all positive integers j. Suppose that the infinite sequence f1, f2, f3, . . .
of functions on X is Cauchy in mean. Then this infinite sequence of func-
tions converges in mean to some measurable real-valued function f for which∫
X
|f | dµ < +∞.

Proof The infinite sequence f1, f2, f3, . . . of functions is Cauchy in mean. It
is therefore Cauchy in measure (Lemma 9.12). It therefore has a subsequence
fj1 , fj2 , fj3 , . . . that converges almost uniformly on X to some measurable
real-valued function f on X (Proposition 9.8). This subsequence converges
pointwise almost everywhere on X to the limit function f , (Lemma 9.3), and
therefore converges in mean to the function f (Proposition 9.10). A positive
integer k can then be chosen large enough to ensure that

∫
X
|fjk − f | dµ ≤ 1.

It then follows that∫
X

|f | dµ ≤
∫
X

|fjk | dµ+

∫
X

|fjk − f | dµ ≤
∫
X

|fjk | dµ+ 1 < +∞.

To complete the proof we show that the original sequence f1, f2, f3, . . . con-
verges in mean to the limit function f .

Let some strictly positive real number ε be given. Then there exist posi-
tive integers M and N that are large enough to ensure that

∫
X
|fjk − f | dµ <

1
2
ε whenever k ≥ M and

∫
X
|fs − ft| dµ < 1

2
ε whenever s ≥ N and t ≥ N .

Let some positive integer k be chosen large enough to ensure that k ≥ M
and jk ≥ N . Then∫

X

|fn − f | dµ ≤
∫
X

|fn − fjk | dµ+

∫
X

|fjk − f | dµ < ε

whenever n ≥ N . Thus lim
n→+∞

∫
X
|fn − f | dµ = 0. The result follows.
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9.6 Hölder’s Inequality

Lemma 9.14 (Young’s Inequality) Let a and b be non-negative real num-

bers, and let p and q be real numbers for which p > 1, q > and
1

p
+

1

q
= 1.

Then

ab ≤ ap

p
+
bq

q
.

Proof First we show that e(1−t)u+tv ≤ (1 − t)eu + tev for all real numbers
u, v and t satisfying 0 ≤ t ≤ 1. This is a consequence of the fact that
the derivative of the exponential function is increasing. The result clearly
holds when u = v, and moreover the form of the inequality is preserved on
swapping u and v and replacing t by 1− t. It therefore suffices to verify that
the above inequality holds in the case when u < v.

Suppose then that u < v, and let

f(t) = (1− t)eu + tev − e(1−t)u+tv.

for all real numbers t. Then f(0) = f(1) = 0 and

f ′(t) = ev − eu − (v − u)e(1−t)u+tv.

From this expression we see that f ′(t) is a decreasing function of t. It must
therefore be the case that f ′(0) > 0 and f ′(1) < 0. This is then a real
number t0 satisfying 0 < t0 < 1 for which f ′(t0) = 0. The function f is then
an increasing function of t on the interval [0, t0] and a decreasing function
of t on the interval [t0, 1]. But f(0) = f(1) = 0. It follows that f(t) > 0
whenever 0 < t < 1, and thus e(1−t)u+tv < (1− t)eu + tev for all real numbers
u, v and t satisfying u < v and 0 < t < 1. This completes the verification
that e(1−t)u+tv ≤ (1− t)eu + tev in all cases where u, v and t are real numbers
and 0 ≤ t ≤ 1.

Now let a and b be positive real numbers, and let p and q be real numbers
for which p > 1, q > 1 and p−1 + q−1 = 1. Let u = p log a, v = q log b and
t = 1/q. Then 1− t = 1/p, and therefore

e(1−t)u+tv = elog a+log b = elog aelog b = ab.

Also

(1− t)eu =
1

p
ep log a =

ap

p
and tev =

1

q
eq log b =

bq

q
.

The inequality previously established therefore ensures that

ab ≤ ap

p
+
bq

q
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for all positive real numbers a and b. This inequality also holds when a ≥ 0,
b ≥ 0 and either a = 0 or b = 0. The result follows.

