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7 Measure Spaces

7.1 Blocks

Definition We define a block in Rn to be a subset of Rn that is a Cartesian
product of subsets of R that are bounded intervals or singleton sets.

Let B be a block in Rn. Then there exist bounded intervals or singleton
sets I1, I2, . . . , In in R such that B = I1 × I2 × · · · × In. Let ai and bi denote
the endpoints of the interval Ii or singleton set for i = 1, 2, . . . , n, where
ai ≤ bi. Then the interval Ii must coincide with one of the intervals (ai, bi),
(ai, bi], [ai, bi) and [ai, bi] determined by its endpoints, where

(ai, bi) = {x ∈ R : ai < x < bi}, (ai, bi] = {x ∈ R : ai < x ≤ bi}

[ai, bi) = {x ∈ R : ai ≤ x < bi}, [ai, bi] = {x ∈ R : ai ≤ x ≤ bi}.

Definition Let B be a block in Rn, and let B = I1 × I2 × · · · × In, where,
for each integer i between 1 and n, either Ii is an interval of strictly positive
length or else Ii is a singleton set consisting of a single real number. We
define the dimension of the block B to be the number of values of i for which
the subset Ii of R is an interval of positive length.

Thus a k-dimensional block B in Rn is the Cartesian product of k bounded
intervals of strictly positive length and n− k singleton sets.

The following two results, characterizing open and closed blocks in n-
dimensional Euclidean space Rn follow directly on applying the definition of
open and closed sets in Rn.

Lemma 7.1 A block in Rn is open in Rn if it is the Cartesian product of n
bounded open intervals.

Lemma 7.2 A block in Rn is closed in Rn if it is the Cartesian product of
bounded closed intervals and singleton sets.

Note that a closed one-dimensional block in R is a closed bounded interval,
and a closed one-dimensional block in Rn is a closed bounded line segment
parallel to one of the coordinate axes. A closed two-dimensional block in Rn

is a closed rectangle with each side parallel to some coordinate axis.

Definition Let B be a block in Rn, and let

B = I1 × I2 × · · · × In
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where Ii is a bounded interval or singleton set in R for i = 1, 2, . . . , n. . The
(n-dimensional) content m(B) is defined so that

m(B) =
n∏
i=1

(bi − ai),

where ai and bi are the lower and upper endpoints respectively of the interval
or singleton set Ii for i = 1, 2, . . . , n. (Thus, for each integer i between 1 and
n, ai = inf Ii, bi = sup Ii, bi > ai in cases where Ii is an interval of positive
length, and bi = ai in cases where Ii is a singleton set.)

Proposition 7.3 Let B be a block in n-dimensional Euclidean space Rn,
and let B1, B2, . . . , Bs be a finite collection of blocks in Rn. Suppose that the

blocks B1, B2, . . . , Bs are pairwise disjoint and B =
s⋃

k=1

Bk. Then m(B) =

s∑
k=1

m(Bk).

Proof The statement of this proposition is an immediate consequence, or
particular case, of Corollary 6.24.

Proposition 7.4 Let B1, B2, . . . , Bs be a finite list whose members are blocks
in Rn. Then there exists a finite list D1, D2, . . . , Dq of blocks in Rn such
that the blocks D1, D2, . . . , Dq are pairwise disjoint and such that, for k =
1, 2, . . . , s, the block Bk is the union of those blocks in the list D1, D2, . . . , Dq

that are contained in Bk. Moreover the content m(Bk) is equal to the sum
of the contents m(Dj) of those blocks Dj in the list D1, D2, . . . , Dq for which
Dj ⊂ Bk.

Proof The collection of subsets of R consisting of the empty set, the single-
ton sets that are of the form {c} for some real number c, and the bounded
intervals is a semiring of subsets of R. (Lemma 6.5). Applying Proposi-
tion 6.14 we deduce that those subsets of Rn that are blocks constitute a
semiring of subsets of Rn. Indeed the definition of blocks ensures that each
block in Rn is a Cartesian product of subsets of R that are singleton sets
or bounded intervals. The result concerning the existence of the finite list
D1, D2, . . . , Dq of blocks therefore follows from Proposition 6.8.

Proposition 7.5 Let B be a block in n-dimensional Euclidean space Rn,
and let B1, B2, . . . , Bs be a finite collection of blocks in Rn. Suppose that

B ⊂
s⋃

k=1

Bk. Then m(B) ≤
s∑

k=1

m(Bk).
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Proof The collection of subsets of R consisting of the empty set, the single-
ton sets that are of the form {c} for some real number c, and the bounded
intervals is a semiring of subsets of R. The required result therefore follows
immediately on applying Proposition 6.19.

Proposition 7.6 Let B be a block in n-dimensional Euclidean space Rn,
and let B1, B2, . . . , Bs be a finite collection of blocks in Rn. Suppose that
the blocks B1, B2, . . . , Bs are pairwise disjoint and are contained in B. Then
s∑

k=1

m(Bk) ≤ m(B).

Proof The collection of subsets of R consisting of the empty set, the single-
ton sets that are of the form {c} for some real number c, and the bounded
intervals is a semiring of subsets of R. The required result therefore follows
immediately on applying Proposition 6.20.

Lemma 7.7 Let B be an block in Rn, and let ε be any positive real number.
Then there exist a closed block F and and open block V such that F ⊂ B ⊂ V ,
m(F ) > m(B)− ε and m(V ) < m(B) + ε.

Proof Suppose that B = I1× I2× · · · × In, where I1, I2, . . . , In are bounded
intervals. Now

lim
h→0

n∏
i=1

(m(Ii) + h) =
n∏
i=1

m(Ii) = m(B).

It follows that, given any positive real number ε, we can choose the positive
real number δ small enough to ensure that

n∏
i=1

(m(Ii)− δ) > m(B)− ε,
n∏
i=1

(m(Ii) + δ) < m(B) + ε.

