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4 Countable and Uncountable Sets

4.1 Functions between Sets

Let X and Y be sets, and let f :X → Y be a function from X to Y . The
function f is injective if, given any element y of Y , there exists at most one
element x of X for which f(x) = y. The function f is surjective if, given any
element y of Y , there exists at least one element x of X for which f(x) = y.
The function f is bijective if it is both injective and surjective. Thus the
function f :X → Y is bijective if and only if, given any element y of Y , there
exists a exactly one element x of X for which f(x) = y. A function f :X → Y
is bijective if and only if it has a well-defined inverse f−1:Y → X. Injective,
surjective and bijective functions may be referred to as injections, surjections
and bijections respectively.

4.2 Countable Sets

Definition A non-empty set X is said to be countable if there exists an
injection mapping X into the set N of positive integers. The empty set ∅ is
also said to be countable.

Lemma 4.1 Any subset of a countable set is countable.

Proof Let Y be a subset of a countable set X. Then there exists an injection
f :X → N from X to the set N of positive integers. The restriction of this
injection to the set Y gives an injection from Y to N.

Lemma 4.2 Let X and Y be sets, and let f :X → Y be an injective function
from X to Y . Suppose that the set Y is countable. Then the set X is
countable.

Proof The set Y is countable, and therefore there exists an injective func-
tion g:Y → N mapping Y into the set N of positive integers. Then the
composition function g ◦ f :X → N is injective, because the composition of
any two injective functions is always itself an injective function. It follows
that the set X is countable, as required.

We establish a one-to-one correspondence between the set N × N of or-
dered pairs of positive integers and the set N of positive integers. This
correspondence is implemented by a function h:N × N → N is constructed
so that

h(1, 1) = 1,
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h(2, 1) = 2, h(1, 2) = 3,

h(3, 1) = 4, h(2, 2) = 5, h(1, 3) = 6,

h(4, 1) = 7, h(3, 2) = 8, h(2, 3) = 9, h(1, 4) = 10, etc.

The expression for the function h should be determined so that h(j, k) =
S(j + k) + k for all positive integers j and k, where, for each integer m
satisfying m ≥ 2, S(m) is equal to the number of ordered pairs (p, q) of
positive integers satisfying p+ q < m.

Let m be a positive integer satisfying m ≥ 3. Then, for each integer p
between 1 and m − 2, there are m − p − 1 positive integers q satisfying
p+ q < m. It follows that

S(m) =
m−2∑
p=1

(m− p− 1) =
m−2∑
i=1

i = 1
2
(m− 1)(m− 2).

This identity also holds whenm = 2, since S(2) = 0. The function h:N×N→
N constructed to implement the one-to-one correspondence between the sets
N× N and N therefore satisfies

h(j, k) = 1
2
(j + k − 1)(j + k − 2) + k

for all positive integers j and k. We now prove formally that this function is
indeed a bijection between the sets N× N and N.

Lemma 4.3 Let h:N× N→ N be the function defined such that

h(j, k) = 1
2
(j + k − 1)(j + k − 2) + k.

for all positive integers j and k. Then h:N× N→ N is a bijection.

Proof Let n be a positive integer. Then there is a unique integerm satisfying
m ≥ 2 for which

1
2
(m− 1)(m− 2) < n ≤ 1

2
m(m− 1).

Let k = n − 1
2
(m − 1)(m − 2) and j = m − k. Then j and k are integers

between 1 and m− 1, and

h(j, k) = 1
2
(m− 1)(m− 2) + k = n.

Now let j′ and k′ be positive integers satisfying h(j′, k′) = n. Then

0 < n− 1
2
(j′ + k′ − 1)(j′ + k′ − 2) = k′ ≤ j′ + k′ − 1,
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and therefore

1
2
(j′ + k′ − 1)(j′ + k′ − 2) < n ≤ 1

2
(j′ + k′)(j′ + k′ − 1).

It follows that j′ + k′ = m, where m is the unique integer satisfying m ≥ 2
for which

1
2
(m− 1)(m− 2) < n ≤ 1

2
m(m− 1).

But then

1
2
(m− 1)(m− 2) + k′ = n = 1

2
(m− 1)(m− 2) + k,

and therefore k′ = k and j′ = j. Thus (j, k) is the unique ordered pair
of positive integers for which h(j, k) = n. We have thus shown that, given
any positive integer n, there exists a unique ordered pair (j, k) of positive
integers for which h(j, k) = n. It follows that h:N×N→ N is a bijection, as
required.

Lemma 4.4 Let h:N× N→ N be the function defined such that

h(j, k) = 1
2
(j + k − 1)(j + k − 2) + k.

for all positive integers j and k, and let functions

gn:Nn → N

be constructed for n = 1, 2, 3 . . . so that g1(j) = j for all positive integers j
and

gn(j1, j2, . . . , jn) = h(gn−1(j1, j2, . . . , jn−1), jn)

for all (j1, j2, . . . , jn) ∈ Nn whenever n > 1. Then each of the functions
gn:Nn → N is a bijection.

Proof The function g1:N→ N is a bijection because it is the identity func-
tion of N. The function g2:N2 → N coincides with the function h. It therefore
follows from Lemm 4.3 that the function g2:N2 → N is a bijection. We prove
by induction on n that the function gn:Nn → N is a bijection for all positive
integers n. Suppose therefore as our induction hypothesis that n is some
positive integer satisfying n ≥ 3 and that gn−1:Nn−1 → N is a bijection. We
must show that gn:Nn → N is a bijection.

Let m be a positive integer. Then there exist uniquely-determined posi-
tive integers m′ and jn for which h(m′, jn) = m, because the function h:N2 →
N is a bijection. There then exists a unique (n− 1)-tuple (j1, j2, . . . , jn−1) of
positive integers for which gn−1(j1, j2, . . . , jn−1) = m′, because gn−1:Nn−1 →
N is a bijection. But then (j1, j2, . . . , jn) is the unique n-tuple of positive inte-
gers for which gn(j1, j2, . . . , jn) = m. We conclude therefore that gn:Nn → N
is a bijection, as required.
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Proposition 4.5 Let X1, X2, . . . , Xn be countable sets. Then the Cartesian
product X1 ×X2 × · · · ×Xn of these countable sets is itself a countable set.

Proof Let X = X1×X2×· · ·Xn. There exist injective functions fi:Xi → N
from the set Xi to the set N of positive integers, because each set Xi is
countable. Also there exists a bijection gn:Nn → N from the set Nn of
ordered n-tuples of positive integers to the set N of positive integers (see
Lemma 4.4). Let f :X → N be defined so that

f(x1, x2, · · · , xn) = gn(f1(x1), f2(x2), . . . , fn(xn))

for all (x1, x2, . . . , xn) ∈ X. We show that f :X → N is injective.
Let (x1, x2, . . . , xn) and (x′1, x

′
2, . . . , x

′
n) be elements of the set X. Suppose

that
f(x1, x2, . . . , xn) = f(x′1, x

′
2, . . . , x

′
n).

Then

(f1(x1), f2(x2), . . . , fn(xn)) = (f1(x
′
1), f2(x

′
2), . . . , fn(x′n)),

because the function gn:N2 → N is injective, and therefore fi(xi) = fi(x
′
i) for

i = 1, 2, . . . , n. But each of the functions f1, f2, . . . , fn is injective. It follows
that xi = x′i for i = 1, 2, . . . , n, and thus

(x1, x2, . . . , xn) = (x′1, x
′
2, . . . , x

′
n).

This shows that the function f :X → N is injective. It follows that the set X
is countable, as required.

Proposition 4.6 Any countable union of countable sets is itself a countable
set.

Proof Let J be a subset of the set N of positive integers and, for each j ∈ J ,
let Xj be a countable set, and let X =

⋃
j∈J

Xj. Also, for each j ∈ J , let

gj:Xj → N be an injective function from Xj to the set N of positive integers.
(The functions gj exist because, for all j ∈ J , the set Xj is a countable set.)
For each x ∈ X let n(x) denote the smallest positive integer j in the indexing
set J for which x ∈ Xj. Let h:N × N → N be a bijection between the sets
N×N and N (see Lemma 4.3), and let f :X → N be the function defined so
that

f(x) = h(n(x), gn(x)(x))

for all x ∈ X.
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Let x and x′ be elements of X satisfying f(x) = f(x′). We claim that
x = x′. Now if f(x) = f(x′) then n(x) = n(x′) and gn(x)(x) = gn(x′)(x

′),
because the function h:N × N → N is a bijection. Let n = n(x). Then
x ∈ Xn and x′ ∈ Xn, and gn(x) = gn(x′). But g:Xn → N is an injective
function. It follows that x = x′. We conclude therefore that the function
f :X → N is injective, and therefore the set X is countable, as required.

Lemma 4.7 The set Z of integers is countable.

Proof The set Z is the union of the set N of positive integers and the set
W of non-positive integers, where W = {n ∈ Z : n ≤ 0}. Let f :W → N be
defined such that f(n) = 1 − n for all n ∈ W . Then f :W → N is bijective,
and therefore the set W is countable. It follows that the set Z of integers,
being the union of the countable sets N and W , is itself a countable set, as
required.

Lemma 4.8 The set Q of rational numbers is countable.

Proof For each positive integer m, let Rm be the set consisting of all rational
numbers that are of the form n/m for some positive integer n. The function
mappng each q ∈ Rm to mq is a bijection from Rm to the set Z of integers,
and Z is a countable set. It follows that Rm is a countable set for each

positive integer m. Now Q =
+∞⋃
m=1

Rm. It follows that the set Q of rational

numbers is a countable union of countable sets. Moreover any countable
union of countable sets is itself countable (Proposition 4.6). We conclude
that the set Q is countable, as required.

Proposition 4.9 Let h:X → Y be a surjection. Suppose that the set X is
countable. Then the set Y is countable.

Proof The setX is countable, and therefore there exists an injective function
g:X → N from X to the set N of positive integers. Given any element y of
the set Y there exists at least one positive integer n with the property that
n = g(x) for some x ∈ X satisfying h(x) = y, because the function h is
surjective. For each y ∈ Y , let f(y) be the smallest positive integer n with
the property that n = g(x) for some x ∈ X satisfying h(x) = y.