Alternative Proof Let p and q be real numbers satisfying p > 1, q > 1
and p−1 + q−1 = 1. Then q − 1 = 1/(p − 1). It follows that if x and y are
positive real numbers then y = xp−1 if and only if x = yq−1. Let a and b be
positive real numbers. Then the rectangle in R2 with vertices (0, 0), (a, 0),
(a, b) and (0, b) is contained in the union of the regions A and B, where

A = {(x, y) ∈ R2 : 0 ≤ x ≤ a and 0 ≤ y ≤ xp−1},
B = {(x, y) ∈ R2 : 0 ≤ y ≤ b and 0 ≤ x ≤ yq−1}.

It follows that

ab ≤
∫ a

0

xp−1 dx+

∫ b

0

yq−1 dy =
ap

p
+
bq

q
,

as required.

Proposition 9.15 (Hölder’s Inequality) Let (X,A, µ) be a measure
space, let p and q be real numbers satisfying the conditions p > 1, q > 1
and p−1 + q−1 = 1, and let f and g be measurable real-valued functions on
X. Suppose that the functions |f |p and |g|q are integrable. Then the function
fg is integrable and∫

X

|fg| dµ ≤
(∫

X

|f |p dµ
) 1

p
(∫

X

|g|q dµ
) 1

q

.

Proof Let

‖f‖p =

(∫
X

|f |p dµ
) 1

p

and ‖g‖q =

(∫
X

|g|q dµ
) 1

q

.

The identity ab ≤ p−1ap + q−1bq holds for all non-negative real numbers a
and b. (Lemma 9.14). Setting a = |f(x)|/‖f‖p and b = |g(x)|/‖g‖q, and
integrating over the space X we find that

1

‖f‖p ‖g‖q

∫
X

|fg| dµ ≤ 1

p ‖f‖pp

∫
X

|f |p dµ+
1

q ‖g‖qq

∫
X

|g|q dµ

=
1

p
+

1

q
= 1.

Thus
∫
X
|fg| dµ ≤ ‖f‖p ‖g‖q, as required.
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9.7 Minkowski’s Inequality

Proposition 9.16 (Minkowski’s Inequality) Let (X,A, µ) be a measure
space, let p be a real number satisfying the conditions p ≥ 1, and let f and
g be measurable real-valued functions on X. Suppose that the functions |f |p
and |g|p are integrable. Then the function |f + g|p is integrable and(∫

X

|f + g|p dµ
) 1

p

≤
(∫

X

|f |p dµ
) 1

p

+

(∫
X

|g|p dµ
) 1

p

.

Proof The result in the case p = 1 follows immediately on integrating the
inequality |f + g| ≤ |f |+ |g| over the measure space X. It remains therefore
to prove the result in the case p > 1. There then exists some positive real
number q, such that q > 1 and p−1 + q−1 = 1. Then 1/q = (p − 1)/p, and
thus p = (p− 1)q. Let

‖f‖p =

(∫
X

|f |p dµ
) 1

p

, ‖g‖p =

(∫
X

|g|p dµ
) 1

p

and

‖f + g‖p =

(∫
X

|f + g|p dµ
) 1

p

.

We may assume moreover that ‖f + g‖p > 0, since the required inequality
is trivially satisfied in cases where ‖f + g‖ = 0. Now, applying Hölder’s
Inequality (Proposition 9.15), we find that

‖f + g‖pp =

∫
X

|f + g|p dµ

≤
∫
X

|f + g|p−1(|f |+ |g|) dµ

≤
(∫

X

|f + g|(p−1)q dµ
) 1

q

(‖f‖p + ‖g‖p)

=

(∫
X

|f + g|p dµ
)1− 1

p

(‖f‖p + ‖g‖p)

= ‖f + g‖p−1p (‖f‖p + ‖g‖p)

Thus ‖f+g‖pp ≤ ‖f+g‖p−1p (‖f‖p+‖g‖p). Dividing both sides of the inequality
by |f + g|p−1p , we find that ‖f + g‖p ≤ ‖f‖p + ‖g‖p, as required.
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9.8 Convergence in Lp norm

Definition Let (X,A, µ) be a measure space, let p be a real number satisfy-
ing p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable real-valued
functions on X, where

∫
X
|fj|p dµ < +∞ for all positive integers j, and let f

be a measurable real-valued function on X. We say that the infinite sequence
f1, f2, f3, . . . of functions converges in Lp norm to the function f if, given any
strictly positive real number ε, there exists some positive integer N such that∫

X

|fj − f |p dµ < εp

whenever j ≥ N .