Let F = J1×J2×· · ·×Jn and V = K1×K2×· · ·×Kn, where J1, J2, . . . , Jn
are closed bounded intervals chosen such that Ji ⊂ Ii and m(Ji) > m(Ii)− δ
for i = 1, 2, . . . , n, and K1, K2, . . . , Kn are open bounded intervals chosen
such that Ii ⊂ Ki and m(Ki) < m(Ii) + δ for i = 1, 2, . . . , n. Then F is
a closed block, V is an open block, F ⊂ B ⊂ V , m(F ) > m(B) − ε and
m(V ) < m(B) + ε, as required.

Any closed n-dimensional block F is a compact subset of Rn. This means
that, given any collection V of open sets in Rn that covers F (so that each
point of F belongs to at least one of the open sets in the collection), there
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exists some finite collection V1, V2, . . . , Vs of open sets belonging to the col-
lection V such that

F ⊂ V1 ∪ V2 ∪ · · · ∪ Vs.

We shall use this property of closed blocks in order to generalize Proposi-
tion 7.5 to countable infinite unions of blocks.

Proposition 7.8 Let A be a block in n-dimensional Euclidean space Rn, and
let C be a countable collection of blocks in Rn. Suppose that A ⊂

⋃
B∈C B.

Then m(A) ≤
∑
B∈C

m(B).

Proof There is nothing to prove if
∑
B∈C

m(B) = +∞. We may therefore

restrict our attention to the case where
∑
B∈C

m(B) < +∞. Moreover the

result is an immediate consequence of Proposition 7.5 if the collection C is
finite. It therefore only remains to prove the result in the case where the
collection C is infinite, but countable. In that case there exists an infinite
sequence B1, B2, B3, . . . of blocks with the property that each block in the
collection C occurs exactly once in the sequence. Let some positive real
number ε be given. It follows from Lemma 7.7 that there exists a closed
block F such that F ⊂ A and m(F ) ≥ m(A) − ε. Also, for each k ∈ N,
there exists an open block Vk such that Bk ⊂ Vk and m(Vk) < m(Bk) + 2−kε.

Then F ⊂
+∞⋃
k=1

Vk, and thus {V1, V2, V3, . . .} is a collection of open sets in Rn

which covers the closed bounded set F . It follows from the compactness of
F that there exists a finite collection k1, k2, . . . , ks of positive integers such
that F ⊂ Vk1 ∪ Vk2 ∪ · · · ∪ Vks . It then follows from Proposition 7.5 that

m(F ) ≤ m(Vk1) +m(Vk2) + · · ·+m(Vks).

Now
1

2k1
+

1

2k2
+ · · ·+ 1

2ks
≤

+∞∑
k=1

1

2k
= 1,

and therefore

m(F ) ≤ m(Vk1) +m(Vk2) + · · ·+m(Vks)

≤ m(Bk1) +m(Bk2) + · · ·+m(Bks) + ε

≤
+∞∑
k=1

m(Bk) + ε.
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Also m(A) < m(F ) + ε. It follows that

m(A) ≤
+∞∑
k=1

m(Bk) + 2ε.

Moreover this inequality holds no matter how small the value of the positive
real number ε. It follows that

m(A) ≤
+∞∑
k=1

m(Bk),

as required.

7.2 Lebesgue Outer Measure

We say that a collection C of n-dimensional blocks covers a subset E of Rn if
E ⊂

⋃
B∈C B, (where

⋃
B∈C B denotes the union of all the blocks belonging to

the collection C). Given any subset E of Rn, we shall denote by CCBn(E)
the set of all countable collections of n-dimensional blocks that cover the
set E.

Definition Let E be a subset of Rn. We define the Lebesgue outer measure
µ∗(E) of E to be the infimum, or greatest lower bound, of the quantities∑
B∈C

m(B), where this infimum is taken over all countable collections C of

n-dimensional blocks that cover the set E. Thus

µ∗(E) = inf

{∑
B∈C

m(B) : C ∈ CCBn(E)

}
.

The Lebesgue outer measure µ∗(E) of a subset E of Rn is thus the great-
est extended real number l with the property that l ≤

∑
B∈C

m(B) for any

countable collection C of n-dimensional blocks that covers the set E. In par-
ticular, µ∗(E) = +∞ if and only if

∑
B∈C

m(B) = +∞ for every countable

collection C of n-dimensional blocks that covers the set E.
Note that µ∗(E) ≥ 0 for all subsets E of Rn.

Lemma 7.9 Let E be a block in Rn. Then µ∗(E) = m(E), where m(E) is
the content of the block E.
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Proof It follows from Proposition 7.8 that m(E) ≤
∑
B∈C

m(B) for any count-

able collection of n-dimensional blocks that covers the block E. Therefore
m(E) ≤ µ∗(E). But the collection {E} consisting of the single block E is it-
self a countable collection of blocks covering E, and therefore µ∗(E) ≤ m(E).
It follows that µ∗(E) = m(E), as required.

Lemma 7.10 Let E and F be subsets of Rn. Suppose that E ⊂ F . Then
µ∗(E) ≤ µ∗(F ).

Proof Any countable collection of n-dimensional blocks that covers the set F
will also cover the set E, and therefore CCBn(F ) ⊂ CCBn(E). It follows
that

µ∗(F ) = inf

{∑
B∈C

m(B) : C ∈ CCBn(F )

}

≥ inf

{∑
B∈C

m(B) : C ∈ CCBn(E)

}
= µ∗(E),

as required.

Proposition 7.11 Let E be a countable collection of subsets of Rn. Then

µ∗
(⋃

E∈E
E
)
≤
∑
E∈E

µ∗(E).

Proof Let K = N in the case where the countable collection E is infinite,
and let K = {1, 2, . . . ,m} in the case where the collection E is finite and
has m elements. Then there exists a bijective function ϕ:K → E . We define
Ek = ϕ(k) for all k ∈ K. Then E = {Ek : k ∈ K}, and any subset of Rn

belonging to the collection E is of the form Ek for exactly one element k of
the indexing set K.