Let y and y′ be elements of the set Y , where y 6= y′. Then there exist
elements x and x′ of the set X for which f(y) = g(x), f(y′) = g(x′), h(x) = y
and h(x′) = y′. Then x 6= x′, because y 6= y′. But then g(x) 6= g(x′), because
the function g is injective, and therefore f(y) 6= f(y′). We conclude from
this that the function f is injective, and therefore the set Y is countable, as
required.
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Proposition 4.10 A non-empty set X is countable if and only if there exists
a surjective function g:N → X mapping the set N of positive integers onto
X.

Proof Let X be a non-empty set. If there exists a surjective function
g:N → X mapping the set of positive integers onto X then it follows from
Proposition 4.9 that the set X is countable.

Conversely suppose that X is a non-empty countable set. Then there
exists an injection f :X → N from X to N. Let x0 be some chosen element of
the setX. Given a positive integer n, there exists at most one element x of the
set X for which f(x) = n. It follows that there exists a function g:N → X,
where g(f(x)) = x for all x ∈ X nd g(n) = x0 for positive integers n that
do not belong to the range f(X) of the function f . This function g:N→ X
is then a surjective function mapping the set N of positive integers onto the
set X. The result follows.

4.3 Uncountable Sets

A set that is not countable is said to be uncountable. Many sets occurring
in mathematics are uncountable. These include the set of real numbers.

It follows directly from Lemma 4.1 that if a set X has an uncountable
subset, then X must itself be uncountable.

It also follows directly from Proposition 4.9 that if h:X → Y is a surjec-
tion from a set X to a set Y , and if the set Y is uncountable, then the set X
is uncountable.

Definition Let X be a set. The power set P(X) of X is the set whose
elements are the subsets of the set X.

It is a straightforward exercise to prove that if a finite set X has m
elements then its power set P(X) has 2m elements. (This may be shown by
induction on the number of elements in the finite set.) It follows that, for
any finite set X, the power set P(X) has more elements than the set X itself,
and therefore there cannot exist any surjective function from a finite set to
its power set. We now show that the same is true of all sets, whether finite
or infinite.

Proposition 4.11 Let X be a set, and let P(X) be the power set of X.
Then there cannot exist any surjective function from the set X to its power
set P(X).
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Proof Let f :X → P(X) be a function from a set X to its power set P(X),
and let B = {x ∈ X : x 6∈ f(x)}. Let x ∈ X. Then x ∈ B if and only if
x 6∈ f(x). It follows that the element x of X belongs to exactly one of the
subsets B and f(x) of X, and therefore B 6= f(x). We conclude from this
that the subset B of X is an element of the power set P(X) of X that does
not belong to the range f(X) of the function f . Thus the function f is not
surjective. The result follows.

Corollary 4.12 The power set P(N) of the set N of positive integers is an
uncountable set.

Proof If the set P(N) were countable, there would exist a surjective function
f :N → P(N) mapping the set N of positive integers onto its power set (see
Proposition 4.10). But there cannot exist any surjective function mapping
the set N onto its power set (Proposition 4.11). Therefore the set P(N) must
be uncountable, as required.

Proposition 4.13 The set R of real numbers is uncountable.

Proof Let the function h:P(N) → R from the power set P(N) of the set
of positive integers to the set R of real numbers be defined so that, for all
subsets B of N,

h(B) =
+∞∑
j=1

dj
10j

,

where dj = 1 whenever j ∈ B and dj = 0 whenever j 6∈ B. (Thus, for
example, h({2,3,5,8}) = 0.01101001.)

The function h:P(N) → R is injective. It follows that if the set R of
real numbers were countable, then the set P(N) would also be countable
(see Lemma 4.2). But the power set P(N) of the set of positive integers is
uncountable (see Corollary 4.12). It follows therefore that the set R of real
numbers is also uncountable, as required.
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5 Some Properties of Infinite Sequences and

Series

5.1 Least Upper Bounds and Greatest Lower Bounds

Definition Let S be a set of real numbers which is bounded above. The
least upper bound, or supremum, of the set S is the smallest real number that
is greater than or equal to elements of the set S, and is denoted by supS.

Thus if S is a set of real numbers that is bounded above, then the least
upper bound supS of the set S is characterized by the following two prop-
erties:

• for all x ∈ S, x ≤ supS;

• if u is a real number, and if, for all x ∈ S, x ≤ u then supS ≤ u.

The Least Upper Bound Property of the real number system guarantees
that, given any non-empty set S of real numbers that is bounded above, there
exists a least upper bound supS for the set S.

Definition Let S be a set of real numbers which is bounded below. The
greatest lower bound, or infimum, of the set S is the largest real number that
is less than or equal to elements of the set S, and is denoted by inf S.

Thus if S is a set of real numbers that is bounded below, then the greatest
lower bound inf S of the set S is characterized by the following two properties:

• for all x ∈ S, x ≥ inf S;

• if l is a real number, and if, for all x ∈ S, x ≥ l then inf S ≥ l.

Given any non-empty set S of real numbers that is bounded below, there
exists a greatest lower bound inf S for the set S.

5.2 Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be strictly increas-
ing if xj+1 > xj for all positive integers j, strictly decreasing if xj+1 < xj for
all positive integers j, non-decreasing if xj+1 ≥ xj for all positive integers j,
non-increasing if xj+1 ≤ xj for all positive integers j. A sequence satisfy-
ing any one of these conditions is said to be monotonic; thus a monotonic
sequence is either non-decreasing or non-increasing.
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Theorem 5.1 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Axiom that there
exists a least upper bound p for the set {xj : j ∈ N}. We claim that the
sequence converges to p.

Let some strictly positive real number ε be given. We must show that
there exists some positive integer N such that |xj − p| < ε whenever j ≥ N .
Now p − ε is not an upper bound for the set {xj : j ∈ N} (since p is the
least upper bound), and therefore there must exist some positive integer N
such that xN > p − ε. But then p − ε < xj ≤ p whenever j ≥ N , since
the sequence is non-decreasing and bounded above by p. Thus |xj − p| < ε
whenever j ≥ N . Therefore xj → p as j → +∞, as required.

If the sequence x1, x2, x3, . . . is non-increasing and bounded below then
the sequence −x1,−x2,−x3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence x1, x2, x3, . . . is also
convergent.

5.3 Upper and Lower Limits

Let a1, a2, a3, . . . be a bounded infinite sequence of real numbers, and, for
each positive integer j, let

Sj = {aj, aj+1, aj+2, . . .} = {ak : k ≥ j}.

The sets S1, S2, S3, . . . are all bounded. It follows that there exist well-defined
infinite sequences u1, u2, u3, . . . and l1, l2, l3, . . . of real numbers, where uj =
supSj and lj = inf Sj for all positive integers j. Now Sj+1 is a subset of Sj for
each positive integer j, and therefore uj+1 ≤ uj and lj+1 ≥ lj for each positive
integer j. It follows that the bounded infinite sequence (uj : j ∈ N) is a non-
increasing sequence, and is therefore convergent (Theorem 5.1). Similarly
the bounded infinite sequence (lj : j ∈ N) is a non-decreasing sequence, and
is therefore convergent. We define

lim sup
j→+∞

aj = lim
j→+∞

uj = lim
j→+∞

sup{aj, aj+1, aj+2, . . .}

and
lim inf
j→+∞

aj = lim
j→+∞

lj = lim
j→+∞

inf{aj, aj+1, aj+2, . . .}.
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The quantity lim sup
j→+∞

aj is referred to as the upper limit of the sequence

a1, a2, a3, . . .. The quantity lim inf
j→+∞

aj is referred to as the lower limit of the

sequence a1, a2, a3, . . ..
Note that every bounded infinite sequence a1, a2, a3, . . .. of real num-

bers has a well-defined upper limit lim sup
j→+∞

aj and a well-defined lower limit

lim inf
j→+∞

aj.

Proposition 5.2 A bounded infinite sequence a1, a2, a3, . . .. of real numbers
is convergent if and only if lim inf

j→+∞
aj = lim sup

j→+∞
aj, in which case the limit of

the sequence is equal to the common value of its upper and lower limits.

Proof For each positive integer j, let uj = supSj and lj = inf Sj, where

Sj = {aj, aj+1, aj+2, . . .} = {ak : k ≥ j}.

Then lim inf
j→+∞

aj = lim
j→+∞

lj and lim sup
j→+∞

aj = lim
j→+∞

uj.

Suppose that lim inf
j→+∞

aj = lim sup
j→+∞

aj = c for some real number c. Then,

given any positive real number ε, there exist positive integers N1 and N2 such
that c− ε < lj ≤ c whenever j ≥ N1, and c ≤ uj < c + ε whenever j ≥ N2.
Let N be the maximum of N1 and N2. If j ≥ N then aj ∈ SN , and therefore

c− ε < lN ≤ aj ≤ uN < c+ ε.

Thus |aj − c| < ε whenever j ≥ N . This proves that the infinite sequence
a1, a2, a3, . . . converges to the limit c.

Conversely let a1, a2, a3, . . . be a bounded sequence of real numbers that
converges to some value c. Let ε > 0 be given. Then there exists some
positive integer N such that c− 1

2
ε < aj < c+ 1

2
ε whenever j ≥ N . It follows

that Sj ⊂ (c− 1
2
ε, c+ 1

2
ε) whenever j ≥ N . But then

c− 1
2
ε ≤ lj ≤ uj ≤ c+ 1

2
ε

whenever j ≥ N , where uj = supSj and lj = inf Sj. We see from this that,
given any positive real number ε, there exists some positive integer N such
that |lj − c| < ε and |uj − c| < ε whenever j ≥ N . It follows from this that

lim sup
j→+∞

aj = lim
j→+∞

uj = c and lim inf
j→+∞

aj = lim
j→+∞

lj = c,

as required.
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5.4 Rearrangement of Infinite Series

Example Consider the infinite series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

For each positive integer k, let pk denote the kth partial sum of this infinite
series, defined so that

pk =
k∑
j=1

(−1)j−1
1

j
.

The absolute values of the summands constitute a decreasing sequence, and
accordingly examination of the form of the infinite series establishes that

p1 > p3 > p5 > p7 > · · ·

p2 < p4 < p6 < p8 < · · ·

Moreover p2m ≤ p2m+1 ≤ p1 and p2m+1 ≥ p2m ≥ p2 for all positive inte-
gers m. Thus p1, p3, p5, p7 is a decreasing sequence that is bounded below,
and p2, p4, p6, p8 is an increasing sequence that is bounded above. A standard
result of real analysis ensures that these bounded monotonic sequences are
convergent. Moreover

lim
m→+∞

p2m+1 = lim
m→∞

(
p2m +

1

2m+ 1

)
= lim

m→∞
p2m + lim

m→+∞

1

2m+ 1
= lim

m→∞
p2m.