Given a measure space (X,A, µ), and given a real number p satisfying
p ≥ 1, it is convenient to define

‖f‖p =

(∫
X

|f |p dµ
) 1

p

for all measurable real-valued functions f on X for which
∫
X
|f |p dµ < +∞.

With this notation, we can say that if f1, f2, f3, . . . is an infinite sequence of
measurable real-valued functions on X, where

∫
X
|f |p dµ < +∞, and if f is

a measurable real-valued function on X, then the infinite sequence f1, f2, f3
of functions converges to the the limit function f in Lp norm if and only if
lim

j→+∞
‖fj − f‖p = 0.

Definition Let (X,A, µ) be a measure space, let p be a real number satisfy-
ing p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable real-valued
functions on X, where

∫
X
|fj|p dµ < +∞ for all positive integers j. We say

that the infinite sequence f1, f2, f3, . . . of functions is Cauchy in Lp norm if
given any strictly positive real number ε, there exists some positive integer N
such that ∫

X

|fj − fk|p dµ < εp

whenever j ≥ N and k ≥ N .

Let (X,A, µ) be a measure space, let p be a real number satisfying p ≥ 1,
let f1, f2, f3, . . . be an infinite sequence of measurable real-valued functions on
X, where

∫
X
|fj|p dµ < +∞ for all positive integers j. The infinite sequence

f1, f2, f3, . . . of functions on X is then Cauchy in Lp norm if, given any
positive real number ε, there exists some positive integer N such that ‖fj −
fk‖p < ε whenever j ≥ N and k ≥ N .
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An infinite sequence of measurable real-valued functions on a measure
space converges in L1 norm if and only if it converges in mean. Similarly an
infinite sequence of measurable real-valued functions on a measure space is
Cauchy in L1 norm if and only if it is Cauchy in mean. The following results,
and their proofs, accordingly generalize those previously stated and proved
for sequences of functions that converge in mean or are Cauchy in mean.

Proposition 9.17 Let (X,A, µ) be a measure space, let p be a real number
satisfying p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable real-
valued functions on X, where

∫
X
|fj|p dµ < +∞ for all positive integers j,

and let f be a measurable real-valued function on X. Suppose that the in-
finite sequence f1, f2, f3, . . . of functions on X is Cauchy in Lp norm and
also converges almost everywhere on X to the limit function f . Then the
infinite sequence f1, f2, f3, . . . of functions on X converges in Lp norm to the
function f .

Proof Let some strictly positive real number ε be given, and let ε0 satisfy
0 < ε0 < ε. The infinite sequence f1, f2, f3, . . . of functions is Cauchy in Lp

norm, hence there exists some positive integer N such that ‖fj − fk‖p < ε0
whenever j ≥ N and k ≥ N . Taking limits as k → +∞, and applying
Fatou’s Lemma (Lemma 8.25), we find that∫

X

|fj − f |p dµ =

∫
X

(
lim

k→+∞
|fj − fk|p

)
dµ

≤ lim inf
k→+∞

∫
X

|fj − fk|p dµ ≤ εp0 < εp

whenever j ≥ N , Therefore lim
j→+∞

‖fj − f‖p = 0, and thus fj converges to f

in Lp norm, as required.

Lemma 9.18 Let (X,A, µ) be a measure space, let p be a real number satis-
fying p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable real-valued
functions on X, where

∫
X
|fj|p dµ < +∞ for all positive integers j, and let

f be a measurable real-valued function on X. Suppose that the infinite se-
quence f1, f2, f3, . . . of functions on X is converges in Lp norm to the limit
function f . Then this infinite sequence of functions also converges in measure
to the function f .