Let some positive real number ε be given. Then corresponding to each
element k of K there exists a countable collection Ck of n-dimensional blocks
covering the set Ek for which∑

B∈Ck

m(B) < µ∗(Ek) +
ε

2k
.

Let C =
⋃
k∈K Ck. Then C is a collection of n-dimensional blocks that covers

the union
⋃
E∈E E of all the sets in the collection E . Moreover every block

belonging to the collection C belongs to at least one of the collections Ck,
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and therefore belongs to exactly one of the collections Dk, where Dk = Ck \⋃
j<k Cj. It follows that

µ∗
(⋃

E∈E
E
)
≤

∑
B∈C

m(B) =
∑
k∈K

∑
B∈Dk

m(B)

≤
∑
k∈K

∑
B∈Ck

m(B) ≤
∑
k∈K

(
µ∗(Ek) +

ε

2k

)
≤

∑
k∈K

µ∗(Ek) + ε

Thus µ∗
(⋃

E∈E E
)
≤
∑
k∈K

µ∗(Ek) + ε, no matter how small the value of ε. It

follows that µ∗
(⋃

E∈E E
)
≤
∑
k∈K

µ∗(Ek), as required.

Proposition 7.12 Let B be a block in Rn. Then

µ∗(A) = µ∗(A ∩B) + µ∗(A \B)

for all subsets A of Rn.

Proof First we deal with the case when µ∗(A) = +∞, and this case either
µ∗(A∩B) = +∞ or else µ∗(A\B) = +∞ because otherwise the subadditivity
of Lebesgue outer measure (Proposition 7.11) would ensure that µ∗(A), being
non-negative and less than the sum of two finite quantities, would itself be a
finite quantity. The stated result is thus valid in cases where µ∗(A) = +∞.

Now suppose that µ∗(A) < +∞. Let some positive real number ε be
given. It then follows from the definition of Lebesgue outer measure that
there exists a collection (Ci : i ∈ I) of blocks indexed by a countable set I
for which ∑

i∈I

m(Ci) < µ∗(A) + ε.

Then, for each i ∈ I, Proposition 7.4 guarantees the existence of a finite list
Di,1, Di,2, . . . Di,q(i) of blocks satisfying the following conditions:

• the blocks Di,1, Di,2, . . . Di,q(i) are pairwise disjoint;

• Ci is the union of all the blocks Di,k for which 1 ≤ k ≤ q(i);

• Ci ∩ B is the union of those blocks Di,k with 1 ≤ k ≤ q(i) for which
Di,k ⊂ Ci ∩B.

48



For each i ∈ I, let L(i) denote the set of integers between 1 and q(i) for
which Di,k 6⊂ Ci ∩ B. and let I0 denote the subset of I consisting of those
i ∈ I for which L(i) is non-empty. Then

Ci \B ⊂
⋃

k∈L(i)
Di,k

for all i ∈ I0, and

A \B ⊂
⋃

i∈I0
(Ci \B),

and therefore
A \B ⊂

⋃
i∈I0

⋃
k∈L(i)

Di,k

It then follows from the definition of Lebesgue outer measure that

µ∗(A \B) ≤
∑
i∈I0

∑
k∈L(i)

m(Di,k),

where m(Di,k) denotes the content of the block Di,k for all i ∈ I and for all
integers k in the range 1 ≤ k ≤ q(i). But, for each i ∈ I0, the content m(Ci)
of the block Ci is equal to the sum of the contents m(Di,k) of the blocks Di,k

for all integer values of k satisfying 1 ≤ k ≤ q(i) (see Proposition 7.3), whilst
the content m(Ci∩B) of the block Ci∩B is equal to the sum of the contents
m(Di,k) of those blocks Di,k with 1 ≤ k ≤ q(i) for which Di,k ⊂ Ci ∩ B. It
follows that, for all i ∈ I0,∑

k∈L(i)

m(Di,k) = m(Ci)−m(Ci ∩B).

Also m(Ci) = m(Ci ∩B) for all i ∈ I \ I0. It follows that

µ∗(A \B) ≤
∑
i∈I0

∑
k∈L(i)

m(Di,k)

=
∑
i∈I0

(m(Ci)−m(Ci ∩B))

=
∑
i∈I

(m(Ci)−m(Ci ∩B)).

The definition of definition of Lebesgue outer measure also ensures that

µ∗(A ∩B) ≤
∑
i∈I

m(Ci ∩B).
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Adding these two inequalities, we find that

µ∗(A ∩B) + µ∗(A \B) ≤
∑
i∈I

µ(Ci) < µ∗(A) + ε.

We have now shown that

µ∗(A ∩B) + µ∗(A \B) < µ∗(A) + ε

for all strictly positive numbers ε. It follows that

µ∗(A ∩B) + µ∗(A \B) ≤ µ∗(A).

The reverse inequality

µ∗(A) ≤ µ∗(A ∩B) + µ∗(A \B),

is a consequence of Proposition 7.11. It follows that

µ∗(A) = µ∗(A ∩B) + µ∗(A \B),

as required.

7.3 Outer Measures

Definition Let X be a set, and let P(X) be the collection of all subsets
of X. An outer measure λ:P(X) → [0,+∞] on X is a function, mapping
subsets of X to non-negative extended real numbers, which has the following
properties:

(i) λ(∅) = 0;

(ii) λ(E) ≤ λ(F ) for all subsets E and F of X that satisfy E ⊂ F ;

(iii) λ
(⋃

E∈E E
)
≤
∑
E∈E

λ(E) for any countable collection E of subsets of X.

Lebesgue outer measure is an outer measure on the set Rn. (This follows
directly from the definition of Lebesgue outer measure, and from Lemma 7.10
and Proposition 7.11.)

We shall prove that any outer measure on a set X determines a collection
of subsets of X with particular properties. The subsets belonging to this col-
lection are known as measurable sets. Any countable union or intersection of
measurable sets is itself a measurable set. Also any difference of measurable
sets is itself a measurable set. We shall also prove that if C is any countable
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collection of pairwise disjoint measurable sets then λ
(⋃

E∈E E
)

=
∑
E∈E

λ(E).