It then follows easily from examination of the definition of convergence that
the infinite sequence p1, p2, p3, . . . converges, and

lim
j→+∞

pj = lim
m→+∞

p2m = lim
m→+∞

p2m+1.

Let α = lim
j→+∞

pj. Then p2 < α < p1, and thus 1
2
< α < 1.

Now consider the infinite series

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · · .

The individual summands are those of the infinite series previously consid-
ered, but they occur in a different order. This new infinite series is thus a
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rearrangement of the infinite series previously considered. Nevertheless the
sum of this new infinite series may be represented as(

1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · ·

and therefore the sum of the new infinite series is equal to that of the infinite
series

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · · ,

and is therefore equal to 1
2
α. This example demonstrates that when the terms

of an infinite series are rearranged, so that they are summed together in a
different order, the sum of the rearranged series is not necessarily equal to
that of the original series.

The example just discussed considers the behaviour of a particular infinite
series that is convergent but not absolutely convergent. An infinite series
+∞∑
j=1

aj is said to be absolutely convergent if
+∞∑
j=1

|aj| is convergent. The following

proposition and its corollaries ensure that any absolutely convergent infinite
series may be rearranged at will without affecting convergence, and without
changing the value of the sum of the series. In particular an infinite series
whose summands are non-negative may be rearranged without affecting the
value of the sum of that infinite series.

Proposition 5.3 Let
+∞∑
j=1

aj be a convergent infinite series, where aj is real

and aj ≥ 0 for all positive integers j. Let Q be the subset of the real numbers
consisting of the values of all sums of the form

∑
j∈F

aj obtained as F ranges

over all the non-empty finite subsets of N. Then

+∞∑
j=1

aj = supQ.

Proof For each positive integer k, let

pk =
k∑
j=1

aj.

This number pk is referred to as the kth partial sum of the infinite series
a1 + a2 + a3 + · · ·. The definition of the sum of this infinite series then
ensures that

+∞∑
j=1

aj = lim
k→+∞

pk.

12



Moreover p1 ≤ p2 ≤ p3 ≤ · · ·, because aj ≥ 0 for all positive integers j, and
therefore

+∞∑
j=1

aj = sup{pk : k ∈ N}.

For each non-empty finite subset F of the set N of positive integers, let

qF =
∑
j∈F

aj.

If F and H are finite subsets of N, and if F ⊂ H then qF ≤ qH , because the
summand aj is non-negative for all positive integers j.

Now, given any non-empty finite subset F of N there exists some positive
integer k such that F ⊂ Jk, where Jk = {1, 2, . . . , k}. But then

qF ≤ qJk = pk ≤
+∞∑
j=1

aj.

Therefore the set Q consisting of the values of the sums qF as F ranges over
all the non-empty finite subsets F of N is bounded above. Moreover it is
non-empty. The Least Upper Bound Principle then ensures that the set Q
has a well-defined least upper bound supQ.

Let s = supQ. We have shown that qF ≤
+∞∑
j=1

aj for each non-empty

finite subset F of N. It follows that s ≤
+∞∑
j=1

aj. But pk ∈ Q for all positive

integers k, because pk = qJk , and therefore pk ≤ s. Taking limits as k → +∞,
we find that

+∞∑
j=1

aj = lim
k→+∞

pk ≤ s.

The inequalities just obtained together ensure that

+∞∑
j=1

aj = s = supQ,

as required.

A permutation of the set N of positive integers is a function σ:N → N
from the set N to itself that is bijective. A function σ:N → N is thus a
permutation if and only if it has a well-defined inverse σ−1:N → N. This
is the case if and only if, given any positive integer k, there exists a unique
positive integer j for which k = σ(j).

13



Definition An infinite sequence b1, b2, b3, . . . of real numbers is said to be a
rearrangement of an infinite sequence a1, a2, a3, . . . if there exists a permuta-
tion σ of the set N of positive integers such that bk = aσ(k) for all positive

integers k. In this situation we also say that the infinite series
+∞∑
k=1

bk is a

rearrangement of the infinite series
+∞∑
j=1

aj.

Corollary 5.4 Let
+∞∑
j=1

aj be a convergent infinite series, and let
+∞∑
k=1

bk be a

rearrangement of infinite series
+∞∑
j=1

aj. Suppose that aj ≥ 0 for all positive

integers j. Then the infinite series
+∞∑
k=1

bk is convergent, and
+∞∑
k=1

bk =
+∞∑
j=1

aj.

Proof There exists a permutation σ:N→ N of the set N of positive integers
such that bk = aσ(k) for all positive integers k. Let qF =

∑
j∈F

aj for all non-

empty finite subsets F of N, and let rG =
∑
k∈G

bk for all non-empty finite

subsets G of N. Then

qσ(G) =
∑
j∈σ(G)

aj =
∑
k∈G

aσ(k) =
∑
k∈G

bk = rG

for all non-empty finite subsets G of N, and accordingly qF = rσ−1(F ) for all
non-empty finite subsets F of N. Moroever G is a non-empty finite subset of
N if and only if σ(G) is a non-empty finite subset of N. It follows that the
set Q consisting of all sums of the form qF as F ranges over the non-empty
finite subsets of N is also the set consisting of all sums of the form rG as G
ranges over the non-empty finite subsets of N. It follows from Proposition 5.3
that

+∞∑
j=1

aj = supQ =
+∞∑
k=1

bk,

as required.

It follows from Corollary 5.4 that, given any collection (cα : α ∈ A) of
non-negative real numbers cα indexed by the members of a countable set A,
we can form the sum

∑
α∈A

cα. If the countable indexing set A is infinite then

14



there exists an infinite sequence α1, α2, α3, . . . in which each element of the
set A occurs exactly once. Then∑

α∈A

cα =
+∞∑
j=1

cαj
.

The requirement that cα ≥ 0 for all α ∈ A ensures that the value of
+∞∑
j=1

cαj

does not depend on the choice of infinite sequence α1, α2, α3, . . . enumerating
the elements of the indexing set A.

Let c1, c2, c3, . . . be an infinite sequence of real numbers that are not nec-
essarily all non-negative or all non-positive, and let c+j = max(cj, 0) and
c−j = min(0, cj) for all positive integers j. Then c+j ≥ 0, c−j ≤ 0, cj = c+j + c−j
and |cj| = c+j − c−j = c+j + |c−j | for all positive integers j. Moreover, for each
positive integer j, at most one of the numbers c+j asnd c−j is non-zero. Now
0 ≤ c+j ≤ |cj| and 0 ≤ |c−j | ≤ |cj| for all positive integers j. It follows from

this that
+∞∑
j=1

|cj| is convergent if and only if both
+∞∑
j=1

c+j and
+∞∑
j=1

c−j convergent.

In this case we say that the infinite series
∑+∞

j=1 cj is absolutely convergent.

Corollary 5.5 Let
+∞∑
j=1

aj be an absolutely convergent infinite series, and let

+∞∑
k=1

bk be a rearrangement of infinite series
+∞∑
j=1

aj. Then the infinite series

+∞∑
k=1

bk is absolutely convergent, and
+∞∑
k=1

bk =
+∞∑
j=1

aj.

Proof There exists a permutation σ:N→ N of the set N of positive integers
with the property that bk = aσ(k) for all positive integers k. Let a+j =
max(aj, 0) and a−j = min(0, aj) for all positive integers j and b+k = max(bk, 0)
and b−k = min(0, bk) for all positive integers k. The absolute convergence of
∞∑
j=1

aj then ensures that the infinite series
∞∑
j=1

a+j and
∞∑
j=1

a−j both converge.

It then follows from Corollary 5.4 that

+∞∑
j=1

|aj| =
+∞∑
j=1

a+j −
+∞∑
j=1

a−j =
+∞∑
k=1

b+k −
+∞∑
k=1

b−k =
+∞∑
k=1

|bk|

and
+∞∑
j=1

aj =
+∞∑
j=1

a+j +
+∞∑
j=1

a−j =
+∞∑
k=1

b+k +
+∞∑
k=1

b−k =
+∞∑
k=1

bk.

The result follows.
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5.5 The Extended Real Number System

It is sometimes convenient to make use of the extended real line [−∞,+∞].
This is the set R ∪ {−∞,+∞} obtained on adjoining to the real line R two
extra elements +∞ and −∞ that represent points at ‘positive infinity’ and
‘negative infinity’ respectively. We define

c+ (+∞) = (+∞) + c = +∞

and
c+ (−∞) = (−∞) + c = −∞

for all real numbers c. We also define products of non-zero real numbers with
these extra elements ±∞ so that

c× (+∞) = (+∞)× c = +∞ when c > 0,

c× (−∞) = (−∞)× c = −∞ when c > 0,

c× (+∞) = (+∞)× c = −∞ when c < 0,

c× (−∞) = (−∞)× c = +∞ when c < 0,

We also define

0× (+∞) = (+∞)× 0 = 0× (−∞) = (−∞)× 0 = 0,

and
(+∞)× (+∞) = (−∞)× (−∞) = +∞,

(+∞)× (−∞) = (−∞)× (+∞) = −∞.

The sum of +∞ and −∞ is not defined. We define −(+∞) = −∞ and
−(−∞) = +∞. The difference p − q of two extended real numbers is then
defined by the formula p−q = p+(−q), unless p = q = +∞ or p = q = −∞,
in which cases the difference of the extended real numbers p and q is not
defined.

We extend the definition of inequalities to the extended real line in the
obvious fashion, so that c < +∞ and c > −∞ for all real numbers c, and
−∞ < +∞.

