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8 The Lebesgue Integral

8.1 Measurable Functions

Definition Let X be a set, let A be a σ-algebra of subsets of X, and let
f :X → [−∞,+∞] be a function on X with values in the set [−∞,+∞] of
extended real numbers. The function f is said to be measurable with respect
to the σ-algebra A if {x ∈ X : f(x) < c} ∈ A for all real numbers c.

Definition Let (X,A, µ) be a measure space. A function f :X → [−∞,+∞]
defined on X is said to be measurable if it is measurable with respect to the
σ-algebra A of measurable subsets of X.

It follows from these definitions that a function f :X → [−∞,+∞] defined
on a measure space (X,A, µ) is measurable if and only if {x ∈ X : f(x) < c}
is a measurable set for all real numbers c.

Definition Let (X,A, µ) be a measure space, and let E be a measurable
subset of X. A function f :E → [−∞,+∞] defined on E is said to be
measurable on E if, for all real numbers c,

{x ∈ E : f(x) < c}

is a measurable subset of X (i.e., if and only if this set belongs to the σ-
algebra A of measurable subsets of X).

Proposition 8.1 Let X be a set, let A be a σ-algebra of subsets of X, let
f :X → [−∞,+∞] be a function on X, with values in the set [−∞,+∞] of
extended real numbers, which is measurable with respect to the σ-algebra A,
and let a, b and c be real numbers, where a ≤ b. Then the following sets also
belong to the σ-algebra A:

(i) {x ∈ X : f(x) ≥ c};

(ii) {x ∈ X : f(x) ≤ c};

(iii) {x ∈ X : f(x) > c};

(iv) {x ∈ X : a ≤ f(x) ≤ b};

(v) {x ∈ X : a < f(x) < b};

(vi) {x ∈ X : a ≤ f(x) < b};

(vii) {x ∈ X : a < f(x) ≤ b};

65



(viii) {x ∈ X : f(x) = c};

(ix) {x ∈ X : f(x) = −∞};

(x) {x ∈ X : f(x) = +∞};

(xi) {x ∈ X : f(x) < +∞};

(xii) {x ∈ X : f(x) > −∞};

(xiii) {x ∈ X : f(x) ∈ R}.

Proof The set {x ∈ X : f(x) ≥ c} is the complement of a set {x ∈ X :
f(x) < c} belonging to the σ-algebra A, and must therefore itself belong to
this σ-algebra. This proves (i).

The set {x ∈ X : f(x) ≤ c} may be represented as a countable intersec-
tion

+∞⋂
n=1

{
x ∈ X : f(x) < c+

1

n

}
of sets that are of the form {x ∈ X : f(x) < c + n−1} for some natural
number n. These sets belong to the σ-algebra A, and any countable inter-
section of sets belonging to A must itself belong to this σ-algebra. Therefore
{x ∈ X : f(x) ≤ c} belongs to the σ-algebra. This proves (ii).

The set {x ∈ X : f(x) > c} is the complement of a set {x ∈ X : f(x) ≤ c}
which belongs to the σ-algebra A, and must therefore itself belong to A. This
proves (iii).

The set {x ∈ X : a ≤ f(x) ≤ b} is the intersection of sets {x ∈ X :
f(x) ≥ a} and {x ∈ X : f(x) ≤ b} that belong to the σ-algebra A. It
follows that {x ∈ X : a ≤ f(x) ≤ b} must itself belong to A. Similarly
{x ∈ X : a < f(x) < b} is the intersection of sets {x ∈ X : f(x) > a} and
{x ∈ X : f(x) < b}, {x ∈ X : a ≤ f(x) < b} is the intersection of sets
{x ∈ X : f(x) ≥ a} and {x ∈ X : f(x) < b}, and {x ∈ X : a < f(x) ≤ b}
is the intersection of sets {x ∈ X : f(x) > a} and {x ∈ X : f(x) ≤ b},
and therefore {x ∈ X : a < f(x) < b}, {x ∈ X : a ≤ f(x) < b} and
{x ∈ X : a < f(x) ≤ b} belong to A. This proves (iv), (v), (vi) and (vii).
Moreover (viii) is a special case of (iv).

The set {x ∈ X : f(x) = −∞} may be represented as a countable
intersection

+∞⋂
n=1

{x ∈ X : f(x) < −n}

of sets belonging to A, and must therefore itself belong to A. This proves
(ix).
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Similarly the set {x ∈ X : f(x) = +∞}may be represented as a countable
intersection

+∞⋂
n=1

{x ∈ X : f(x) ≥ n}

of sets belonging to A, and must therefore itself belong to A. This proves
(x).

The set {x ∈ X : f(x) < +∞} is the complement of the set specified in
(x), and must therefore belong to A. Similarly the set {x ∈ X : f(x) > −∞}
is the complement of the set specified in (ix), and must therefore belong to
A. This proves (xi) and (xii).

Finally we note that {x ∈ X : f(x) ∈ R} is the intersection of the sets
{x ∈ X : f(x) < +∞} and {x ∈ X : f(x) > −∞} specified in (xi) and (xii),
and must therefore belong to A, as required.

Corollary 8.2 Let X be a set, let A be a σ-algebra of subsets of X, let
f :X → [−∞,+∞] be a function on X, with values in the set [−∞,+∞] of
extended real numbers, which is measurable with respect to the σ-algebra A,
and let m be a real number. Then mf is measurable with respect to A.

Proof The result is immediate when m = 0. Let c be a real number. If
m > 0 then

{x ∈ X : mf(x) < c} = {x ∈ X : f(x) < c/m},

and if m < 0 then

{x ∈ X : mf(x) < c} = {x ∈ X : f(x) > c/m}.

It then follows immediately from Proposition 8.1 and the definition of measur-
able functions that {x ∈ X : mf(x) < c} ∈ A. Therefore mf is measurable,
as required.

Definition A subset V of the extended real line [−∞,+∞] is said to be
open if and only if it satisfies the following conditions:

• given any real number p belonging to V , there exists some positive real
number δ for which {t ∈ R : p− δ < t < p+ δ} ⊂ V ;

• in cases where +∞ ∈ V there exists some real number L large enough
to ensure that {t ∈ R : t > L} ⊂ V ;

• in cases where −∞ ∈ V there exists some real number L large enough
to ensure that {t ∈ R : t < −L} ⊂ V .
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The empty set ∅ is open in [−∞,+∞], and [−∞,+∞] is open in itself.
Any union of open subsets of [−∞,+∞] is itself open in [−∞,+∞], and any
finite intersection of open subsets of [−∞,+∞] is itself open in [−∞,+∞].