These results are fundamental to the branch of mathematics known as mea-
sure theory. Moreover the existence of such collections of measurable sets
underlies the powerful and very general theory of integration introduced into
mathematics by Lebesgue.

Definition Let λ be an outer measure on a set X. A subset E of X is said
to be λ-measurable if λ(A) = λ(A ∩ E) + λ(A \ E) for all subsets A of X.

The above definition of measurable sets may seem at first somewhat
strange and unmotivated. Nevertheless it serves to characterize a collection
of subsets of X with convenient properties, as we shall see.

Proposition 7.13 Let λ be an outer measure on a set X. Then the empty
set ∅ and the whole set X are λ-measurable. Moreover the complement X \E
of E, and the union E ∪ F , intersection E ∩ F and difference E \ F of E
and F are λ-measurable for all λ-measurable subsets E and F of X.

Proof It follows directly from the definition of λ-measurability that ∅ and
X are λ-measurable.

For each subset E of X, let us denote the complement X \E of E in X by
Ec. Then A \E = A∩Ec for all subsets A and E of X, and thus a subset E
of X is λ-measurable if and only if

λ(A) = λ(A ∩ E) + λ(A ∩ Ec)

for all subsets A of X. Now (Ec)c = E. It follows that if a subset E of X is
λ-measurable, then so is Ec. Thus X \E is λ-measurable for all measurable
subsets E of X.

Let E and F be λ-measurable subsets of X, and let A be an arbitrary
subset of X. Then

λ(A) = λ(A ∩ E) + λ(A ∩ Ec).

Also
λ(A ∩ E) = λ(A ∩ E ∩ F ) + λ(A ∩ E ∩ F c)

and
λ(A ∩ Ec) = λ(A ∩ Ec ∩ F ) + λ(A ∩ Ec ∩ F c).

It follows that

λ(A) = λ(A ∩ E ∩ F ) + λ(A ∩ E ∩ F c)

+ λ(A ∩ Ec ∩ F ) + λ(A ∩ Ec ∩ F c).
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Now, replacing A by A ∩ (E ∪ F ), we find that

λ(A ∩ (E ∪ F )) = λ(A ∩ (E ∪ F ) ∩ E ∩ F )

+ λ(A ∩ (E ∪ F ) ∩ E ∩ F c)

+ λ(A ∩ (E ∪ F ) ∩ Ec ∩ F )

+ λ(A ∩ (E ∪ F ) ∩ Ec ∩ F c).

But

A ∩ (E ∪ F ) ∩ E ∩ F = A ∩ E ∩ F,
A ∩ (E ∪ F ) ∩ E ∩ F c = A ∩ E ∩ F c,

A ∩ (E ∪ F ) ∩ Ec ∩ F = A ∩ Ec ∩ F,
A ∩ (E ∪ F ) ∩ Ec ∩ F c = ∅.

It follows therefore that

λ(A ∩ (E ∪ F )) = λ(A ∩ E ∩ F ) + λ(A ∩ E ∩ F c)

+ λ(A ∩ Ec ∩ F ).

Also A ∩ (E ∪ F )c = A ∩ Ec ∩ Ec. It follows that

λ(A) = λ(A ∩ (E ∪ F )) + λ(A ∩ (E ∪ F )c),

for all subsets A of X, and thus the subset E ∪ F of X is λ-measurable.
Also if E and F are λ-measurable subsets of X then so are Ec and F c,

and therefore Ec∪F c is a λ-measurable subset of X. But Ec∪F c = (E∩F )c.
It follows that E ∩ F is λ-measurable for all λ-measurable subsets E and F
of X. Moreover E \ F = E ∩ F c, and therefore E \ F is λ-measurable for all
λ-measurable subsets E and F of X. This completes the proof.

It follows from the above proposition that any finite union or intersection
of measurable sets is measurable.

We say that the sets in some collection are pairwise disjoint if the in-
tersection of any two distinct sets belonging to this collection is the empty
set.

Lemma 7.14 Let λ be an outer measure on a set X, let A be a subset of X,
and let E1, E2, . . . , Em be pairwise disjoint λ-measurable sets. Then

λ

(
A ∩

m⋃
k=1

Ek

)
=

m∑
k=1

λ(A ∩ Ek).
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Proof There is nothing to prove if m = 1. Suppose that m > 1. It follows
from the definition of measurable sets that

λ

(
A ∩

m⋃
k=1

Ek

)
= λ

((
A ∩

m⋃
k=1

Ek

)
\ Em

)
+ λ

((
A ∩

m⋃
k=1

Ek

)
∩ Em

)
.

But

(
A ∩

m⋃
k=1

Ek

)
\ Em = A ∩

m−1⋃
k=1

Ek and

(
A ∩

m⋃
k=1

Ek

)
∩ Em = A ∩ Em,

because the sets E1, E2, . . . , Em are pairwise disjoint. Therefore

λ

(
A ∩

m⋃
k=1

Ek

)
= λ

(
A ∩

m−1⋃
k=1

Ek

)
+ λ(A ∩ Em).

The required result therefore follows by induction on m.

Proposition 7.15 Let λ be an outer measure on a set X. Then the union
of any countable collection of λ-measurable subsets of X is λ-measurable.

Proof The union of any two λ-measurable sets is λ-measurable (Proposi-
tion 7.13). It follows from this that the union of any finite collection of
λ-measurable sets is λ-measurable.

Now let E1, E2, E3, . . . be an infinite sequence of pairwise disjoint λ-
measurable subsets of X. We shall prove that the union of these sets is

λ-measurable. Let A be a subset of X. Now
m⋃
k=1

Ek is a λ-measurable set

for each positive integer m, because any finite union of λ-measurable sets is
λ-measurable, and therefore

λ(A) = λ

(
A ∩

m⋃
k=1

Ek

)
+ λ

(
A \

m⋃
k=1

Ek

)
for all positive integers m. Moreover it follows from Lemma 7.14 that

λ

(
A ∩

m⋃
k=1

Ek

)
=

m∑
k=1

λ(A ∩ Ek).