Given any real number c, we define

[c,+∞] = [c,+∞) ∪ {+∞} = {p ∈ [−∞,∞] : p ≥ c},
(c,+∞] = (c,+∞) ∪ {+∞} = {p ∈ [−∞,∞] : p > c},
[−∞, c] = (−∞, c] ∪ {−∞} = {p ∈ [−∞,∞] : p ≤ c},
[−∞, c) = (−∞, c) ∪ {−∞} = {p ∈ [−∞,∞] : p < c}.
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There is an order-preserving bijective function ϕ: [−∞,+∞] → [−1, 1]
from the extended real line [−∞,+∞] to the closed interval [−1, 1] which is

defined such that ϕ(+∞) = 1, ϕ(−∞) = −1, and ϕ(c) =
c

1 + |c|
for all real

numbers c. Let us define ρ(p, q) = |ϕ(q) − ϕ(p)| for all extended real num-
bers p and q. Then the set [−∞,+∞] becomes a metric space with distance
function ρ. Moreover the function ϕ: [−∞,+∞] → [−1, 1] is a homeomor-
phism from this metric space to the closed interval [−1, 1]. It follows directly
from this that [−∞,+∞] is a compact metric space. Moreover an infinite
sequence (pj : j ∈ N) of extended real numbers is convergent if and only if
the corresponding sequence (ϕ(pj) : j ∈ N) of real numbers is convergent.

Given any non-empty set S of extended real numbers, we can define supS
to be the least extended real number p with the property that s ≤ p for all
s ∈ S. If the set S does not contain the extended real number +∞, and
if there exists some real number B such that s ≤ B for all s ∈ S, then
supS < +∞; otherwise supS = +∞. Similarly we define inf S to be the
greatest extended real number p with the property that s ≥ p for all s ∈ S.
If the set S does not contain the extended real number −∞, and if there
exists some real number A such that s ≥ A for all s ∈ S, then inf S > +∞;
otherwise inf S = −∞. Moreover

ϕ(supS) = supϕ(S) and ϕ(inf S) = inf ϕ(S),

where ϕ: [−∞,+∞] → [−1, 1] is the homeomorphism defined such that
ϕ(+∞) = 1, ϕ(−∞) = −1 and ϕ(c) = c(1 + |c|)−1 for all real numbers c.

Given any sequence (pj : j ∈ N) of extended real numbers, we define the
upper limit lim sup

j→+∞
pj and the lower limit lim inf

j→+∞
pj of the sequence so that

lim sup
j→+∞

pj = lim
j→+∞

sup{pk : k ≥ j}

and
lim inf
j→+∞

pj = lim
j→+∞

inf{pk : k ≥ j}.

Every sequence of extended real numbers has both an upper limit and a lower
limit. Moreover an infinite sequence of extended real numbers converges to
some extended real number if and only if the upper and lower limits of
the sequence are equal. (These results follow easily from the corresponding
results for bounded sequences of real numbers, on using the identities

ϕ(lim sup
j→+∞

pj) = lim sup
j→+∞

ϕ(pj), ϕ(lim inf
j→+∞

pj) = lim inf
j→+∞

ϕ(pj),

where ϕ: [−∞,+∞]→ [−1, 1] is the homeomorphism defined above.)

17



The function that sends a pair (p, q) of extended real numbers to the
extended real number p + q is not defined when p = +∞ and q = −∞, or
when p = −∞ and q = +∞ but is continuous elsewhere. The function that
sends a pair (p, q) of extended real numbers to the extended real number pq
is defined everywhere. This function is discontinuous when p = ±∞ and
q = 0, and when p = 0 and q = ±∞. It is continuous for all other values of
the extended real numbers p and q.

Let a1, a2, a3, . . . be an infinite sequence of extended real numbers which
does not include both the values +∞ and −∞, and let pk =

∑k
j=0 aj for

all natural numbers k. If the infinite sequence p1, p2, p3, . . . of extended real
numbers converges in the extended real line [−∞,+∞] to some extended
real number p, then this value p is said to be the sum of the infinite series
+∞∑
j=1

aj, and we write
+∞∑
j=1

aj = p.

It follows easily from this definition that if +∞ is one of the values of

the infinite series a1, a2, a3, . . ., then
+∞∑
j=1

aj = +∞. Similarly if −∞ is one of

the values of this infinite series then then
+∞∑
j=1

aj = −∞. Suppose that the

members of the sequence a1, a2, a3, . . . are all real numbers. Then
+∞∑
j=1

an =

+∞ if and only if, given any real number B, there exists some real number N

such that
k∑
j=1

an > B whenever k ≥ N . Similarly
+∞∑
j=1

aj = −∞ if and only

if, given any real number A, there exists some real number N such that
k∑
j=1

aj < A whenever k ≥ N .
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6 Semirings and Rings of Sets

6.1 Distributive Laws in Set Theory

We explore some basic properties of intersections and products of unions of
sets that are manifestations of distributive laws satisfied in basic set theory.

Proposition 6.1 Let A1, A2, . . . , An be sets and, for each integer i between
1 and n, let (Di,j : j ∈ Ji) be a collection of subsets of Ai, indexed by some
set Ji, for which

⋃
j∈Ji

Di,j = Ai. Let

J = J1 × J2 × · · · × Jn.

Then
n⋂
i=1

Ai =
⋃

(j1,j2,...,jn)∈J

Ej1,j2,...,jn ,

where
Ej1,j2,...,jn = D1,j1 ∩D2,j2 ∩ · · · ∩Dn,jn

for each (j1, j2, . . . , jn) ∈ J . Moreover if, for each integer i between 1 and n,
the sets Di,j with j ∈ Ji are pairwise disjoint, then the sets Ej1,j2,...,jn with
(j1, j2, . . . , jn) ∈ J are pairwise disjoint.

Proof Let x be an element of Ej1,j2,...,jn for some element (j1, j2, . . . , jn) of
the indexing set J . Then x ∈ Ai for each integer between i and n, because

Ej1,j2,...,jn ⊂ Di,ji ⊂ Ai,

and therefore x ∈
n⋂
i=1

Ai.

Now let x be an element of
n⋂
i=1

Ai. Then x ∈ Ai for each integer i between

1 and n and therefore, for each integer i between 1 and n there exists an
element ji of the indexing set Ji for which x ∈ Di,ji . But then x ∈ Ej1,j2,...,jn .
These results establish that

n⋂
i=1

Ai =
⋃

(j1,j2,...,jn)∈J

Ej1,j2,...,jn .

Now suppose that, for each integer i between 1 and n, the sets Di,j with
j ∈ Ji are pairwise disjoint. Let (j1, j2, . . . , jn) ∈ J and (j′1, j

′
2, . . . , j

′
n) ∈ J .

Suppose that
(j1, j2, . . . , jn) 6= (j′1, j

′
2, . . . , j

′
n).
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Then there is some integer i between 1 and n for which ji 6= j′i. But then

Ej1,j2,...,jn ⊂ Di,ji , Ej′1,j′2,...,j′n ⊂ Di,j′i

and Dj1 ∩Di,j′i
= ∅. It follows that

Ej1,j2,...,jn ∩ Ej′1,j′2,...,j′n = ∅.

Thus the sets Ej1,j2,...,jn with (j1, j2, . . . , jn) ∈ J are pairwise disjoint, as
required.

Corollary 6.2 Let A1, A2, . . . , An be subsets of a set X and, for each inte-
ger i between 1 and n, let Di,1, Di,2, . . . , Di,q(i) be pairwise disjoint subsets of

X satisfying
q(i)⋃
ji=1

Di,ji = Ai. Let the indexing set J consist of those n-tuples

(j1, j2, . . . , jn) that satisfy 1 ≤ ji ≤ q(i) for i = 1, 2, . . . , n. Then

n⋂
i=1

Ai =
⋃

(j1,j2,...,jn)∈J

Ej1,j2,...,jn

where Ej1,j2,...,jn = Di,1∩Di,2∩· · ·∩Di,q(i) for all (j1, j2, . . . , jn) ∈ J . Moreover
the sets Ej1,j2,...,jn with (j1, j2, . . . , jn) ∈ J are pairwise disjoint.

Proposition 6.3 Let A1, A2, . . . , An be sets and, each integer i between 1
and n, let (Di,j : j ∈ Ji) be a collection of subsets of Ai, indexed by some set
Ji, for which

⋃
j∈Ji

Di,j = Ai. Let

J = J1 × J2 × · · · × Jn.

Then
A1 × A2 × · · · × An =

⋃
(j1,j2,...,jn)∈J

Fj1,j2,...,jn ,

where
Fj1,j2,...,jn = D1,j1 ×D2,j2 × · · · ×Dn,jn

for each (j1, j2, . . . , jn) ∈ J . Moreover if, for each integer i between 1 and n,
the sets Di,j with j ∈ Ji are pairwise disjoint, then the sets Fj1,j2,...,jn with
(j1, j2, . . . , jn) ∈ J are pairwise disjoint.

Proof Let (j1, j2, . . . , jn) be an n-tuple of integers belonging to the indexing
set J , and let (x1, x2, . . . , xn) be an element of the corresponding set Fj1,j2,...,jn .
Then xi ∈ Ai for each integer between i and n, and therefore

(x1, x2, . . . , xn) ∈ A1 × A2 × · · · × An.
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Now let (x1, x2, . . . , xn) be an element of A1×A2×· · ·×An. Then xi ∈ Ai
for each integer i between 1 and n and therefore, for each integer i between
1 and n there exists an element ji of the indexing set Ji for which xi ∈ Di,ji .
But then

(x1, x2, . . . , xn) ∈ Fj1,j2,...,jn .

These results establish that

A1 × A2 × · · · × An =
⋃

(j1,j2,...,jn)∈J

Fj1,j2,...,jn .

Now suppose that, for each integer i between 1 and n, the sets Di,j with
j ∈ Ji are pairwise disjoint. Let (j1, j2, . . . , jn) ∈ J and (j′1, j

′
2, . . . , j

′
n) ∈ J .

Suppose that
(j1, j2, . . . , jn) 6= (j′1, j

′
2, . . . , j

′
n).

Then there is some integer i between 1 and n for which ji 6= j′i. Suppose
there were to exist some element (x1, x2, . . . , xn) of A1 ×A2 × · · · ×An that
belonged to both Fj1,j2,...,jn and Fj′1,j′2,...,j′n . Then it would be the case that both
xi ∈ Di,ji and xi ∈ Di,j′i

. But this is not possible, because Di,ji ∩Di,j′i
= ∅.

It follows that
Fj1,j2,...,jn ∩ Fj′1,j′2,...,j′n = ∅.

Thus the sets Fj1,j2,...,jn with (j1, j2, . . . , jn) ∈ J are pairwise disjoint, as
required.