Lemma 8.3 Any open set in the extended real line [−∞,+∞] is the union
of open intervals that are of the forms (p, q), (p,+∞], [−∞, q) with rational
endpoints p and q.

Proof Let V be open in [−∞,+∞], and let v ∈ V , where −∞ < v < +∞.
Then there exists some positive real number δ such that (v − δ, v + δ) ⊂ V .
Let rational numbers p and q be chosen such that v− δ < p < v < q < v+ δ.
Then v ∈ (p, q).

If +∞ ∈ V then some rational number p can be chosen to ensure that
(p,+∞] ⊂ V , and if −∞ ∈ V then some rational number q can be chosen to
ensure that [−∞, q) ∈ V . The result follows.

Proposition 8.4 Let (X,A, µ) be a measure space, let f :X → [−∞,+∞]
be a measurable function on X, and let V be an open set in the extended real
line [−∞,+∞]. Then f−1(V ) is a measurable set.

Proof Let C be the collection consisting of all open intervals of the form
(p, q), (p,+∞] and [−∞, q) contained in V for which p and q are rational
numbers. Then the collection C is countable, and V =

⋃
J∈C J . The preimage

of a union of subsets of [−∞,+∞] is the union of the preimages of those
sets, and therefore f−1(V ) =

⋃
J∈C f

−1(J). Now it follows from applications
of Proposition 8.1 that f−1(J) ∈ A for all J ∈ C. Thus the preimages f−1(J)
of all the intervals in the countable collection C are measurable sets, and
therefore f−1(V ) ∈ A, as required.

Proposition 8.5 Let (X,A, µ) be a measure space, let f :X → [−∞,+∞]
be a measurable function on X, and let B be a Borel set in the extended real
line [−∞,+∞]. Then f−1(B) is a measurable set.

Proof Let G be the collection consisting of all subsets G of the extended real
line [−∞,+∞] for which f−1(G) ∈ A. If G ∈ G then f−1([−∞,+∞] \G) =
X \ f−1(G) ∈ A, because the complement of every member of the σ-algebra
A must itself belong to A. It then follows from the specification of G that
[−∞,+∞]\G ∈ G. Thus the complement, in the extended real line, of every
member of the collection G must itself belong to G.

Now let (Gi :∈ I) be a countable collection of subsets of [−∞,+∞] that
all belong to G. Then

f−1
(⋃

i∈I
Gi

)
=
⋃

i∈I
f−1(Gi) ∈ A,
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because every countable union of sets belonging to A must itself belong
to A. It follows that G is a σ-algebra of subsets of the extended real line
[−∞,+∞]. Also every open subset of [−∞,+∞] belongs to G (Proposi-
tion 8.4). It follows that G contains the σ-algebra generated by the open
subsets of [−∞,+∞]. The latter σ-algebra is the σ-algebra of Borel sets in
[−∞,+∞]. The result follows.

Proposition 8.6 Let X be a set, let A be a σ-algebra of subsets of X, let
f :X → [−∞,+∞] and g:X → [−∞,+∞] be functions on X, with values
in the set [−∞,+∞] of extended real numbers, which are measurable with
respect to the σ-algebra A. Then, given any real number c, the set

{x ∈ X : f(x) + g(x) is defined and f(x) + g(x) < c}

is measurable with respect to the σ-algebra A.

Proof Let u and v be elements of the extended real number system [−∞,+∞]
for which u+v is defined and satisfies u+v < c. Then u < +∞ and v < +∞.
We show that there exists a rational number q such that u < q and v < c−q.
Now if u = −∞ it suffices to choose q so that q < c−v. If v = −∞ it suffices
to choose q such that q > u. If u and v are real numbers then u < c− v, and
therefore we may choose a rational number q that satisfies the inequalities.
u < q < c−v. But then u < q and v < c−q. This completes the case-by-case
analysis that establishes that, given any elements u and v of the extended
real number system for which u+v is defined and satisfies u < c, there exists
some rational number q such that u < q and v < c− q.

The result just established ensures that

{x ∈ X : f(x) + g(x) is defined and f(x) + g(x) < c} =
⋃
q∈Q

Eq,

where
Eq = {x ∈ X : f(x) < q and g(x) < c− q}.

for each rational number q. Now, for each rational number q, the sets

{x ∈ X : f(x) < q} and {x ∈ X : g(x) < c− q}

are measurable with respect to A, because the functions f and g are mea-
surable. It follows that, for each rational number q, the set Eq, being the
intersection of two measurable sets, must itself be measurable with respect
to A. It then follows that the set

{x ∈ X : f(x) + g(x) is defined and f(x) + g(x) < c}

is a countable union of measurable sets, and therefore is itself measurable
with respect to A.
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Corollary 8.7 Let X be a set, let A be a σ-algebra of subsets of X, let
f :X → [−∞,+∞] and g:X → [−∞,+∞] be functions on X, with values
in the set [−∞,+∞] of extended real numbers, which are measurable with
respect to the σ-algebra A. Suppose that f(x) +g(x) is defined for all x ∈ X.
Then f + g is measurable with respect to A.

Proof Proposition 8.6 ensures that, for all real numbers c, the set {x ∈ X :
f(x) + g(x) < c} is measurable with respect to A. It then follows from the
definition of measurable functions that f + g is measurable with respect to
A, as required.

Proposition 8.8 Let X be a set, let A be a σ-algebra of subsets of X, let
f :X → [−∞,+∞] and g:X → [−∞,+∞] be functions on X, with values
in the set [−∞,+∞] of extended real numbers, which are measurable with
respect to the σ-algebra A. Then f · g is measurable with respect to A, where
(f · g)(x) = f(x)g(x) for all x ∈ X.