Also

A \
+∞⋃
k=1

Ek ⊂ A \
m⋃
k=1

Ek,

and therefore

λ

(
A \

m⋃
k=1

Ek

)
≥ λ

(
A \

+∞⋃
k=1

Ek

)
.
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It follows that

λ(A) ≥
m∑
k=1

λ(A ∩ Ek) + λ

(
A \

+∞⋃
k=1

Ek

)
,

and therefore

λ(A) ≥ lim
m→+∞

m∑
k=1

λ(A ∩ Ek) + λ

(
A \

+∞⋃
k=1

Ek

)

=
+∞∑
k=1

λ(A ∩ Ek) + λ

(
A \

+∞⋃
k=1

Ek

)
.

However it follows from the definition of outer measures that

λ

(
A ∩

+∞⋃
k=1

Ek

)
= λ

(
+∞⋃
k=1

(A ∩ Ek)

)
≤

+∞∑
k=1

λ(A ∩ Ek).

Therefore

λ(A) ≥ λ

(
A ∩

+∞⋃
k=1

Ek

)
+ λ

(
A \

+∞⋃
k=1

Ek

)
.

But the set A is the union of the sets A∩
+∞⋃
k=1

Ek and A\
+∞⋃
k=1

Ek, and therefore

λ(A) ≤ λ

(
A ∩

+∞⋃
k=1

Ek

)
+ λ

(
A \

+∞⋃
k=1

Ek

)
.

We conclude therefore that

λ(A) = λ

(
A ∩

+∞⋃
k=1

Ek

)
+ λ

(
A \

+∞⋃
k=1

Ek

)

for all subsets A of X. We conclude from this that the union of any pairwise
disjoint sequence of λ-measurable subsets of X. is itself λ-measurable.

Now let E1, E2, E3, . . . be a countable sequence of (not necessarily pairwise

disjoint) λ-measurable sets. Then
+∞⋃
k=1

Ek =
+∞⋃
k=1

Fk, where F1 = E1, and

Fk = Ek \
k−1⋃
j=1

Ej for all integers k satisfying k > 1. Now we have proved that

any finite union of λ-measurable sets is λ-measurable, and any difference of
λ-measurable sets is λ-measurable. It follows that the sets F1, F2, F3, . . . are
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all λ-measurable. These sets are also pairwise disjoint. We conclude that the
union of the sets F1, F2, F3, . . . is λ-measurable, and therefore the union of
the sets E1, E2, E3, . . . is λ-measurable.

We have now shown that the union of any finite collection of λ-measurable
sets is λ-measurable, and the union of any infinite sequence of λ-measurable
sets is λ-measurable. We conclude that the union of any countable collection
of λ-measurable sets is λ-measurable, as required.

Corollary 7.16 Let λ be an outer measure on a set X. Then the intersection
of any countable collection of λ-measurable subsets of X is λ-measurable.

Proof Let C be a countable collection of λ-measurable subsets of X. Then
X \

⋂
E∈C E =

⋃
E∈C(X \ E) (i.e., the complement of the intersection of the

sets in the collection is the union of the complements of those sets.) Now
X\E is λ-measurable for every E ∈ C. Therefore the complement X\

⋂
E∈C E

of
⋂
E∈C E is a union of λ-measurable sets, and is thus itself λ-measurable. It

follows that intersection
⋂
E∈C E of the sets in the collection is λ-measurable,

as required.

Proposition 7.17 Let λ be an outer measure on a set X, let A be a subset
of X, and let C be a countable collection of pairwise disjoint λ-measurable
sets. Then

λ

(
A ∩

⋃
E∈C

E

)
=
∑
E∈C

λ(A ∩ E).

Proof It follows from Lemma 7.14 that the required identity holds for any
finite collection of pairwise disjoint λ-measurable sets.

Now let E1, E2, E3, . . . be an infinite sequence of pairwise disjoint λ-
measurable subsets of X. Then

m∑
k=1

λ(A ∩ Ek) = λ

(
A ∩

m⋃
k=1

Ek

)
≤ λ

(
A ∩

+∞⋃
k=1

Ek

)

for all positive integers m. It follows that

+∞∑
k=1

λ(A ∩ Ek) = lim
m→+∞

m∑
k=1

λ(A ∩ Ek) ≤ λ

(
A ∩

+∞⋃
k=1

Ek

)
.

But the definition of outer measures ensures that

λ

(
A ∩

+∞⋃
k=1

Ek

)
= λ

(
+∞⋃
k=1

(A ∩ Ek)

)
≤

+∞∑
k=1

λ(A ∩ Ek)
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We conclude therefore that λ

(
A ∩

+∞⋃
k=1

Ek

)
=

+∞∑
k=1

λ(A ∩ Ek) for any infinite

sequence E1, E2, E3, . . . of pairwise disjoint λ-measurable subsets of X. Thus
the required identity holds for any countable collection of pairwise disjoint
λ-measurable subsets of X, as required.

7.4 Measure Spaces

Definition Let X be a set. A collection A of subsets of X is said to a σ-
algebra (or sigma-algebra) of subsets of X if it has the following properties:

(i) the empty set ∅ is a member of A;

(ii) the complement X \E of any member E of A is itself a member of A;

(iii) the union of any countable collection of members ofA is itself a member
of A.

Lemma 7.18 Let X be a set, and let A be a σ-algebra of subsets of X. Then
the intersection of any countable collection of members of the σ-algebra A is
itself a member of A.

Proof Let C be a countable collection of sets belonging to A. Then X \E ∈
A for all E ∈ C, and therefore

⋃
E∈C

(X \E) ∈ A. But
⋃
E∈C

(X \E) = X \
⋂
E∈C

E.

It follows that the complement of the intersection
⋂
E∈C

E of the sets in the

collection C is itself a member of A, and therefore the intersection
⋂
E∈C

E of

those sets is a member of the σ-algebra A, as required.