Proof Let
Ej,ε = {x ∈ X : |fj(x)− f(x)| ≥ ε}
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and let χj,ε denote the characteristic function of the set Ej,ε for all positive
integers j and for all positive real numbers ε. Then |fj(x)−f(x)|p ≥ εpχj,ε(x)
for all x ∈ X, positive integers j and positive real numbers ε, and therefore∫

X

|fj − f |p dx ≥ εpµ(Ej,ε)

for all positive integers j and for all positive real number ε.
Now let positive real numbers ε and δ be given. The sequence f1, f2, f3, . . .

is Cauchy in Lp norm. It follows that there exists some positive integer N

such that ‖fj − f‖p < εδ
1
p whenever j ≥ N . Then µ(Ej,ε) < δ whenever

j ≥ N . The result follows.

Lemma 9.19 Let (X,A, µ) be a measure space, let p be a real number satis-
fying p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable real-valued
functions on X, where

∫
X
|fj|p dµ < +∞ for all positive integers j. Suppose

that the infinite sequence f1, f2, f3, . . . of functions on X is Cauchy in Lp

norm. Then this infinite sequence of functions is also Cauchy in measure.

Proof Let
Ej,k,ε = {x ∈ X : |fj(x)− fk(x)| ≥ ε}

and let χj,k,ε denote the characteristic function of the set Ej,k,ε for all positive
integers j and k and for all positive real numbers ε. Then |fj(x)− fk(x)|p ≥
εpχj,k,ε(x) for all x ∈ X, positive integers j and k and positive real numbers ε,
and therefore ∫

X

|fj − fk|p dx ≥ εpµ(Ej,k,ε)

for all positive integers j and k and for all positive real number ε.
Now let positive real numbers ε and δ be given. The sequence f1, f2, f3, . . .

is Cauchy in Lp norm. It follows that there exists some positive integer N

such that ‖fj − fk‖p < εδ
1
p whenever j ≥ N and k ≥ N . Then µ(Ej,k,ε) < δ

whenever j ≥ N and k ≥ N . The result follows.

Proposition 9.20 Let (X,A, µ) be a measure space, let p be a real number
satisfying p ≥ 1, let f1, f2, f3, . . . be an infinite sequence of measurable real-
valued functions on X, where

∫
X
|fj|p dµ < +∞ for all positive integers j.

Suppose that the infinite sequence f1, f2, f3, . . . of functions on X is Cauchy
in Lp norm. Then this infinite sequence of functions converges in Lp norm
to some measurable real-valued function f for which

∫
X
|f |p dµ < +∞.

105



Proof The infinite sequence f1, f2, f3, . . . of functions is Cauchy in Lp norm.
It is therefore Cauchy in measure (Lemma 9.19). It therefore has a subse-
quence fj1 , fj2 , fj3 , . . . that converges almost uniformly on X to some mea-
surable real-valued function f on X (Proposition 9.8). The subsequence
fj1 , fj2 , fj3 , . . . then converges pointwise almost everywhere on X to the limit
function f (Lemma 9.3), and therefore converges in Lp norm to the function f
(Proposition 9.17). A positive integer k can then be chosen large enough to
ensure that ‖fjk − f‖p ≤ 1. It then follows from Minkowski’s inequality
(Proposition 9.16) that(∫

X

|f |p dµ
) 1

p

≤ ‖fjk‖p + ‖fjk − f‖p ≤ ‖fjk‖p + 1 < +∞.

To complete the proof we show that the original sequence f1, f2, f3, . . . con-
verges in Lp norm to the limit function f .

Let some strictly positive real number ε be given. Then there exist posi-
tive integers M and N that are large enough to ensure that ‖fjk − f‖p < 1

2
ε

whenever k ≥M and ‖fs− ft‖p < 1
2
ε whenever s ≥ N and t ≥ N . Let some

positive integer k be chosen large enough to ensure that k ≥M and jk ≥ N .
Then

‖fn − f‖p ≤ ‖fn − fjk‖p + ‖fjk − f‖p < ε

whenever n ≥ N . Thus lim
n→+∞

‖fn − f‖p = 0. The result follows.

9.9 The Lp Spaces

Let (X,A, µ) be a measure space, let p be a real number satisfying p ≥ 1,
and let Lp(X,µ) denote the collection consisting of all measurable real-valued
functions f on X with the property that

∫
X
|f |p dµ < +∞. It follows from

Minkowski’s Inequality (Proposition 9.16) that the sum of two real-valued
functions belonging to Lp(X,µ) itself belongs to Lp(X,µ), and thus Lp(X,µ)
is a real vector space.