Proof First we prove the result in the special case where the functions f
and g are real-valued, so that −∞ < f(x) < +∞ and −∞ < g(x) < +∞ for
all x ∈ X. In that case

f(x)g(x) = 1
2

(
(f(x) + g(x))2 − f(x)2 − g(x)2

)
for all x ∈ X. Now

{x ∈ X : f(x)2 < c} = {x ∈ X : −
√
c < f(x) <

√
c}.

for all positive real numbers c, and

{x ∈ X : f(x)2 < c} = ∅

for all non-positive real numbers c. It follows (on applying the results of
Proposition 8.1) that the function x 7→ f(x)2 is measurable. Similarly the
functions x 7→ g(x)2 and x 7→ (f(x) + g(x))2 are measurable. Sums and
scalar multiples of measurable functions are measurable (see Corollary 8.2
and Proposition 8.6). It follows that, if the functions f and g are measurable
and real-valued then the function f · g is measurable.

Now suppose that there is some x ∈ X for which either f(x) or g(x) is
equal to +∞ or −∞. In that case let

Z = {x ∈ X : f(x) = ±∞ or g(x) = ±∞},

and define

f̃(x) =

{
f(x) for all x ∈ X \ Z;
0 for all x ∈ Z.
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and

g̃(x) =

{
g(x) for all x ∈ X \ Z;
0 for all x ∈ Z.

Then the functions f̃ and g̃ are measurable and real-valued on X, and there-
fore f̃ · g̃ is measurable on X.

Now the functions f̃ and g̃ agree with the functions f and g on the set
X \ Z. It follows that, for all real numbers c, the set

{x ∈ X \ Z : f(x)g(x) < c}

is measurable. Also f(x)g(x) = 0 if and only if either f(x) = 0 or g(x) = 0.
It follows that

{x ∈ X : f(x)g(x) = 0}
is measurable.

The definition of products in the extended real number system involving
+∞ and −∞ ensure that the possible values for f(x)g(x) on Z are +∞,
0 and −∞. Also f(x)g(x) = +∞ in exactly four cases: f(x) = +∞ and
g(x) > 0; f(x) = −∞ and g(x) < 0; g(x) = +∞ and f(x) > 0; g(x) = −∞
and f(x) < 0. It follows easily from this that

{x ∈ X : f(x)g(x) = +∞}

is measurable. Similarly the set

{x ∈ X : f(x)g(x) = −∞}

is measurable. These results are sufficient to establish that

{x ∈ X : f(x)g(x) < c}

is a measurable set for all real numbers c and therefore the function f · g is
measurable on X, as required.

Lemma 8.9 Let X be a set, let A be a σ-algebra of subsets of X, and let
f1, f2, . . . , fm be functions on X with values in the set [−∞,+∞] of extended
real numbers. Suppose that each of the functions f1, f2, . . . , fm is measurable
with respect to the σ-algebra A. Then so are

max(f1, f2, . . . , fm) and min(f1, f2, . . . , fm).

Proof Let c be a real number. Then

{x ∈ X : max(f1, f2, . . . , fm) < c} =
m⋂
i=1

{x ∈ X : fi(x) < c}
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and

{x ∈ X : min(f1, f2, . . . , fm) < c} =
m⋃
i=1

{x ∈ X : fi(x) < c}.

It follows that {x ∈ X : max(f1, f2, . . . , fm) < c} is a finite intersection
of sets belonging to A, and must therefore itself belong to A. Similarly
{x ∈ X : min(f1, f2, . . . , fm) < c} is a finite union of sets belonging to A,
and must therefore itself belong to A. The result follows.

Proposition 8.10 Let X be a set, let A be a σ-algebra of subsets of X, and
let f1, f2, f3, . . . be an infinite sequence of functions on X with values in the
set [−∞,+∞] of extended real numbers. Suppose that each of the functions
f1, f2, f3, . . . is measurable with respect to the σ-algebra A. Then so are g
and h, where

g(x) = inf{fi(x) : i ∈ N}, h(x) = sup{fi(x) : i ∈ N}

for all x ∈ X.

Proof Let c be a real number, and let x be a point ofX. Then g(x) < c if and
only if there exists some natural number j for which fj(x) < c, and h(x) < c
if and only if there exists some natural number k such that fj(x) < c− k−1
for all natural numbers j. Therefore

{x ∈ X : g(x) < c} =
+∞⋃
j=1

{x ∈ X : fj(x) < c}

and

{x ∈ X : h(x) < c} =
+∞⋃
k=1

+∞⋂
j=1

{
x ∈ X : fj(x) < c− 1

k

}
The measurability of the function f ensures that {x ∈ X : fj(x) < c} is mea-
surable for all real numbers c and positive integers j. Also countable unions
and countable intersections of measurable sets are measurable, because the
collection A of measurable sets in X is a σ-algebra. Therefore the functions
g and h are measurable, as required.

Let f1, f2, f3, . . . be an infinite sequence of measurable functions on a mea-
sure space (X,A, µ) taking values in the extended real line [−∞,∞]. We can
construct from this infinite sequence a non-decreasing sequence of functions
g1, g2, g3, . . . and a non-increasing sequence of functions h1, h2, h3, . . ., where

gj(x) = inf{fk(x) : k ≥ j} and hj(x) = sup{fk(x) : k ≥ j}
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for all positive integers j. It follows from Proposition 8.10 that the functions
g1, g2, g3, . . . and h1, h2, h3, . . . are all measurable.

For all x ∈ X, the lower limit f∗(x) and upper limit f ∗(x) of the infinite
sequence f1(x), f2(x), f3(x), . . . are defined such that

f∗(x) = lim inf
j→+∞

fj(x) = lim
j→+∞

gj(x) = sup
j→+∞

gj(x)

and
f ∗(x) = lim sup

j→+∞
fj(x) = lim

j→+∞
hj(x) = inf

j→+∞
hj(x).

where the measurable functions g1, g2, g3, . . . and h1, h2, h3, . . . are defined
in the manner described immediately above. It then follows, on applying
Proposition 8.10, that the lower limit function f∗ and the upper limit func-
tion f ∗ are both measurable. We formally state this result in the following
corollary.

Corollary 8.11 Let X be a set, let A be a σ-algebra of subsets of X, and
let f1, f2, f3, . . . be an infinite sequence of functions on X with values in the
set [−∞,+∞] of extended real numbers. Suppose that each of the functions
f1, f2, f3, . . . is measurable with respect to the σ-algebra A. Then so are f ∗

and f∗, where

f ∗(x) = lim sup
j→+∞

fj(x), f∗(x) = lim inf
j→+∞

fj(x)

for all x ∈ X.