Let X be a set, and let C be a collection of subsets of X. The collection
of all subsets of X is a σ-algebra. Also the intersection of any collection of
σ-algebras of subsets of X is itself a σ-algebra. Let A be the intersection of
all σ-algebras B of subsets of X that have the property that C ⊂ B. Then
A is a σ-algebra, and C ⊂ A. Moreover if B is a σ-algebra of subsets of X,
and if C ⊂ B then A ⊂ B. The σ-algebra A may therefore be regarded as
the smallest σ-algebra of subsets of X for which C ⊂ A. We shall refer to
this σ-algebra A as the σ-algebra of subsets of X generated by C. We see
therefore that any collection of subsets of a set X generates a σ-algebra of
subsets of X which is the smallest σ-algebra of subsets of X that contains
the given collection of subsets.
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Definition Let X be a set, and let A be a σ-algebra of subsets of X. A
measure on A is a function µ:A → [0,+∞], taking values in the set [0,+∞]
of non-negative extended real numbers, which has the property that

µ

(⋃
E∈C

E

)
=
∑
E∈C

µ(E)

for any countable collection C of pairwise disjoint sets belonging to the σ-
algebra A.

Definition A measure space (X,A, µ) consists of a set X, a σ-algebra A of
subsets of X, and a measure µ:A → [0,+∞] defined on this σ-algebra A.
A subset E of a measure space (X,A, µ) is said to be measurable (or µ-
measurable) if it belongs to the σ-algebra A.

Theorem 7.19 Let λ be an outer measure on a set X. Then the collection
Aλ of all λ-measurable subsets of X is a σ-algebra. The members of this
σ-algebra are those subsets E of X with the property that λ(A) = λ(A ∩
E) + λ(A \ E) for any subset A of X. Moreover the restriction of the outer
measure λ to the λ-measurable sets defines a measure µ on the σ-algebra Aλ.
Thus (X,A, µ) is a measure space.

Proof Immediate from Propositions 7.13, 7.15 and 7.17.

Definition A measure space (X,A, µ) is said to be complete if, given any
measurable subset E of X satisfying µ(E) = 0, and given any subset F of
E, the subset F is also measurable. The measure µ on A is then said to be
complete.

Lemma 7.20 Let λ be an outer measure on a set X, let A be the σ-algebra
consisting of the λ-measurable subsets of X, and let µ be the measure on
A obtained by restricting the outer measure λ to the members of A. Then
(X,A, µ) is a complete measure space.

Proof Let E be a measurable set in X satisfying µ(E) = 0, let F be a subset
of E, and let A be a subset of X. Then A∩F ⊂ A∩E and A\E ⊂ A\F ⊂ A,
and therefore 0 ≤ λ(A ∩ F ) ≤ λ(A ∩ E) and λ(A \ E) ≤ λ(A \ F ) ≤ λ(A).
Now it follows from the definition of measurable sets in X that λ(A) =
λ(A∩E) +λ(A \E). Moreover 0 ≤ λ(A∩E) ≤ λ(E) = µ(E) = 0. It follows
that λ(A∩E) = 0 and λ(A \E) = λ(A). The inequalities above then ensure
that λ(A∩F ) = 0 and λ(A\F ) = λ(A). But then λ(A) = λ(A∩F )+λ(A\F ),
and thus F is λ-measurable, as required.
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7.5 Lebesgue Measure on Euclidean Spaces

We are now in a position to give the definition of Lebesgue measure on n-
dimensional Euclidean space Rn. We have already defined an outer mea-
sure µ∗ on Rn known as Lebesgue outer measure. We defined a block in Rn

to be a subset of Rn that is a Cartesian product of n bounded intervals. The
product of the lengths of those intervals is the content of the block. Then,
given any subset E of Rn, we defined the Lebesgue outer measure µ∗(E) of
the set E to be the infimum of the quantities

∑
B∈C

m(B), where the infimum

is taken over all countable collections of blocks in Rn that cover the set E,
and where m(B) denotes the content of a block B in such a collection. Thus∑

B∈C

m(B) ≥ µ∗(E)

for every countable collection C of blocks in Rn that covers E; and, moreover,
given any positive real number ε, there exists a countable collection C of
blocks in Rn covering E for which

µ∗(E) ≤
∑
B∈C

m(B) ≤ µ∗(E) + ε.

These properties characterize the Lebesgue outer measure µ∗(E) of the set E.
We say that a subset E of Rn is Lebesgue-measurable if and only if it

is µ∗-measurable, where µ∗ denotes Lebesgue outer measure on Rn. Thus
a subset E of Rn is Lebesgue-measurable if and only if µ∗(A) = µ∗(A ∩
E) + µ∗(A \ E) for all subsets A of Rn. The collection Ln of all Lebesgue-
measurable sets is a σ-algebra of subsets of Rn, and therefore the difference
of any two Lebesgue-measurable subsets of Rn is Lebesgue-measurable, and
any countable union or intersection of Lebesgue-measurable sets is Lebesgue-
measurable. The Lebesgue measure µ(E) of a Lebesgue-measurable subset E
of Rn is defined to be the Lebesgue outer measure µ∗(E) of that set. Thus
Lebesgue measure µ is the restriction of Lebesgue outer measure µ∗ to the
σ-algebra Ln of Lebesgue-measurable subsets of Rn.

It follows from Lemma 7.20 that Lebesgue measure is a complete measure
on Rn.