Corollary 6.4 Let A1, A2, . . . , An be sets, and, for each integer i between 1
and n, let Di,1, Di,2, . . . , Di,q(i) be pairwise disjoint subsets of Ai satisfying
q(i)⋃
ji=1

Di,ji = Ai. Let the indexing set J consist of those n-tuples (j1, j2, . . . , jn)

that satisfy 1 ≤ ji ≤ q(i) for i = 1, 2, . . . , n. Then

A1 × A2 × · · · × An =
⋃

(j1,j2,...,jn)∈J

Fj1,j2,...,jn

where
Fj1,j2,...,jn = D1,j1 ×D2,j2 × · · · ×Dn,jn

for all (j1, j2, . . . , jn) ∈ J . Moreover the sets Fj1,j2,...,jn with (j1, j2, . . . , jn) ∈
J are pairwise disjoint.
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6.2 Semirings of Sets

Definition Let X be a set. A collection S of subsets of X is said to be a
semiring of subsets of X if it satisfies the following two properties:—

1. (i) the empty set ∅ belongs to S;

2. (ii) the intersection A ∩ B of any two members A and B of S belongs
to S.

3. (iii) The difference A \B of any two members of S can be represented
as a finite union of pairwise disjoint members of S.

A set is said to be a singleton set (or a one-point set) if it has only one
element.

Lemma 6.5 Let J be the collection of subsets of the real line R consisting
of the empty set, all the singleton sets, and all bounded intervals in R. Then
J is a semiring of subsets of R.

Proof The specification of the collection J ensures that the empty set ∅ is
a member of J .

If A is equal to the empty set then A ∩ B and A \ B are both equal to
the empty set for all members B of the collection J . It follows that A ∩ B
and A \B are members of J in all cases where A = ∅ and B is a member of
J . Also if A is a member of the collection J , and if B = ∅ then A ∩ B and
A \B, being equal to ∅ and A respectively, are members of the collection J .
If A and B are members of J , and if A is a singleton set (so that A = {c}
for some real number c) then A∩B and A \B belong to J , because each of
those sets, if non-empty, is equal to the singleton set A. It suffices therefore
to verify that A ∩ B is a member of J , and that A \ B is a finite union of
pairwise disjoint members of J , in those cases where A is a bounded interval
and B is either a singleton set or a bounded interval.

The intersection of a bounded interval and a singleton set is either a
singleton set or is equal to the empty set. Therefore the intersection of a
bounded interval and a singleton set is a member of J . The intersection of
two bounded intervals is a bounded interval, a singleton set or the empty set.
It follows that the intersection of any two bounded intervals is a member of
J . We conclude that A ∩ B is a member of J in all cases where A is a
bounded interval and B is either a singleton set or else a bounded interval.
It only remains therefore to verify that A\B is a member of J in those cases
where A is a bounded interval and B is either a singleton set or a bounded
interval.
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Let A be a bounded interval, and let B be either a singleton set or a
bounded interval. Then the complement R \ B of B is the disjoint union of
two unbounded intervals L and R, where

L = {x ∈ R : x < y for all y ∈ B},
R = {x ∈ R : x > y for all y ∈ B}.

But then
A \B = A ∩ (R \B) = (A ∩ L) ∪ (A ∩R).

Thus A\B is the disjoint union of two bounded sets A∩L and A∩R. Moreover
each of these sets A ∩ L and A ∩ R is a bounded interval, a singleton set or
is equal to the empty set. Thus either A \B is a member of J or else A \B
is the disjoint union of two disjoint non-empty members of J in all cases
where A is a bounded interval and B is either a singleton set or a bounded
interval. This completes the proof that, for all members A and B of J , the
difference A \ B is expressible as the union of a finite collection of pairwise
disjoint members of J . The result follows.

Lemma 6.6 Let S be a semiring of subsets of some given set X. Then, for
all members A and B of the semiring S, the union A ∪ B of A and B is
expressible as a finite union of pairwise disjoint members of the semiring S.

Proof It follows from the definition of semirings of sets that A ∩ B is a
member of S and that A \ B and B \ A can both be expressed as finite
unions of parwise disjoint members of the semiring S. The union A ∪ B of
the sets A and B is the disjoint union of the sets A ∩ B, A \ B and B \ A.
The result follows directly.

Lemma 6.7 Let S be a semiring of subsets of some given set X, and let
A1, A2, . . . , Ak be subsets of X. Suppose that each of the sets A1, A2, . . . , Ak
can be represented as a finite union of pairwise disjoint members of the semir-

ing S. Then the intersection
k⋂
i=1

Ai of those sets can also be so expressed.

Proof There exist positive integers q(1), q(2), . . . , q(k) and members Bi,j of
S for i = 1, 2, . . . , k and j = 1, 2, . . . , q(k) so that, for each integer i between
1 and k, the sets Bi,1, . . . , Bi,q(i) are pairwise disjoint, and

Ai =

q(i)⋃
j=1

Bi,j.

23



Let F be the set consisting of all k-tuples (j1, j2, . . . , jk) of integers sat-
isfying 1 ≤ ji ≤ q(i) for i = 1, 2, . . . , k, and, for each (j1, j2, . . . , jk) ∈ F ,
let

Cj1,j2,...,jk = B1,j1 ∩B2,j2 ∩ · · · ∩Bk,jk .

Then each set Cj1,j2,...,jk , being a finite intersection of members of the semiring
S, is itself a member of S.

Let (j1, j2, . . . , jk) and (j′1, j
′
2, . . . , j

′
k) be distinct k-tuples belonging to F .

There is at least one integer i between 1 and k for which ji 6= j′i. Then

Cj1,j2,...,jk ⊂ Bi,ji and Cj′1,j′2,...,j′k ⊂ Bi,j′i
,

andBi,ji∩Bi,j′i
= ∅, because the setsBi,j are pairwise disjoint for 1 ≤ j ≤ q(i),

and therefore
Cj1,j2,...,jk ∩ Cj′1,j′2,...,j′k = ∅.

It follows that the collection of subsets of X consisting of the sets Cj1,j2,...,jk
for (j1, j2, . . . , jk) ∈ J is a finite collection of pairwise disjoint members of
the semiring S.

Let x ∈ A1 ∩ A2 ∩ · · · ∩ Ak. Then, for each integer i between 1 and
k, there is exactly one integer ji between 1 and q(i) for which x ∈ Bi,ji .
Then x ∈ Cj1,j2,...,jk . We have therefore completed the verification that the
intersection A1 ∩ A2 ∩ · · · ∩ Ak of the sets A1, A2, . . . , Ak is a finite union of
pairwise disjoint members of the semiring S. The result follows.

Proposition 6.8 Let S be a semiring of subsets of a given set, and let
A1, A2, . . . , Ak be a finite list of members of the semiring S. Then there
exists a finite list B1, B2, . . . , Bm of members of S satisfying the following
properties:

(i) the sets B1, B2, . . . , Bm are pairwise disjoint;

(ii) each member of the list A1, A2, . . . , Ak is expressible as a union of sets
belonging to the list B1, B2, . . . , Bm.

Proof We can prove this result by induction on the number k of members of
A occurring in the list A1, A2, . . . , Ak. The result is clearly true when k = 1.
We may therefore suppose as our induction hypothesis that k > 1 and that
there exists some finite list C1, C2, . . . , Cp of pairwise disjoint members of S
such that each of the sets Ai with i < k may be expressed as a union of
members of S that occur in the list C1, C2, . . . , Cp.
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For each integer i between 1 and p for which Ci ⊂ Ak let q(i) = 1.
For all other integers i between 1 and p there exist pairwise disjoint sets
Di,2, . . . , Di,q(i) belonging to S, where q(i) > 1, such that

Ci \ Ak =

q(i)⋃
j=2

Di,j.

Let Di,1 = Ci∩Ak for all integers i between 1 and p. Then, for each integer i
between 1 and p, the sets Di,1, . . . , Di,q(i) are pairwise disjoint members of
the semiring S and

Ci =

q(i)⋃
j=1

Di,j.

Let J denote the set of ordered pairs of positive integers (i, j) for which
1 ≤ i ≤ p and 1 ≤ j ≤ q(i), and let G denote the finite collection of members
of the semiring S consisting of the sets Di,j for which (i, j) ∈ J . Each set
Ci is the union of those sets Di,j for which (i, j) ∈ J . If (i, j) ∈ J and
(i′, j′) ∈ J and if i 6= i′ then Di,j ⊂ Ci, Di′,j′ ⊂ Ci′ and Ci ∩ Ci′ = ∅, and
therefore Di,j∩Di′,j′ = ∅. If (i, j) ∈ J and (i′, j′) ∈ J , where i = i′ and j 6= j′

then Di,j ∩Di′,j′ = ∅, because the sets Di,1, . . . , Di,q(i) are pairwise disjoint.
It follows that G is a finite collection of pairwise disjoint members of the
semiring S, and moreover each of the sets Ci is expressible as a union of sets
belonging to the collection G. Now each set Ai with i < k can be expressed
as a union of sets belonging to the list C1, C2, . . . , Cp, and moreover each
set Ci in this list is in turn expressible as a union of sets belonging to the
collection G. It follows that each of the sets A1, . . . , Ak−1 is expressible as a
union of sets belonging to G. Moreover each set belonging to G is a subset

of E, where E =
p⋃
i=1

Ci, and

p⋃
i=1

Di,1 =
⋃
i=1

(Ak ∩ Ci) = Ak ∩

(
p⋃
i=1

Ci

)
= Ak ∩ E.

It follows therefore that Ak ∩E is expressible as a union of sets belonging to
the collection G.

We now show that Ak \ E can be represented as the union of a finite
collection of pairwise disjoint members of the semiring S. Now

Ak \ E = Ak \
p⋃
i=1

Ci =

p⋂
i=1

(Ak \ Ci).
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Each of the sets Ak \ Ci is expressible as a finite union of pairwise disjoint
sets belonging to the semiring S. The intersection of those sets is therefore
also expressible as a finite union of pairwise disjoint sets belonging to the
semiring S. (see Lemma 6.7). Accordingly let H be a finite collection of
pairwise disjoint members of the semiring S whose union is the set Ak \ E,
and let K = G ∪ H, so that K is the consisting of those members of the
semiring S that belong either to G or to H. Now the sets belonging to K
are pairwise disjoint, since those sets belonging to G are pairwise disjoint
subsets of E and those sets belonging to H are pairwise disjoint subsets of
the complement of E. Moreover

Ak = (Ak ∩ E) ∪ (Ak \ E),

and we have shown that the sets Ak∩E and Ak \E are expressible as unions
of sets belonging to G and H respectively. It follows that Ak is expressible as
a union of sets belonging to K. We have shown that the sets A1, A2, . . . , Ak−1
are also expressible as unions of sets belonging to G. The result follows.