Corollary 8.12 Let X be a set, let A be a σ-algebra of subsets of X, and
let f1, f2, f3, . . . be an infinite sequence of functions on X with values in the
set [−∞,+∞] of extended real numbers. Suppose that each of the functions
f1, f2, f3, . . . is measurable with respect to the σ-algebra A. Let

X0 = {x ∈ X : lim
j→+∞

fj(x) is defined}

Then X0 ∈ A. Moreover if f(x) = lim
j→+∞

fj(x) for all x ∈ X0, then f is a

measurable function on X0.

Proof Note that

X0 = {x ∈ X : lim sup
j→+∞

fj(x)− lim inf
j→+∞

fj(x) = 0}.

It follows from Proposition 8.1 that X0 ∈ A. Moreover the function f coin-
cides with the measurable functions f ∗ on X0, where f ∗(x) = lim sup

j→+∞
fj(x),

and must therefore be a measurable function on X0, as required.

We see therefore that if (X,A, µ) is a measure space then the limit of any
convergent sequence of measurable functions on X must itself be measurable.
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8.2 Integrable Simple Functions

Definition Let X be a set, and let E be a subset of X. The characteristic
function of E is defined to be the function χE:X → R defined so that

χE(x) =

{
1 if x ∈ E;
0 if x 6∈ E.

Let E be a subset of X, where (X,A, µ) is a measure space. It follows
directly from the relevant definitions that the subset E is measurable if and
only if its characteristic function χE is a measurable function on X.

Definition Let (X,A, µ) be a measure space. A real-valued function f :X →
R on X is said to be an integrable simple function if there exist real numbers
c1, c2, . . . , cm and measurable subsets E1, E2, . . . , Em of X, where µ(Ej) <
+∞ for j = 1, 2, . . . ,m, such that

f(x) =
m∑
j=1

cjχEj
(x)

for all x ∈ X, where χEj
denotes the characteristic function of Ej for j =

1, 2, . . . ,m.

It follows directly from the definition of integrable simple functions that
any real linear combination of integrable simple functions is itself an inte-
grable simple functions, and thus the integrable simple functions on a mea-
sure space thus constitute a real vector space.

Lemma 8.13 Let (X,A, µ) be a measure space, and let E1, E2, . . . , Em be
a finite collection of measurable subsets of X. Then there exists a finite
list G1, G2, . . . , Gr of pairwise disjoint measurable subsets of X such that
r⋃

i=1

Gi =
m⋃
j=1

Ej and, for each integer j between 1 and m, Ej is the disjoint

union of those sets Gi for which Gi ⊂ Ej.

Proof For each subset S of {1, 2, . . . ,m} let FS be the set consisting of
all elements x of X that satisfy x ∈ Ej for all j ∈ S and x 6∈ Ej for all
j ∈ {1, 2, . . . ,m} \ S. Then

FS =
(⋂

j∈S
Ej

)
∩
(⋂

j 6∈S
Ec

j

)
=
(⋂

j∈S
Ej

)
\
(⋃

j 6∈S
Ej

)
,

where Ec
j = X \Ej for j = 1, 2, . . . ,m. Any finite intersection of measurable

sets is measurable. It follows that each set FS is measurable.
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Let r = 2m − 1, and let S0, S1, . . . Sr be a listing of the subsets of
{1, 2, . . . ,m} with S0 = ∅ in which every subset of {1, 2, . . . ,m} occurs ex-
actly once, let

G0 = FS0 = Ec
1 ∩ Ec

2 ∩ · · · ∩ Ec
m = X \

m⋃
j=1

Ej,

and let Gk = FSk
for k = 1, 2, . . . , r. Then, given any element x of X,

there exists exactly one subset S of {1, 2, . . . ,m} for which x ∈ FS. This
subset S consists of those, and only those, integers j between 1 and m for
which x ∈ Ej. Thus, given any element x of X \ G0, there exists exactly
one integer i between 1 and r for which x ∈ Gi. It follows that the sets
G1, G2, . . . , Gr are pairwise disjoint, and their union is the complement of

the set G0. But X \ G0 =
m⋃
j=1

Ej. We conclude therefore that the sets

G1, G2, . . . , Gr are pairwise disjoint and
r⋃

i=1

Gi =
m⋃
j=1

Ej.

Let i and j be integers, where 1 ≤ i ≤ r and 1 ≤ j ≤ m. If j ∈ Si then

Gi ⊂ Ej; and if j 6∈ Si then Gi∩Ej = ∅. But every element of
m⋃
j=1

Ej. belongs

to exactly one of the sets G1, G2, . . . , Gr. It follows that Ej is the union of
those sets Gi for which j ∈ Si, and therefore Ej is the union of those sets Gi

for which Gi ⊂ Ej, as required.

Proposition 8.14 Let (X,A, µ) be a measure space, let f :X → R be an
integrable simple function on X, and let f =

∑m
j=1 cjχEj

, where, for each
integer j between 1 and m, cj is a real number and χEj

is the characteristic
function of a measurable set Ej for which µ(Ej) < +∞. Let the non-zero
values taken on by the function f be v1, v2, . . . , vn, where no real numbers
occurs more than once in this list, and let Fk = {x ∈ X : f(x) = vk} for
k = 1, 2, . . . , n. Then the sets F1, F2, . . . , Fn are measurable and pairwise
disjoint, µ(Fk) < +∞ for k = 1, 2, . . . , n, and

m∑
j=1

cjµ(Ej) =
n∑

k=1

vkµ(Fk).