Remark The Lebesgue measure µ(E) of a subset E of R2 may be regarded
as the area of that set. It is not possible to assign an area to every subset of R2

in such a way that the areas assigned to such subsets have all the properties
that one would expect from a well-defined notion of area. One might at first
sight expect that Lebesgue outer measure would provide a natural definition
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of area, applicable to all subsets of the plane, that would have the properties
that one would expect of a well-defined notion of area. One would expect in
particular that the area of a disjoint union of two subsets of the plane would
be the sum of the areas of those sets. However it is possible to construct
examples of disjoint subsets E and F in the plane which interpenetrate one
another to such an extent as to ensure that µ∗(E∪F ) < µ∗(E)+µ∗(F ), where
µ∗ denotes Lebesgue outer measure on R2. The σ-algebra L2 consisting of the
Lebesgue-measurable subsets of the plane R2 is in fact that largest collection
of subsets of the plane for which the sets in the collection have a well-defined
area; the Lebesgue measure of a Lebesgue-measurable subset of the plane can
be regarded as the area of that set. Similarly the σ-algebra L3 of Lebesgue-
measurable subsets of three-dimensional Euclidean space R3 is the largest
collection of subsets of R3 for which the sets in the collection have a well-
defined volume.

Proposition 7.21 Every closed n-dimensional block in Rn is Lebesgue-mea-
surable.

Proof Proposition 7.12, ensures that closed blocks have the property that
characterizes Lebesgue-measurable subsets of Rn.

Proposition 7.22 Every open set in Rn is Lebesgue-measurable.

Proof Let W be the collection of all open blocks in Rn that are Cartesian
products of intervals whose endpoints are rational numbers. Now the set I of
all open intervals in Rn whose endpoints are rational numbers is a countable
set, as the function that sends such an interval to its endpoints defines an
injective function from I to the countable set Q × Q. Moreover there is a
bijection from the countable set In to W that sends each ordered n-tuple
(I1, I2, . . . , In) of open intervals to the open block I1×I2×· · ·×In. It follows
that the collection W is countable.

Let V be an open set in Rn, and let v be a point of V . Then there exists
some positive real number δ such that B(v, δ) ⊂ V , where B(v, δ) ⊂ V
denotes the open ball of radius δ centred on v. Moreover there exist open
blocks W belonging toW for which v ∈ W and W ⊂ B(v, δ). It follows that
the open set V is the union of the countable collection

{W ∈ W : W ⊂ V }

of open blocks. Now each open block is a Lebesgue-measurable set, and any
countable union of Lebesgue-measurable sets is itself a Lebesgue-measurable
set. Therefore the open set V is a Lebesgue-measurable set, as required.
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Corollary 7.23 Every closed set in Rn is Lebesgue-measurable.

Proof This follows immediately from Proposition 7.22, since the comple-
ment of any Lebesgue-measurable set is itself Lebesgue measurable set.

Definition A subset of Rn is said to be a Borel set if it belongs to the
σ-algebra generated by the collection of open sets in Rn.

All open sets and closed sets in Rn are Borel sets. The collection of all
Borel sets is a σ-algebra in Rn and is the smallest such σ-algebra containing
all open subsets of Rn.

Definition A measure defined on a σ-algebra A of subsets of Rn is said to
be a Borel measure if the σ-algebra A contains all the open sets in Rn.

Corollary 7.24 Lebesgue measure on Rn is a Borel measure, and thus every
Borel set in Rn is Lebesgue-measurable.

Remark The definitions of Borel sets and Borel measures generalize in the
obvious fashion to arbitrary topological spaces. The collection of Borel sets
in a topological space X is the σ-algebra generated by the open subsets of X.
A measure defined on a σ-ring of subsets of X is said to be a Borel measure
if every Borel set is measurable.

7.6 Basic Properties of Measures

Let (X,A, µ) be a measure space. Then the measure µ is defined on the
σ-algebra A of measurable subsets of X, and takes values in the set [0,+∞],
where [0,+∞] = [0,+∞)∪{+∞}. Thus µ(E) is defined for each measurable
subset E of X, and is either a non-negative real number, or else has the value
+∞. The measure µ is by definition countably additive, so that

µ

(⋃
E∈C

E

)
=
∑
E∈C

µ(E)

for every countable collection C of pairwise disjoint measurable subsets of X.
In particular µ is finitely additive, so that if E1, E2, . . . , Er are measurable
subsets of X that are pairwise disjoint, then

µ(E1 ∪ E2 ∪ · · · ∪ Er) = µ(E1) + µ(E2) + · · ·+ µ(Er).

Also

µ

(
+∞⋃
j=1

Ej

)
=

+∞∑
j=1

µ(Ej)
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for any infinite sequence E1, E2, E3, . . . of pairwise disjoint measurable subsets
of X.

Let E and F be measurable subsets of X. Then E = (E ∩ F ) ∪ (E \ F ),
and the sets E∩F and E\F are measurable and disjoint. It therefore follows
from the finite additivity of the measure µ that µ(E) = µ(E∩F )+µ(E \F ).
Also E ∪ F is the disjoint union of E and F \ E. and therefore

µ(E ∪ F ) = µ(E) + µ(F \ E) = µ(E ∩ F ) + µ(E \ F ) + µ(F \ E).

It follows that

µ(E ∪ F ) + µ(E ∩ F )

= (µ(E ∩ F ) + µ(E \ F )) + (µ(E ∩ F ) + µ(F \ E))

= µ(E) + µ(F ).

Now let E and F be measurable subsets of X that satisfy F ⊂ E. Then
µ(E) = µ(F ) + µ(E \ F ), and µ(E \ F ) ≥ 0. It follows that µ(F ) ≤ µ(E).
Moreover µ(E \ F ) = µ(E)− µ(F ), provided that µ(E) < +∞.

Lemma 7.25 Let (X,A, µ) be a measure space, and let E1, E2, E3, . . . be an
infinite sequence of measurable subsets of X. Suppose that Ej ⊂ Ej+1 for all
positive integers j. Then

µ

(
+∞⋃
j=1

Ej

)
= lim

j→+∞
µ(Ej).

Proof Let E =
+∞⋃
j=1

Ej, let F1 = E1, and let Fj = Ej \
j−1⋃
k=1

Ek for all integers j

satisfying j > 1. Then the sets F1, F2, F3, . . . are pairwise disjoint, the set Ej
is the disjoint union of the sets Fk for which 1 ≤ k ≤ j, and the set E is the
disjoint union of all of the sets Fk. It therefore follows from the countable
(and finite) additivity of the measure µ that

µ(E) =
+∞∑
k=1

µ(Fk), µ(Ej) =

j∑
k=1

µ(Fk).