Corollary 6.9 Let S be a semiring of subsets of some given set X, and let
A1, A2, . . . , Ak be subsets of X. Suppose that each of the sets A1, A2, . . . , Ak
can be represented as a finite union of pairwise disjoint members of the semir-

ing S. Then the union
k⋃
i=1

Ai of those sets can also be so expressed.

Proof There is a some finite list C1, C2, . . . , Ck of members of the semiring S
with the property that, for each integer i between 1 and k, the setAi is a union
of some of the sets occurring in the list C1, C2, . . . , Ck. There then exists a
finite collection G consisting of pairwise disjoint members D1, D2, . . . , Dm of
the semiring S with the property that, for each integer i between 1 and k, the
set Ci is expressible as a union of members of S belonging to the collection G
(see Proposition 6.8). Then each of the sets A1, A2, . . . , Ak is expressible

as a union of members of S belonging to G. It follows that
k⋃
i=1

Ak is also

expressible as a union of members of S belonging to G. The members of the
collection G are pairwise disjoint. The result follows.

Corollary 6.10 Let X be a set, let S be a semiring of subsets of X, and
let A and B be subsets of X each of which is expressible as a finite union
of pairwise disjoint members of the semiring S. Then A \ B can also be so
expressed.

Proof There is some finite collection G consisting of of pairwise disjoint
members D1, D2, . . . , Dm of the semiring S determined so as to ensure that
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each of the sets A and B is expressible as a union of members of S belonging
to G (see Proposition 6.8).

If a set Dj in the collection G is not a subset of A then it must be disjoint
from all those members of the collection G that are contained in A. But the
union of those members of the collection G that are contained in A is the
whole of the set A. It follows that, for each integer j between 1 and m, either
Dj ⊂ A or else Dj ∩ A = ∅. Similarly, for each integer j between 1 and m,
either Dj ⊂ B or else Dj ∩ B = ∅. But then A \ B is the disjoint union of
those sets Dj for which Dj ⊂ A and Dj ∩B = ∅. Indeed let x ∈ A\B. Then
there is exactly one integer j between 1 and m for which x ∈ Dj, because
A is a union of sets belonging to the list D1, D2, . . . , Dm of pairwise disjoint
members of S. Thus Dj ∩ A is non-empty, and therefore Dj ⊂ A. But also
x 6∈ B. It follows that Dj cannot be a subset of B, and therefore Dj ∩B = ∅.
The result follows.

6.3 Rings of Sets

Definition Let X be a set. A collection R of subsets of X is said to be
a ring of subsets of X if it is non-empty and A ∩ B, A ∪ B and A \ B are
members of R for all members A and B of R.

Example The characteristic function of a subset A of the set R of real
numbers is the function χA:R→ {0, 1} defined so that

χA(x) =

{
1 if x ∈ A;
0 if x 6∈ A.

Let C be the collection of subsets of R consisting of those sets A whose
characteristic functions χA satisfy the following conditions:

(i) χA(x) = 1 for all x ∈ A, and χA(x) = 0 for all x ∈ R \ A;

(ii) {x ∈ R : χA(x) = 1} is a bounded subset of R;

(iii) The function χA has only finitely many points of discontinuity.

The collection C of subsets R thus consists of those bounded subsets of R
whose characteristic functions have only finitely many points of discontinuity.
Now, given members A and B of C, the characteristic functions χA∩B, χA∪B
and χA\B of A ∩B, A ∪B and A \B respectively satisfy

χA∩B(x) = χA(x)χB(x),

χA∪B(x) = χA(x) + χB(x)− χA(x)χB(x),

χA\B(x) = χA(x)− χA(x)χB(x)
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for all x ∈ R. It follows easily from this that χA∩B, χA∪B and χA\B satisfy
conditions (i), (ii) and (iii) stated above. It follows that C is a ring of subsets
of R.

Lemma 6.11 Let R be a ring of subsets of a given set X. Then the empty
set ∅ belongs to R, and any finite union or intersection of members of the
ring R is also a member of that ring.

Proof The ring R is by definition non-empty. Let A be a member of R.
Then A \ A = ∅. It follows that the empty set ∅ is a member of the ring R.
Also it follows by induction on the number of sets involved that any finite
union or intersection of members of the ring R must itself belong to that
ring.

Let X be a set. The power set P(X) of X is the set whose elements are
the subsets of X. The power set P(X) of X is itself a ring of subsets of X,
and any ring Q of subsets of X is itself a subset of the power set P(X) of X.
The intersection of any collection of rings of subsets of X is the intersection
of a collection of collections of subsets of X, and is thus itself a collection
of subsets of X. Morever if sets A and B belong to all the rings in some
collection of rings of subsets of X, then so do A ∪ B, A ∩ B and A \ B. It
follows directly that the intersection of any collection of rings of subsets of
X is itself a ring of subsets of X.

In particular, let C be a collection of subsets of X and let R(C) be the
intersection of all rings of subsets of X that contain the collection C. (as
a subcollection). Then R(C) is itself a ring of subsets of X. Moreover it is
contained in any other ring of subsets of X that also contains the collection C.
Thus R(C) is the smallest ring of subsets of X that contains the collection C
(as a subcollection). We refer to R(C) as the ring of subsets of X generated
by the collection C of subsets of X.

Lemma 6.12 Let C be the collection consisting of those bounded subsets of R
whose characteristic functions have only finitely many points of discontinuity.
Then C is the ring of subsets of R generated by the semiring whose members
are the empty set, the singleton sets in R and the intervals in R.

Proof Let A be a non-empty member of the ring C. Then the characteristic
function χA of A has only finitely many points of discontinuity. Let those
points of discontinuity be u0, u1, u2, . . . , um, where

u0 < u1 < · · · < um.
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Then A can be expressed as a finite union of pairwise disjoint sets, where
each of the latter sets is either a singleton set taking the form {ui} for some
integer i between 0 and m or else an open interval taking the form {x ∈ R :
ui−1 < x < ui} for some integer i between 1 and m. Thus each member of
the ring C is expressible as a finite union of pairwise disjoint members of the
semiring J whose non-empty members are the singleton sets and bounded
intervals in R. It follows from this any ring of sets that contains all subsets of
R belonging to semiring J must also contain all subsets of R belonging to the
ring C. Therefore C is the ring of subsets of R generated by the semiring J ,
as required.

Proposition 6.13 Let X be a set, let S be a semiring of subsets of X, and
let R(S) be the ring of subsets of X generated by the semiring S. Then R(S)
consists of those subsets of X that are expressible as finite unions of pairwise
disjoint subsets of X belonging to the semiring S.

Proof Let T be the collection of subsets of X consisting of all subsets of
X that are expressible as finite unions of pairwise disjoint members of the
semiring S. Then T ⊂ R(S). But it follows from Lemma 6.7 Corollary 6.9
and Corollary 6.10 that if A and B are subsets of X belonging to the collec-
tion T then so are A∩B, A∪B and A \B. It follows that T is itself a ring
of subsets of X, and therefore R(S) ⊂ T . Consequently T = R(S). The
result follows.

6.4 Products of Semirings of Sets

Proposition 6.14 Let X1, X2, . . . , Xn be sets, let Si be a semiring of subsets
of Xi for i = 1, 2, . . . , n, and let S be the collection of subsets of the Cartesian
product X1×X2 · · ·×Xn consisting of those subsets of this Cartesian product
that can be expressed as product sets of the form

A1 × A2 × · · · × An

in which Ai is a member of the semiring Si for i = 1, 2, . . . , n. Then S is a
semiring of subsets of the Cartesian product X1 ×X2 · · · ×Xn

Proof The empty set belongs to S, because the empty set belongs to each
semiring Si and any Cartesian product of sets involving the empty set is itself
equal to the empty set.

Let
X = X1 ×X2 × · · · ×Xn,
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and let A and B be subsets of X belonging to S. Then there exist subsets
Ai and Bi of Xi belonging to Si for i = 1, 2, . . . , n such that

A = A1 × A2 × · · · × An

and
B = B1 ×B2 × · · · ×Bn.

An element (x1, x2, . . . , xn) of X belongs to the set A if and only if xi ∈ Ai
for i = 1, 2, . . . , n. That element belongs to the set B if and only if xi ∈ Bi

for i = 1, 2, . . . , n. It follows that (x1, x2, . . . , xn) belongs to A ∩ B if and
only if xi ∈ Ai ∩Bi for i = 1, 2, . . . , n. We conclude from this that

A ∩B = (A1 ∩B1)× (A2 ∩B2)× · · · × (An ∩Bn).

Moreover Ai ∩Bi ∈ Si for i = 1, 2, . . . , n because, for each integer i between
1 and n, Si is a semiring of subsets of S. It follows that A ∩ B belongs to
the collection S of subsets of X.

Then, for each integer i between 1 and n, there exist pairwise disjoint
subsets

Di,1, Di,2, . . . , Di,q(i)

of Xi belonging to the semiring Si such that each of the sets Ai and Bi can
be expressed as a finite union of some of these sets Di,j (see Proposition 6.8).
Let J denote the set of all n-tuples (j1, j2, . . . , jn) with 1 ≤ ji ≤ q(i) for
i = 1, 2, . . . , n, let

Fj1,j2,...,jn = D1,j1 ×D2,j2 × · · · ×Dn,jn

for all (j1, j2, . . . , jn) ∈ J , and let G denote the collection consisting of the
sets Fj1,j2,...,jn corresponding to the n-tuples (j1, j2, . . . , jn) in the indexing
set J .