Proof It follows from Lemma 8.13 that there exists a finite listG1, G2, . . . , Gr

of pairwise disjoint measurable subsets of X such that
r⋃

i=1

Gi =
m⋃
i=1

Ej and,

for each integer j between 1 and m, Ej is the disjoint union of those sets Gi

for which Gi ⊂ Ej. Let J be the set consisting of those ordered pairs (i, j) of

75



integers for which 1 ≤ i ≤ r, 0 ≤ j ≤ m and Gi ⊂ Ej. The additivity of the
measure µ ensures that the measure µ(Ej) of Ej is the sum of the measures
µ(Gi) of those sets Gi in the list G1, G2, . . . , Gr for which Gi ⊂ Ej. It follows
that

n∑
j=1

cjµ(Ej) =
∑

(i,j)∈J

cjµ(Gi) =
r∑

i=1

wiµ(Gi),

where wi is the sum of those real numbers cj for which Gi ⊂ Ej.
Let i be an integer between 1 and n, and let x ∈ Gi. Then f(x) is the

sum of those cj for which Gi ⊂ Ej, and therefore f(x) = wi. Thus the
function f takes the value wi throughout the set Gi. It follows that that, for
each integer i between 1 and r, either the function f is zero throughout Gi

or else there exists exactly one integer k between 1 and n for which wi = vk.
Therefore, for each integer k between 1 and n, the set Fk is the disjoint union
of those sets Gi for which wi = vk. It follows that each set Fk is measurable,
and µ(Fk) is the sum of the measures µ(Gi) of the sets Gi for which wi = vk.
It then follows that

n∑
j=1

cjµ(Ej) =
r∑

i=1

wiµ(Gi) =
n∑

k=1

vkµ(Fk),

as required.

Definition Let (X,A, µ) be a measure space, let f :X → R be an integrable
simple function on X. The integral

∫
X
f dµ of the function f on X is defined

so that ∫
X

f dµ =
n∑

k=1

vkµ(Fk),

where v1, v2, . . . , vn are distinct and are the non-zero values taken on by the
function f , and where

Fk = {x ∈ X : f(x) = vk}

for k = 1, 2, . . . , n.

Corollary 8.15 Let (X,A, µ) be a measure space, let f :X → R be an in-
tegrable simple function on X, and let f =

∑m
j=1 cjχEj

, where, for each
integer j between 1 and m, cj is a real number and χEj

is the characteristic
function of a measurable set Ej for which µ(Ej) < +∞. Then∫

X

f dµ =
m∑
j=1

cjµ(Ej).
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Proof The result follows immediately on combining the definition of the
integral

∫
X
f dµ with the result of Proposition 8.14.

Proposition 8.16 Let (X,A, µ) be a measure space, let f :X → R and
g:X → R be integrable simple functions on X, and let c be a real number.
Then ∫

X

(f + g) dµ =

∫
X

f dµ+

∫
X

g dµ

and ∫
X

cf dµ = c

∫
X

f dµ.

Proof The integrable simple simple functions f and g can both be repre-
sented as linear combinations of characteristic functions of measurable sets.
The results therefore follow immediately on applying the result of Corol-
lary 8.15.

Corollary 8.17 Let (X,A, µ) be a measure space, let f :X → R and g:X →
R be integrable simple functions on X. Suppose that f(x) ≤ g(x) for all
x ∈ X. Then ∫

X

f dµ ≤
∫
X

g dµ.

Proof The function g− f is a non-negative integrable simple function. The
definition of the integral of such functions therefore ensures that

∫
X

(g −
f) dµ ≥ 0. But it follows from Proposition 8.16 that∫

X

(g − f) dµ =

∫
X

g dµ−
∫
X

f dµ.

The result follows.

Definition Let (X,A, µ) be a measure space, let E be a measurable subset
of X, and let f :X → [0,+∞) be a non-negative integrable simple function
on X. The integral

∫
E
f dµ of s over E is defined by the formula∫

E

f dµ =

∫
X

f · χE dµ,

where f · χE denotes the product of the function f and the characteristic
function χE of the set E.

Proposition 8.18 Let (X,A, µ) be a measure space, let s:X → [0,+∞) be
a non-negative integrable simple function on X, and let ν(E) =

∫
E
s dµ for

all measurable sets E. Then ν is a measure defined on the σ-algebra A of
measurable subsets of X.
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Proof The function s is a non-negative integrable simple function on X, and
therefore there exist non-negative real numbers c1, c2, . . . , cm and measurable

sets F1, F2, . . . , Fm such that s(x) =
m∑
j=1

cjχFj
(x) for all x ∈ X. Let E be a

measurable set in X. Then s(x)χE(x) =
m∑
j=1

cjχFj∩E(x) for all x ∈ X, and

therefore

ν(E) =

∫
E

s dµ =

∫
X

s · χE dµ =
m∑
j=1

cjµ(Fj ∩ E).

Let E be a countable collection of pairwise disjoint measurable sets. It follows
from the countable additivity of the measure µ that

ν
(⋃

E∈E
E
)

=
m∑
j=1

cjµ
(⋃

E∈E
(Fj ∩ E)

)
=

m∑
j=1

cj
∑
E∈E

µ(Fj ∩ E)

=
∑
E∈E

ν(E).

Thus the function ν is countably additive, and is therefore a measure defined
on A, as required.

Corollary 8.19 Let (X,A, µ) be a measure space, let s:X → [0,+∞) be
a non-negative integrable simple function on X, and let E1, E2, E3, . . . be an
infinite sequence of measurable subsets of X, where Ej ⊂ Ej+1 for all positive
integers j. Then

lim
j→+∞

∫
Ej

f dµ =

∫
E

f dµ,

where E =
+∞⋃
j=1

Ej.

Proof Let ν(F ) =
∫
F
s dµ for all measurable sets F . Then ν is a measure

on X. It follows that

ν

(
+∞⋃
j=1

Ej

)
= lim

j→+∞
ν(Ej)

(Lemma 7.25). The result follows.
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8.3 Integrals of Non-Negative Measurable Functions

We shall extend the definition of the integral to non-negative measurable
functions that are not necessarily simple. In developing the properties of this
integral, we shall need the result that a non-negative measurable function on
a measure set is the limit of a non-decreasing sequence of integrable simple
functions. We now proceed to prove this result.

Proposition 8.20 Let (X,A, µ) be a measure space, and let f :X → [0,+∞]
be a non-negative measurable function on X. Then there exists an infinite
sequence s1, s2, s3, . . . of non-negative integrable simple functions with the
following properties:

(i) 0 ≤ sj(x) ≤ sj+1(x) for all j ∈ N and x ∈ X;

(ii) lim
j→+∞

sj(x) = f(x) for all x ∈ X.

Proof For each positive integer j let

Fj = {x ∈ X : f(x) ≥ 2j},

and for each integer k satisfying 1 ≤ k ≤ 4j, let

Ej,k =

{
x ∈ X :

k − 1

2j
≤ f(x) <

k

2j

}
.