Let

‖f‖p =

(∫
X

|f |p dµ
) 1

p

for all f ∈ Lp(X,µ). Then ‖f‖p ≥ 0 and ‖cf‖p = |c| ‖f‖p for all f ∈ Lp(X,µ)
and for all real numbers c. Also Minkowski’s Inequality (Proposition 9.16)
ensures that ‖f + g‖p ≤ ‖f‖p + ‖g‖p for all f, g ∈ Lp(X,µ).

However it is not the case that ‖f‖p = 0 implies that f = 0. In fact
‖f‖p = 0 if and only if the set {x ∈ X : f(x) 6= 0} has measure zero, so that
the function f is equal to zero almost everywhere on X.
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Now it is an easy exercise to verify that the relation of being equal almost
everywhere is an equivalence relation on the set of functions that belong to
Lp(X,µ). This relation therefore partitions the set Lp(X,µ) into equivalence
claases. Let f be a measurable real-valued function on X for which |f |p
is integrable on X. The equivalence class [f ]p of f then consists of those
measurable real-valued functions onX that are equal to the function f almost
everywhere on X.

Now if f , g, f̃ and g̃ are measurable functions on X, if c is a real numher,
if f and f̃ are equal almost everywhere on X, and if g and g̃ are equal almost
everywhere on X, then cf and cf̃ are equal almost everywhere on X, and
f + g and f̃ + g̃ are equal almost everywhere on X. We may therefore add
together equivalence classes of functions belonging to Lp(X,µ) and multiply
them by real scalars so that [f ]p + [g]p = [f + g]p and [cf ]p = c[fp] for all
f, g ∈ Lp(X,µ) and for all real numbers c. Also ‖f‖p = ‖f̃‖p whenever
the measurable real-valued functions f and f̃ are equal almost everywehre
on X and belong to the vector space Lp(X,µ). We may therefore define
‖[f ]p‖p = ‖f‖p for all f ∈ Lp(X,µ).

Now let Lp(X,µ) denote the set of all equivalence classes [f ]p of mea-
surable real-valued functions on X that belong to Lp(X,µ), where two such
functions on X belong to the same equivalence class if and only if they are
equal almost everywhere on X. Denoting the equivalence class of any mem-
ber f of Lp(X,µ) by [f ]p, we note that there are well-defined operations of
addition and multiplication-by-scalars on Lp(X,µ), where

[f ]p + [g]p = [f + g]p, c[f ]p = [cf ]p

for all f, g ∈ Lp(X,µ) and for all real numbers c. Also setting ‖[f ]p‖p = ‖f‖p
for all f ∈ Lp(X,µ), where

‖f‖p =

(∫
X

|f |p dµ
) 1

p

,

we find that ‖[f ]p‖p ≥ 0, ‖c[f ]p‖p = |c| ‖[f ]p‖p and ‖[f ]p + [g]p‖p ≤ ‖[f ]p‖p +
‖[g]p‖p for all f, g ∈ L(X,µ) and for all real numbers c. Also ‖[f ]p‖p = 0 if
and only if [f ]p = [0]p. It follows that the function that maps the equivalence
class [f ]p of each member f of Lp(X,µ) to the non-negative real number ‖f‖p
is a norm on the vector space Lp(X,µ). We obtain in this fashion a normed
vector space Lp(X,µ) whose elements are equivalence classes of measurable
real-valued functions f on X. A measurable real-valued function f on X
determines a corresponding element of Lp(X,µ) if and only if

∫
X
|f |p dµ <

+∞. Two such functions determine the same element of Lp(X,µ) if and only
if they are equal almost everywhere on X with respect to the measure µ.
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Proposition 9.20 ensures that the normed vector space Lp(X,µ) is com-
plete for all real numbers p satisfying p ≥ 1. The space Lp(X,µ) is thus a
Banach space. (Banach spaces are complete normed vector spaces.) This
result is of fundamental importance in many branches of mathematics devel-
oped from the early twentieth century onwards.
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