Now, for each integer i between 1 and n, there are subsets Ki and Li of
{1, 2, . . . , q(i)} such that

Ai =
⋃
j∈Ki

Di,j and Bi =
⋃
j∈Li

Di,j,

because each of the sets Ai and Bi is expressible as a finite union of sets of
the form Di,j with 1 ≤ j ≤ q(i). Let

K = {(j1, j2, . . . , jn) ∈ J : ji ∈ Ki for i = 1, 2, . . . , n},
L = {(j1, j2, . . . , jn) ∈ J : ji ∈ Li for i = 1, 2, . . . , n}.
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Now Fj1,j2,...,jn ∈ A for all (j1, j2, . . . , jn) ∈ K. Also a element (x1, x2, . . . , xn)
of the set X belongs to the subset A if and only if xi ∈ Ai for i = 1, 2, . . . , n.
But then, for each integer i between 1 and n, there must exist ji ∈ Ki for
which xi ∈ Di,ji . Then (j1, j2, . . . , jn) ∈ K and (x1, x2, . . . , xn) ∈ Fj1,j2,...,jn .
These results ensure that

A =
⋃

(j1,j2,...,jn)∈K

Fj1,j2,...,jn .

Similarly

B =
⋃

(j1,j2,...,jn)∈L

Fj1,j2,...,jn .

It follows from that that

A \B =
⋃

(j1,j2,...,jn)∈K\L

Fj1,j2,...,jn ,

because the sets Fj1,j2,...,jn for (j1, j2, . . . , jn) ∈ J are pairwise disjoint. Each
set Fj1,j2,...,jn belongs to S. Thus A\B expressible as a finite union of pairwise
disjoint members of the collection S.

We have now shown that the empty set belongs to the collection S of
subsets of X. Also, given any members A and B of the collection S, the
intersection A∩B is a member of S, and the difference A\B is expressible as
a finite union of pairwise disjoint subsets of X belonging to S. These results
ensure that the collection S of subsets of X is a semiring, as required.

Definition Let X1, X2, . . . , Xn be sets, and let Si be a semiring of subsets of
Xi for i = 1, 2, . . . , n. The product of the semirings S1,S2, . . . ,Sn is defined
to be the collection S1 × S2 × · · · × Sn of subsets of the Cartesian product
X1 ×X2 × · · · ×Xn consisting of those subsets of of the sets Xi that can be
expressed as Cartesian products

A1 × A2 × · · · × An
of sets A1, A2, . . . , An in which Ai is a member of the semiring Si for i =
1, 2, . . . , n.

Proposition 6.14 ensures that any product of semirings of sets is itself a
semiring of sets.

Corollary 6.15 Let n be a positive integer, and let Jn be the ring of subsets
of Rn that consists of the empty set together those subsets of Rn that are
Cartesian products of subsets of R that are bounded intervals or singleton
sets. Then Jn is a semiring of subsets of Rn.

Proof This result follows directly on applying Lemma 6.5 and Proposi-
tion 6.14.
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6.5 Content Functions on Semirings

Definition Let X be a set, let S be a semiring of subsets of X, and let
λ:S → [0,+∞) be a function mapping each member A of the semiring S
to a non-negative real number λ(A). The function λ is said to be finitely
additive if

λ(A1 ∪ A2 ∪ · · · ∪ As) =
s∑
r=1

λ(Ar)

whenever A1, A2, . . . , As are pairwise disjoint members of the semiring S
whose union belongs to the semiring S.

Definition A content function λ:S → [0,+∞) on a semiring S of subsets
of a given set is a finitely additive function mapping each member A of the
semiring S to a non-negative real number λ(A).

Lemma 6.16 Let J be the semiring of subsets of R consisting of the empty
set, the singleton sets and the bounded intervals, and let the function λ:J →
[0,+∞) be defined such that λ(∅) = 0, λ({c}) = 0 for all c ∈ R, and

λ([a, b]) = λ((a, b]) = λ([a, b)) = λ((a, b)) = b− a

for all real numbers a and b satisfying a < b. Then λ:J → [0,+∞) is a
content function on the semiring J .

Proof If a member A of the semiring S is a finite union of pairwise disjoint
sets A1, A2, . . . , As, and if λ(A) = 0, then λ(Ar) = 0 for r = 1, 2, . . . , s, and
therefore

λ(A) =
s∑
r=1

λ(Ar)

in all cases for which λ(A) = 0,
Now suppose that A is a bounded interval with endpoints a and b, where

a and b satisfy a < b, and that

A = A1 ∪ A2 ∪ · · · ∪ As,

where the sets A1, A2, . . . , As are pairwise disjoint and each set Ak is either
a singleton set or a bounded interval.

Let u0, u1, . . . , uN be a list of real numbers satisfying

a = u0 < u1 < · · · < uN = b,
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where the list u0, u1, . . . , uN includes the endpoints of all the intervals oc-
curring in the list A1, A2, . . . , As and also includes the elements of all the
singleton sets occurring in this list. Then

λ(A) = b− a =
N∑
j=1

(uj − uj−1).

Now, for each integer j between 1 and N , and for each integer r between
1 and s, either (uj−1, uj) ⊂ Ar or (uj−1, uj) ∩ Ar = ∅, where

(uj−1, uj) = {x ∈ R : uj−1 < x < uj}.

The nature of intervals in the real line and the choice of u1, u2, . . . , uN then
ensures that λ(Ar) is the sum of the quantities uj−uj−1 for which (uj−1, uj) ⊂
Ar. For each integer r between 1 and s, letKr denote those integers j between
1 and N for which (uj−1, uj) ⊂ Ar. Then

λ(Ar) =
∑
j∈Kr

(uj − uj−1).

Now the sets A1, A2, . . . , As are pairwise disjoint. It follows that, for each
integer j between 1 and N , there is exactly one integer r between 1 and s
for which (uj−1, uj) ⊂ Ar. It follows that

λ(A) =
N∑
j=1

(uj − uj−1) =
s∑
r=1

∑
j∈Kr

(uj − uj−1) =
s∑
r=1

λ(Aj).

The result follows.

Lemma 6.17 Let X be a set, let S be a semiring of subsets of X, and let
λ:S → [0,+∞) be a content function on X. Then λ(∅) = 0 and λ(A) ≤ λ(B)
for all members A and B of the semiring S for which A ⊂ B.

Proof Let A be a subset of X belonging to the semiring S. Then the sets
A and ∅ are disjoint. It follows from the finite additivity of the content
function λ that

λ(A) = λ(A ∪ ∅) = λ(A) + λ(∅).
Subtracting λ(A), we conclude that λ(∅) = 0.

Now let A and B be members of the semiring S, where A \B. It follows
from the definition of semirings that there exists a finite list of pairwise
disjoint members C1, C2, . . . , Ck of the semiring S for which

B \ A = C1 ∪ C2 ∪ · · · ∪ Ck.
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The finite additivity and non-negativity of the content function λ then en-
sures that

λ(B) = λ(A) + λ(B \ A) = λ(A) +
k∑
j=1

λ(Cj) ≥ λ(A).

The result follows.

Lemma 6.18 Let X be a set, let D1, D2, . . . , Dq be pairwise disjoint subsets
of X, and let A be a subset of X. Suppose that A is expressible as a finite
union of sets included in the list D1, D2, . . . , Dq. Then, for each integer j
between 1 and q, either Dj is a non-empty subset of A or else Dj ∩ A = ∅.

Proof We may suppose, without loss of generality, that the set A is non-
empty. Let K be the set consisting of those integers j between 1 and q for
which Dj is non-empty and Dj ⊂ A. Then the set A is the union of those
sets Dj for which j ∈ K. If j 6∈ K then Dj ∩ Dp = ∅ for all p ∈ K, and
therefore Dj ∩ A = ∅. The result follows.

Proposition 6.19 Let λ:S → [0,+∞) be a content function on a semir-
ing S of subsets of some set X, and let A and A1, A2, . . . , As be members of

the semiring S. Suppose that A ⊂
s⋃

k=1

Ak. Then λ(A) ≤
s∑

k=1

λ(Ak).

Proof It follows from Proposition 6.8 that there is a finite list D1, D2, . . . , Dq

of members of the semiring S such that D1, D2, . . . , Dq are pairwise disjoint
and such that each of the set A, A1, A2, . . . , As is expressible as a union of
sets in the list D1, D2, . . . , Dq.

Let us define σj(A) for j = 1, 2, . . . , q so that σj(A) = 1 whenever Dj is a
non-empty subset of A and σj(A) = 0 in all other cases. Similarly, for each
integer k between 1 and s, let us define σj(Ak) so that σj(Ak) = 1 whenever
Dj is a non-empty subset of Ak and σj(Ak) = 0 in all other cases. Then
the set A is the union of those sets Dj for which σj(A) = 1. Suppose that
σj(A) = 1 for some integer j between 1 and q. Then Dj is non-empty and
Dj ⊂ A. Let x ∈ Dj. Then there is at least one integer k between 1 and s for

which x ∈ Ak, because x ∈ A and A ⊂
s⋃

k=1

Ak. Thus if j is an integer between

1 and q, and if σj(A) = 1, then there is at least one integer k between 1 and
s for which σj(Ak) = 1. It follows that

σj(A) ≤
s∑

k=1

σj(Ak)
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for all integers j between 1 and q.
Now the content function λ is finitely additive. It follows that

λ(A) =

q∑
j=1

σj(A)λ(Dj).

Similarly

λ(Ak) =

q∑
j=1

σj(Ak)λ(Dj)

for k = 1, 2, . . . , s. We have shown that

σj(A) ≤
s∑

k=1

σj(Ak)

for all integers j between 1 and q. It follows that

λ(A) =

q∑
j=1

σj(A)λ(Dj) ≤
s∑

k=1

q∑
j=1

σj(Ak)λ(Dj) =
s∑

k=1

λ(Ak),

as required.

Proposition 6.20 Let λ:S → [0,+∞) be a content function on a semir-
ing S of subsets of some set X, and let A and A1, A2, . . . , As be members
of the semiring S. Suppose that the sets A1, A2, . . . , As are disjoint and are

contained in A. Then
s∑

k=1

λ(Ak) ≤ λ(A).

Proof It follows from Proposition 6.8 that there is a finite list D1, D2, . . . , Dq

of members of the semiring S such that D1, D2, . . . , Dq are pairwise disjoint
and such that each of the set A, A1, A2, . . . , As is expressible as a union of
sets in the list D1, D2, . . . , Dq.

Let us define σj(A) for j = 1, 2, . . . , s so that σj(A) = 1 whenever Dj is a
non-empty subset of A and σj(A) = 0 in all other cases. Similarly, for each
integer k between 1 and s, let us define σj(Ak) so that σj(Ak) = 1 whenever
Dj is a non-empty subset of Ak and σj(Ak) = 0 in all other cases. Then the
set A is the union of those Dj for which σj(A) = 1.