Then the sets Fj and Ej,k are measurable sets. Let

sj(x) = 2jχFj
(x) +

4j∑
k=1

k − 1

2j
χEj,k

(x)

for all j ∈ N and x ∈ X. Then sj is a integrable simple function on X
which takes the value 2−j(k − 1) when 2−j(k − 1) ≤ f(x) < 2−jk for some
integer k between 1 and 4j, and takes the value 2j when f(x) ≥ 2j. One
can readily verify that 0 ≤ sj(x) ≤ sj+1(x) for all j ∈ N and x ∈ X. If
f(x) ≤ 2j then 0 ≤ f(x) − sj(x) < 2−j. It follows that if f(x) < +∞ then
lim

j→+∞
sj(x) = f(x). If f(x) = +∞ then sj(x) = 2j for all positive integers j,

and therefore lim
j→+∞

sj(x) = f(x) in this case as well. The result is thus

established.

Definition Let (X,A, µ) be a measure space, and let f :X → [0,+∞] be a
measurable function on X taking values in the set [0,+∞] of non-negative
extended real numbers. The integral

∫
X
f dµ of f over X is defined to be the

supremum of the integrals
∫
X
s dµ as s ranges over all non-negative integrable

simple functions on X that satisfy s(x) ≤ f(x) for all x ∈ X.
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Let (X,A, µ) be a measure space, and let f :X → [0,+∞] be a measurable
function on X taking values in the set [0,+∞] of non-negative extended real
numbers. It follows from the above definition that

∫
X
f dµ = C for some non-

negative extended real number C if and only if the following two conditions
are satisfied:

(i)
∫
X
s dµ ≤ C for all non-negative integrable simple functions s on X

that satisfy s(x) ≤ f(x) for all x ∈ X.

(ii) given any non-negative real number c satisfying c < C, there exists
some non-negative integrable simple function s on X such that s(x) ≤
f(x) for all x ∈ X and

∫
X
s dµ > c.

It follows directly from Corollary 8.17 that the definition of the integral
for non-negative measurable functions is consistent with that previously given
for integrable simple functions.

Lemma 8.21 Let (X,A, µ) be a measure space, and let f :X → [0,+∞] and
g:X → [0,+∞] be measurable functions on X with values in the set [0,+∞]
of non-negative extended real numbers. Suppose that f(x) ≤ g(x) for all
x ∈ X. Then ∫

X

f dµ ≤
∫
X

g dµ

Proof This follows immediately from the definition of the integral, since any
non-negative integrable simple function s on X satisfying s(x) ≤ f(x) for all
x ∈ X will also satisfy s(x) ≤ g(x) for all x ∈ X.

8.4 Levi’s Monotone Convergence Theorem

We now prove an important theorem which states that the integral of the
limit of a non-decreasing sequence of non-negative measurable functions is
equal to the limit of the integrals of those functions. A number of other
important results follow as consequences of this basic theorem.

Theorem 8.22 (Levi’s Monotone Convergence Theorem) Let (X,A, µ)
be a measure space, let f1, f2, f3, . . . be an infinite sequence of measurable
functions on X with values in the set [0,+∞] of non-negative extended real
numbers, and let f :X → [0,+∞] be defined such that f(x) = lim

j→+∞
fj(x) for

all x ∈ X. Suppose that 0 ≤ fj(x) ≤ fj+1(x) for all j ∈ N and x ∈ X. Then

lim
j→+∞

∫
X

fj dµ =

∫
X

f dµ
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Proof It follows from Corollary 8.12 that the limit function f is measurable.
Moreover

∫
X
fj dµ ≤

∫
X
f dµ, and therefore lim

j→+∞

∫
X
fj dµ ≤

∫
X
f dµ.

Let s be a non-negative integrable simple function on X which satisfies
s(x) ≤ f(x) for all x ∈ X, and let c be a real number satisfying 0 < c < 1.
If f(x) > 0 then f(x) > cs(x) and therefore there exists some positive
integer j such that fj(x) ≥ cs(x). If f(x) = 0 then s(x) = 0, and therefore

fj(x) ≥ cs(x) for all positive integers j. It follows that
+∞⋃
j=1

Ej = X, where

Ej = {x ∈ X : fj(x) ≥ cs(x)}.

Now

c

∫
Ej

s dµ ≤
∫
Ej

fj dµ ≤
∫
X

fj dµ ≤ lim
j→+∞

∫
X

fj dµ.

Also Ej ⊂ Ej+1 for all positive integers j. It therefore follows from Corol-
lary 8.19 that

c

∫
X

s dµ = lim
j→+∞

c

∫
Ej

s dµ ≤ lim
j→+∞

∫
X

fj dµ.

Moreover this inequality holds for all real numbers c satisfying 0 < c < 1,
and therefore ∫

X

s dµ ≤ lim
j→+∞

∫
X

fj dµ.

This inequality holds for all non-negative integrable simple functions s sat-
isfying s(x) ≤ f(x) for all x ∈ X. It now follows from the definition of the
integral of a measurable function that

∫
X
f dµ ≤ lim

j→+∞

∫
X
fj dµ, and therefore∫

X
f dµ = lim

j→+∞

∫
X
fj dµ, as required.

Proposition 8.23 Let (X,A, µ) be a measure space, and let f :X → [0,+∞]
and g:X → [0,+∞] be non-negative measurable functions on X. Then∫

X

(f + g) dµ =

∫
X

f dµ+

∫
X

g dµ.

Proof It follows from Proposition 8.20 that there exist infinite sequences
s1, s2, s3, . . . and t1, t2, t3, . . . of non-negative integrable simple functions such
that 0 ≤ sj(x) ≤ sj+1(x) and 0 ≤ tj(x) ≤ tj+1(x) for all j ∈ N and x ∈ X,
lim

j→+∞
sj(x) = f(x) and lim

j→+∞
tj(x) = g(x). Then

lim
j→+∞

(sj(x) + tj(x)) = f(x) + g(x).
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It therefore follows from Proposition 8.16 and Levi’s Monotone Convergence
Theorem (Theorem 8.22) that∫

X

(f + g) dµ = lim
j→+∞

∫
X

(sj + tj) dµ

= lim
j→+∞

(∫
X

sj dµ+

∫
X

tj dµ

)
= lim

j→+∞

∫
X

sj dµ+ lim
j→+∞

∫
X

tj dµ

=

∫
X

f dµ+

∫
X

g dµ,

as required.