But then

µ(E) =
+∞∑
k=1

µ(Fk) = lim
j→+∞

j∑
k=1

µ(Fk) = lim
j→+∞

µ(Ej),

as required.
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Lemma 7.26 Let (X,A, µ) be a measure space, and let E1, E2, E3, . . . be an
infinite sequence of measurable subsets of X. Suppose that Ej+1 ⊂ Ej for all
positive integers j, and that µ(E1) < +∞. Then

µ

(
+∞⋂
j=1

Ej

)
= lim

j→+∞
µ(Ej).

Proof Let Gj = E1 \ Ej for all positive integers j, let E =
+∞⋂
j=1

Ej, and let

G =
+∞⋃
j=1

Gj. It then follows from Lemma 7.25 that µ(G) = lim
j→+∞

µ(Gj).

Now Ej = E1 \ Gj for all positive integers j, and µ(E1) < ∞. It follows
that µ(Ej) = µ(E1) − µ(Gj) for all positive integers j. Also E = E1 \ G.
Therefore

µ(E) = µ(E1)− µ(G) = µ(E1)− lim
j→+∞

µ(Gj) = lim
j→+∞

µ(Ej),

as required.

7.7 The Existence of Non-Measurable Sets

Definition For each real number u, let τu:R → R be the translation map-
ping the set R of real numbers onto itself defined so that τu(x) = x+u for all
real numbers x. We say that an outer measure λ on R is translation-invariant
if λ(τu(E)) = λ(E) for all subsets E of R and for all real numbers u.

Proposition 7.27 Let λ be a translation-invariant outer measure on the
set R of real numbers. Suppose that [0, 1) is λ-measurable and λ([0, 1)) = 1.
Then there exist subsets of R that are not λ-measurable.

Proof Let B = [0, 1) and, for each real number u, let τu:R→ R and ρu:B →
B be defined such that, for all x ∈ B, τu(x) = x+ u and ρu(x) is the unique
element of B for which x+ u− ρu(x) is an integer.

Let u ∈ B. Then

ρu(x) =

{
x+ u if x < 1− u;
x+ u− 1 if x ≥ 1− u.

Now the set B is λ-measurable. The translation-invariance of the outer
measure λ then ensures that the set τ−u(B) is λ-measurable. Indeed let A
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be a subset of R. Then

λ(A) = λ(τu(A)) = λ(τu(A) ∩B) + λ(τu(A) \B)

= λ(τ−u(τu(A) ∩B))) + λ(τ−u(τu(A) \B))

= λ(A ∩ τ−u(B)) + λ(A \ τ−u(B)).

Thus the set τ−u(B) is λ-measurable, as claimed.
Next we show that λ(ρu(E)) = λ(E) for all subsets E of B and for all

u ∈ B. Now
B ∩ τ−u(B) = {x ∈ B : x < 1− u}

and
B \ τ−u(B) = {x ∈ B : x ≥ 1− u}.

Therefore ρu(x) = τu(x) for all x ∈ B ∩ τ−u(B) and ρu(x) = τu−1(x) for all
x ∈ B \ τ−u(B). It follows that

λ(ρu(E) ∩B) = λ(ρu(E ∩ τ−u(B))) = λ(τu(E ∩ τ−u(B)))

= λ(E ∩ τ−u(B))

and

λ(ρu(E) \B) = λ(ρu(E \ τ−u(B))) = λ(τu−1(E \ τ−u(B)))

= λ(E \ τ−u(B))).

But
λ(ρu(E)) = λ(ρu(E) ∩B) + λ(ρu(E) \B)

and
λ(E) = λ(E ∩ τ−u(B)) + λ(E \ τ−u(B)),

because the sets B and τ−u(B) are λ-measurable. It follows that λ(ρu(E)) =
λ(E) for all u ∈ R.

Now let us define a relation ∼ on the interval B, where B = [0, 1), where
real numbers x and y belonging to B satisfy x ∼ y if and only if x − y is a
rational number. Clearly x ∼ x for all x ∈ B, and if x, y ∈ B satisfy x ∼ y
then they also satisfy y ∼ x. And if x, y, z ∈ B satisfy x ∼ y and y ∼ z then
they also satisfy x ∼ z. Thus the relation ∼ on B is reflexive, symmetric and
transitive, and is therefore an equivalence relation. This equivalence relation
then partitions the set B into equivalence classes: every real number in the
set B belongs to a unique equivalence class; two real numbers in the set
set B belong to the same equivalence class if and only if their difference is a
rational number.
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Now the Axiom of Choice in set theory guarantees the existence of a
subset E of B that contains exactly one element from each equivalence class.
Then, given any real number x in the set B, there exists exactly one element z
of the set E for which x − z is a rational number. If x ≥ z then x = ρq(z)
if and only if q = x − z. On the other hand if x < z then x = ρq(z) if and
only if q = x− z + 1. It follows that, given any real number x in the set B,
there exists a unique real number z belonging to E and a unique rational
number q satisfying 0 ≤ q < 1 for which x = ρq(z). We conclude from this
that the set B is the union of the sets ρq(E) as q ranges over the set T of all
rational numbers q satisfying 0 ≤ q < 1. Moreover the sets ρq(E) obtained
as q ranges over the countable set T are pairwise disjoint.

But λ(ρq(E)) = λ(E) for all q ∈ T . If it were the case that λ(E) = 0,
it would then follow that λ(B) = 0, because λ is an outer measure. But
λ(B) = 1. It then follows that the sum

∑
q∈T

λ(ρq(E)) diverges, and therefore

cannot equal λ(B), though B =
⋃
q∈T ρq(E). If the set E were λ-measurable,

then all the sets ρq(E) would be λ-measurable, and the sum of the outer
measures of these pairwise-disjoint sets would be equal to λ(B). Because
this is not the case, it follows that the set E cannot be λ-measurable. The
result follows.
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