Now for each integer j between 1 and q, there is at most one set Ak in
the list A1, A2, . . . , As for which Dj ⊂ Ak, because the sets A1, A2, . . . , As
are pairwise disjoint. It follows that

s∑
k=1

σj(Ak) ≤ 1
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for j = 1, 2, . . . , q. Moreover, given any integer k between 1 and s, the
identity σj(A) = 1 is satisfied by those integers j between 1 and q for which
σj(Ak) = 1. It follows that

s∑
k=1

σj(Ak) ≤ σj(A)

for all integers j between 1 and q. Now the content function λ is finitely
additive. It follows that

λ(A) =

q∑
j=1

σj(A)λ(Dj).

Similarly

λ(Ak) =

q∑
j=1

σj(Ak)λ(Dj)

for k = 1, 2, . . . , s. We have shown that

s∑
k=1

σj(Ak) ≤ σj(A)

for all integers j between 1 and q. It follows that

s∑
k=1

λ(Ak) =
s∑

k=1

q∑
j=1

σj(Ak)λ(Dj) ≤
q∑
j=1

σj(A)λ(Dj) = λ(A),

as required.

Proposition 6.21 Let X be a set, let S be a semiring of subsets of X,
and let λ:S → [0,+∞) be a content function on the semiring S. Then
the content function λ extends in a unique fashion to a content function
λ:R(S) → [0,+∞) defined on the ring R(S) of subsets of X generated by
the semiring S.

Proof It follows from Proposition 6.13 that any subset of X belonging to
the ring R(S) of subsets of X generated by semiring S is expressible as a
finite union of pairwise disjoint members of that semiring.

Let A be a member of the ring R(S) generated by the semiring S, and
let it be the case that

A =

p⋃
j=1

Bj =

q⋃
k=1

Ck
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where B1, B2, . . . , Bp is a list of pairwise disjoint members of the semiring S,
and C1, C2, . . . , Cq is also a list of pairwise disjoint members of the semiring S.
Then, for each integer j between 1 and p,

Bj = Bj ∩ A =

q⋃
k=1

(Bj ∩ Ck).

Now the sets Bj ∩Ck for k = 1, 2, . . . , q are pairwise disjoint. It follows from
the finite additivity of the content function λ on S that

λ(Bj) =

q∑
k=1

λ(Bj ∩ Ck),

and therefore
p∑
j=1

λ(Bj) =

p∑
j=1

q∑
k=1

λ(Bj ∩ Ck).

Similarly
q∑

k=1

λ(Ck) =

p∑
j=1

q∑
k=1

λ(Bj ∩ Ck).

It follows that
p∑
j=1

λ(Bj) =

q∑
k=1

λ(Ck).

We therefore define λ(A) to be the unique real number with the property

that λ(A) =
p∑
j=1

λ(Bj) for all finite lists B1, B2, . . . , Bp of pairwise disjoint

members of the semiring S for which A =
p⋃
j=1

Bj. It then follows directly

that
λ:R(S)→ [0,+∞)

is finitely additive, and is thus a content function on the ring R(S) generated
by S. Moreover this content function λ is clearly the only finitely additive
function that extends λ. The result follows.

Corollary 6.22 Let I be the ring of subsets of the set R of real numbers
consisting of the empty set together with those subsets of R that are repre-
sentable as finite unions of singleton sets and bounded intervals. Then there
is a well-defined content function

ν: I → [0,+∞)
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that satisfies ν({c}) = 0 for all c ∈ R and

ν([a, b]) = ν((a, b]) = ν([a, b)) = ν((a, b)) = b− a

for all real numbers a and b satisfying a < b.

Proof This result follows immediately on applying Proposition 6.21 to ex-
tend the content function on the semiring of subsets of R, characterized by
the conditions stated in the corollary, whose existence was established by
Lemma 6.16.

6.6 Content Functions on Products of Semirings of
Sets

Proposition 6.23 Let X1, X2, . . . , Xn be sets, and, for each integer i be-
tween 1 and n, let Si be a semiring of subsets of Xi, and let λi:Si → [0,+∞)
be a content function on the semiring Si. Also let

λ(A1 × A2 × · · · × An) = λ1(A1)λ2(A2) · · ·λn(An)

for all product sets A1 × A2 × · · · × An for which Ai is a member of the
semiring Si for i = 1, 2, . . . , n. Then

λ:S1 × S2 × · · · Sn → [0,+∞)

is finitely additive, and is therefore a content function on the product semiring
S1 × S2 × · · · Sn.

Proof Let X = X1 × X2 × · · · × Xn and S = S1 × S2 × · · · × Sn. Let A
be a subset of X belonging to the product semiring S, and suppose that

A =
s⋃
r=1

A(r), where A(1), A(2), . . . , A(s) are pairwise disjoint members of the

semiring S. Then, for each integer i between 1 and n, there exist subsets Ai,
A

(1)
i , A

(2)
i , . . . , A

(s)
i of Xi, all belonging to the semiring Si, such that

A = A1 × A2 × · · ·An

and
A(r) = A

(r)
1 × A

(r)
2 × · · · × A(r)

n

for r = 1, 2, . . . , s. Then, for each integer i between 1 and n there exists
a positive integer q(i) and pairwise disjoint members Di,1, Di,2, . . . , Di,q(i) of

the semiring Si such that each of the sets Ai, A
(1)
i , . . . , A

(s)
i can be expressed
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as a union of sets included in the list Di,1, Di,2, . . . , Di,q(i) (Proposition 6.8).

Then, for each integer i between 1 and n, subsets Ki, K
(1)
i , . . . , K

(s)
i of {j ∈

Z : 1 ≤ j ≤ q(i)} can be found so that

Ai =
⋃
j∈Ki

Di,j

and
A

(r)
i =

⋃
j∈K(r)

i

Di,j

for r = 1, 2, . . . , s.
Let

K = {(j1, j2, . . . , jn) : ji ∈ Ki for i = 1, 2, . . . , n}

and
K(r) = {(j1, j2, . . . , jn) : ji ∈ K(r)

i for i = 1, 2, . . . , n}.

and let
Fj1,j2,...,jn = D1,j1 ×D2,j2 × · · · ×Dn,jn

for each n-tuple (j1, j2, . . . , jn) of integers that satisfies 1 ≤ ji ≤ q(i) for i =
1, 2, . . . , n, and let G denote the collection consisting of these sets Fj1,j2,...,jn .
Then the subsets of X belonging to the collection G are all members of the
semiring S. Also the sets Fj1,j2,...,jn are pairwise disjoint,

A =
⋃

(j1,j2,...,jn)∈K

Fj1,j2,...,jn ,

and
A(r) =

⋃
(j1,j2,...,jn)∈K(r)

Fj1,j2,...,jn

for r = 1, 2, . . . , s. (These results follow from a direct application of Corol-
lary 6.4.)

We now investigate the behaviour of the content functions on the relevant
semirings. Now A = A1 × A2 × · · · × An, where each set Ai is the disjoint
union of the sets Di,ji for which ji ∈ Ki. It follows that

λi(Ai) =
∑
ji∈Ki

λi(Di,ji),

Now it follows from the definition of the function λ that

λ(A) = λ1(A1)λ2(A2) · · ·λn(An)
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and
λ(Fj1,j2,...,jn) = λ1(D1,j1)λ2(D2,j2) · · ·λn(Dn,jn)

for each (j1, j2, . . . , jn) ∈ K. It follows (applying the Distributive Law) that

λ(A) =
∑
j1∈K1

∑
j2∈K2

· · ·
∑
jn∈Kn

λ1(Di,j1)λ2(D2,j2) · · ·λn(Dn,jn)

=
∑

(j1,j2,...,jn)∈K

λ(Fj1,j2,...,jn).

Similarly

λ(A(r)) =
∑

j1∈K(r)
1

∑
j2∈K(r)

2

· · ·
∑

jn∈K(r)
n

λ1(Di,j1)λ2(D2,j2) · · ·λn(Dn,jn)

=
∑

(j1,j2,...,jn)∈K(r)

λ(Fj1,j2,...,jn).

Now the set A is by assumption the union of the pairwise disjoint sets
A(1), A(2), . . . , A(r). It is also the union of the pairwise disjoint sets Fj1,j2,...,jn
for which (j1, j2, . . . , jn) ∈ K, and each A(r) is the union of the pairwise
disjoint sets Fj1,j2,...,jn for which (j1, j2, . . . , jn) ∈ K(r). Thus the indexing
set K is the disjoint union of the sets K(1), K(2), . . . , K(s), and therefore

λ(A) =
∑

(j1,j2,...,jn)∈K

λ(Fj1,j2,...,jn)

=
s∑
r=1

∑
(j1,j2,...,jn)∈K(r)

λ(Fj1,j2,...,jn)

=
s∑
r=1

λ(A(r)).

Thus the function λ:S → [0,+∞) is finitely-additive, and is thus a content
function on the semiring S, as required.

Corollary 6.24 Let n be a positive integer, and let Bn be the ring of subsets
of Rn that consists of the empty set together with all subsets of Rn rep-
resentable as finite unions of Cartesian products of subsets of R that are
bounded intervals or singleton sets. Then there is a well-defined (finitely ad-
ditive) content function λ:Bn → [0,+∞) characterized by the property that

λ(I1 × I2 × · · · × In) = (b1 − a1)(b2 − a2) · · · (bn − an)

for all subsets I1, I2, . . . , In of R that are bounded intervals or singleton sets,
where ai = inf Ii and bi = sup Ii for i = 1, 2, . . . , n.
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Proof It follows from Lemma 6.16 and Proposition 6.23 that there is a
content function on the product semiring of subsets of Rn consisting of the
empty set together with those subsets of Rn that are expressible as Cartesian
products of subsets of R that are bounded intervals and singleton sets. It
then follows from Proposition 6.21 that the resultant content function on
the semiring extends to a content function on the ring of subsets of Rn

generated by the product semiring. Morever Proposition 6.13 establishes
that the subsets of Rn that belong to the ring of subsets generated by the
product semiring are those subsets of Rn that are finite unions of Cartesian
products of bounded intervals and singleton sets. The result follows.
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