Proposition 8.24 Let (X,A, µ) be a measure space, and let f1, f2, f3, . . . be
an infinite sequence of non-negative measurable functions on X. Then∫

X

(
+∞∑
j=1

fj

)
dµ =

+∞∑
j=1

∫
X

fj dµ.

Proof It follows from Proposition 8.23 that∫
X

(
N∑
j=1

fj

)
dµ =

N∑
j=1

∫
X

fj dµ

for all positive integers N . It then follows from Levi’s Monotone Convergence
Theorem (Theorem 8.22) that∫

X

(
+∞∑
j=1

fj

)
dµ = lim

N→+∞

∫
X

(
N∑
j=1

fj

)
dµ =

+∞∑
j=1

∫
X

fj dµ,

as required.

8.5 Fatou’s Lemma

Lemma 8.25 (Fatou’s Lemma) Let (X,A, µ) be a measure space, let
f1, f2, f3, . . . be an infinite sequence of non-negative measurable functions on
X. Then ∫

X

(
lim inf
j→+∞

fj(x)

)
dµ ≤ lim inf

j→+∞

∫
X

fj dµ.
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Proof Let gj(x) = inf{fk(x) : k ≥ j} for all j ∈ N and x ∈ X. Then the
functions g1, g2, g3, . . . are measurable (Proposition 8.10), and lim

j→+∞
gj(x) =

f∗(x) for all x ∈ X, where f∗(x) = lim inf
j→+∞

fj(x) for all x ∈ X. Also 0 ≤
gj(x) ≤ gj+1(x) for all j ∈ N and x ∈ X. It follows from Levi’s Monotone
Convergence Theorem (Theorem 8.22) that∫

X

f∗ dµ = lim
j→+∞

∫
X

gj dµ.

Now gj(x) ≤ fk(x) for all x ∈ X and for all positive integers j and k satisfying
j ≤ k. It follows that∫

X

gj dµ ≤
∫
X

fk dµ whenever j ≤ k,

and therefore ∫
X

gj dµ ≤ inf

{∫
X

fk dµ : k ≥ j

}
.

It follows that∫
X

f∗ dµ = lim
j→+∞

∫
X

gj dµ ≤ lim
j→+∞

inf

{∫
X

fk dµ : k ≥ j

}
= lim inf

j→+∞

∫
X

fj dµ,

as required.

8.6 Integration of Functions with Positive and Nega-
tive Values

Definition Let (X,A, µ) be a measure space, and let f :X → [−∞,+∞]
be a measurable function on X. The function f is said to be integrable if∫
X
|f | dx < +∞.

Let (X,A, µ) be a measure space, and let f :X → [−∞,+∞] be a measur-
able function on X. Then f gives rise to non-negative measurable functions
f+ and f− on X, where f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0)
for all x ∈ X. Moreover f(x) = f+(x)−f−(x) and |f(x)| = f+(x)+f−(x) for
all x ∈ X. Now

∫
X
f+ dµ ≤

∫
X
|f | dµ,

∫
X
f− dµ ≤

∫
X
|f | dµ and

∫
X
|f | dµ =∫

X
f+ dµ+

∫
X
f−dµ. It follows that

∫
X
|f | dµ < +∞ if and only if

∫
X
f+ dµ <

+∞ and
∫
X
f− dµ < +∞.
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Definition Let (X,A, µ) be a measure space, and let f :X → [−∞,+∞] be
an integrable function on X. The integral

∫
X
f dµ of f on X is defined by

the identity ∫
X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ,

where f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0) for all x ∈ X.

Lemma 8.26 Let (X,A, µ) be a measure space, let f :X → [−∞,+∞] be
an integrable function on X, and let u:X → [0,+∞] and v:X → [0,+∞] be
non-negative integrable functions on X such that f(x) = u(x)− v(x) for all
x ∈ X. Then ∫

X

f dµ =

∫
X

u dµ−
∫
X

v dµ.

Proof Let f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0) for all x ∈ X.
Then f(x) = f+(x) − f−(x) = u(x) − v(x) for all x ∈ X, and therefore
f+(x) + v(x) = f−(x) + u(x) for all x ∈ X. It follows from Proposition 8.23
that ∫

X

f+ dµ+

∫
X

v dµ =

∫
X

f− dµ+

∫
X

u dµ.

But then ∫
X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ =

∫
X

u dµ−
∫
X

v dµ,

as required.

Lemma 8.27 Let (X,A, µ) be a measure space, and let f :X → [−∞,+∞]
and g:X → [−∞,+∞] be integrable functions on X. Then∫

X

(f + g) dµ =

∫
X

f dµ+

∫
X

g dµ,

and ∫
X

cf dµ = c

∫
X

f dµ

for all real numbers c.

Proof Let

f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0),

g+(x) = max(f(x), 0), g−(x) = max(−f(x), 0),
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u(x) = f+(x) + g+(x) and v(x) = f−(x) + g−(x)

for all x ∈ X. Then the functions u and v are integrable, and f(x) + g(x) =
u(x)− v(x) for all x ∈ X. It follows from Lemma 8.26 that∫

X

(f + g) dµ =

∫
X

u dµ−
∫
X

v dµ

=

∫
X

f+ dµ+

∫
X

g+ dµ−
∫
X

f− dµ−
∫
X

g− dµ

=

∫
X

f dµ+

∫
X

g dµ.

The identity
∫
X
cf dµ = c

∫
X
f dµ follows directly from the definition of the

integral, on considering separately the cases when c > 0, c = 0 and c < 0.

8.7 Lebesgue’s Dominated Convergence Theorem

Theorem 8.28 (Lebesgue’s Dominated Convergence Theorem)
Let (X,A, µ) be a measure space, let f1, f2, f3, . . . be an infinite sequence
of measurable real-valued functions on X, and let f be a measurable real-
valued function on X, where f(x) = lim

j→+∞
fj(x) for all x ∈ X. Suppose

that there exists a non-negative integrable function g:X → [0,+∞] such that
|fj(x)| ≤ g(x) for all j ∈ N and x ∈ X. Then the function f is integrable,
and

lim
j→+∞

∫
X

fj dµ =

∫
X

f dµ.

Proof The conditions of the theorem ensure that g(x) + fj(x) ≥ 0 and
g(x)− fj(x) ≥ 0 for all x ∈ X. Also

lim sup
j→+∞

fj(x) = lim inf
j→+∞

fj(x) = f(x)

for all x ∈ X (see Proposition 5.2). It therefore follows from Fatou’s Lemma
(Lemma 8.25) that∫

X

g(x) dµ+

∫
X

f(x) dµ =

∫
X

(g(x) + f(x)) dµ

=

∫
X

(
lim inf
j→+∞

(g(x) + fj(x))

)
dµ

≤ lim inf
j→+∞

∫
X

(g(x) + fj(x)) dµ

=

∫
X

g(x) dµ+ lim inf
j→+∞

∫
X

fj(x) dµ
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and ∫
X

g(x) dµ−
∫
X

f(x) dµ =

∫
X

(g(x)− f(x)) dµ

=

∫
X

(
lim inf
j→+∞

(g(x)− fj(x))

)
dµ

≤ lim inf
j→+∞

∫
X

(g(x)− fj(x)) dµ

=

∫
X

g(x) dµ− lim sup
j→+∞

∫
X

fj(x) dµ,

and therefore∫
X

f(x) dµ ≤ lim inf
j→+∞

∫
X

fj(x) dµ ≤ lim sup
j→+∞

∫
X

fj(x) dµ ≤
∫
X

f(x) dµ.

Now the extreme left hand side and extreme right hand side of this chain of
inequalities are of course identical. Therefore∫

X

f(x) dµ = lim inf
j→+∞

∫
X

fj(x) dµ = lim sup
j→+∞

∫
X

fj(x) dµ.

It follows follows from this (on applying Proposition 5.2) that the sequence
of integrals

∫
X
fj(x) dµ for j = 1, 2, 3, . . . is convergent, and

lim
j→+∞

∫
X

fj(x) dµ =

∫
X

f(x) dµ,

as required.

8.8 Basic Results concerning Integrable Functions

Lemma 8.29 Let (X,A, µ) be a measure space, let f :X → [0,+∞] be a
non-negative integrable function on X, let c be a real number, where c > 0.
Then

µ({x ∈ X : f(x) ≥ c}) ≤ 1

c

∫
X

f dµ.

Proof Let Ec = {x ∈ X : f(x) ≥ c}, let χEc be the characteristic function of
the set Ec, and let s:X → [0,+∞) be the integrable simple function defined
such that s(x) = cχEc(x) for all x ∈ X. Then f(x) ≥ 0 for all x ∈ X,
s(x) = 0 whenever f(x) < c, and s(x) = c whenever f(x) ≥ c. It follows
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that s(x) ≤ f(x) for all x ∈ X. The definitions of the integrals
∫
X
s dµ and∫

X
f dµ then ensure that

c µ({x ∈ X : f(x) ≥ c}) = c µ(Ec) =

∫
X

s dµ ≤
∫
X

f dµ.

The result follows.

Proposition 8.30 Let (X,A, µ) be a measure space, let f :X → [0,+∞] be
a non-negative integrable function on X. Suppose that

∫
X
f dµ = 0. Then

µ({x ∈ X : f(x) 6= 0}) = 0.

Proof The function f is non-negative. Thus if x ∈ X and f(x) 6= 0 then
f(x) > 0, and therefore there exists some positive integer j for which f(x) >
1/j. It follows that

{x ∈ X : f(x) 6= 0} =
+∞⋃
j=1

Fj,

where Fj = {x ∈ X : f(x) > 1/j} for all positive integers j. Now
∫
X
f dµ = 0

by assumption. It follows from Lemma 8.29 that µ(Fj) = 0 for all positive

integers j. Now µ
(⋃+∞

j=1 Fj

)
≤
∑+∞

j=1 µ(Fj). It follows that

µ({x ∈ X : f(x) 6= 0}) = µ

(
+∞⋃
j=1

Fj

)
= 0,

as required.

Corollary 8.31 Let (X,A, µ) be a measure space, let f :X → [−∞,+∞]
and g:X → [−∞,+∞] be integrable functions on X. Suppose that

∫
X
|f −

g| dµ = 0. Then
µ({x ∈ X : f(x) 6= g(x)}) = 0.

Proof The result follows immediately on applying Proposition 8.30 to the
non-negative integrable function that sends x to |f(x) − g(x)| for all x ∈
X.
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8.9 Properties that hold Almost Everywhere

Let (X,A, µ) be a measure space, and, for each x ∈ X, let P (x) be some
property that may or may not hold at x. If the set of elements x of X for
which the property holds has measure zero then we say that the property
P (x) holds almost nowhere on X. If the set of elements x of X for which
the property does not hold has measure zero then we say that the property
P (x) holds almost everywhere on X.

The result of Corollary 8.31 may be stated as follows. Let (X,A, µ) be a
measure space, let f :X → [−∞,+∞] and g:X → [−∞,+∞] be integrable
functions on X. Suppose that

∫
X
|f − g| dµ = 0. Then the functions f and

g are equal almost everywhere on X.

Lemma 8.32 Let (X,A, µ) be a measure space, and let Let f , g and h be
integrable functions on X. Suppose that the functions f and g are equal
almost everywhere on X and also that the functions g and h are equal almost
everywhere on X. Then the functions f and h are equal almost everywhere
on X.

Proof Note that if f(x) 6= h(x) then either f(x) 6= g(x) or g(x) 6= h(x). It
follows that

{x ∈ X : f(x) 6= h(x)}
⊂ {x ∈ X : f(x) 6= g(x)} ∪ {x ∈ X : g(x) 6= h(x)},

and therefore

µ({x ∈ X : f(x) 6= h(x)})
≤ µ({x ∈ X : f(x) 6= g(x)}) + µ({x ∈ X : g(x) 6= h(x)}).

But
µ({x ∈ X : f(x) 6= g(x)}) = 0

and
µ({x ∈ X : g(x) 6= h(x)}) = 0.

It follows that µ({x ∈ X : f(x) 6= h(x)} = 0, and thus the functions f and h
are equal almost everywhere, as required.
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