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Course MAU22200: Hilary Term 2020. Assignment 1.

Stieltjes Measures

1. Throughout this question, let F :R→ R be a non-decreasing function of
a real variable. The function F thus has the property that F (u) ≤ F (v)
for all real numbers s and t satisfying u ≤ v. For each real number s,
let F (s+) and F (s−) be defined so that

F (s+) = lim
x→s+

F (x) = inf{F (x) : x > s},

F (s−) = lim
x→s−

F (x) = sup{F (x) : x < s}.

Note that F (s) is a lower bound for the set {F (x) : x > s} and an upper
bound for the set {F (x) : x < s} for each real number s, because the
function F is non-decreasing. It follows that F (s−) ≤ F (s) ≤ F (s+) for
all real numbers s. Also F (u+) ≤ F (v) ≤ F (w−) for all real numbers
u, v and w satisfying u < v < w. The definition of F (s+) and F (s−)
also ensures that, given any positive real number ε, there exist real
numbers q and r satisfying q < s < r for which F (q) > F (s−)− ε and
F (r) < F (s+) + ε.

We define the Stieltjes content mF (I) of each bounded interval or sin-
gleton set I contained in R so that

mF ({v}) = F (v+)− F (v−),

mF ([u, v]) = F (v+)− F (u−),

mF ([u, v)) = F (v−)− F (u−),

mF ((u, v]) = F (v+)− F (u+),

mF ((u, v)) = F (v−)− F (u+)

for all real numbers u and v satisfying u < v.

(a) Let a and b be real numbers satisfying a < b, and let u0, u1, . . . , uN
be a list of real numbers with the property that

a = u0 < u1 < u2 < · · · < uN = b.

For each integer j between 0 and N , let Dj = {uj}, and, for each
integer j between 1 and N , let

Ej = (uj−1, uj) = {x ∈ R : uj−1 < x < uj}.
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Prove that

mF ((a, b)) =
N−1∑
j=1

mF (Dj) +
N∑
j=1

mF (Ej),

where mF (Dj) and mF (Ej) denote the Stieltjes content of the sets Dj

and Ej respectively. Also determine and write down corresponding ex-
pressions for mF ([a, b)), mF ((a, b]), mF ([a, b]), expressing each of these
as a finite sum whose summands are the Stieltjes measures of sets, each
of which included amongst the singleton sets Dj and the open intervals
Ej.

(b) Let a, b, u0, u1, . . . , uN , D0, D1, . . . , DN and E1, E2, . . . , EN be de-
fined as set out in (a). Let J be an interval or singleton set whose
endpoints are included in the list u0, u1, . . . , uN , and let

S(J) = {j ∈ Z : 0 ≤ j ≤ N and Dj ⊂ J},
T (J) = {j ∈ Z : 1 ≤ j ≤ N and Ej ⊂ J}

(Note that an integer j between 0 and N belongs to S(J) if and only
if uj ∈ J , and and integer j between 1 and N belongs to T (J) if and
only if (uj−1, uj) ⊂ J .) Prove that

mF (J) =
∑

j∈S(J)

mF (Dj) +
∑

j∈T (J)

mF (Ej).

(c) Let a, b, u0, u1, . . . , uN , D0, D1, . . . , DN and E1, E2, . . . , EN be de-
fined as set out in (a). Let J , J (1), J (2), . . . , J (s) be intervals or singleton
sets whose endpoints are included in the list u0, u1, . . . , uN . Suppose

that J (1), J (2), . . . , J (s) are pairwise disjoint and that J =
s⋃

r=1

J (r). Us-

ing the result of (b), or otherwise, prove that

mF (J) =
s∑

r=1

mF (J (r)).

(d) Let {v} be a singleton set in the real line. Prove that, given any
positive real number ε, there exists an open interval V such that v ∈ V
and mF (V ) < mF ({v}) + ε.

(e) Let J be a bounded interval of positive length in the real line,
and let a = inf J and b = sup J . (It then follows that a < b, and J
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coincides with exactly one of the intervals (a, b), [a, b), (a, b] and [a, b].)
Considering individually all relevant cases that result, prove that given
any positive real number ε, there exists an open interval V such that
J ⊂ V and mF (V ) < mF (J) + ε.

(f) Let J be a bounded interval in R, and let J (1), J (2), J (3), . . . be an

infinite sequence of bounded intervals in R. Suppose that J ⊂
+∞⋃
r=1

J (r).

By applying the one-dimensional Heine-Borel theorem and using the
results obtained in (d) and (e) above, or otherwise, prove that mF (J) ≤
+∞∑
r=1

mF (J (r)). [Hint: it is suggested that the proof be modelled on that

of Proposition 7.8 of the module notes.]

We follow the above question with a review of some results that follow
from what has been established in the previous parts of this question. Let J
be the semiring of subsets of the real line consisting of the empty set together
with all singleton sets and bounded intervals contained in the set R of real
numbers. Also let the empty set be assigned Stieltjes content equal to zero, so
that mF (∅) = 0. Note that the result stated in (c) then ensures that Stieltjes
measure determines a finitely additive content function mF :J → [0,+∞)
on the semiring J . The result of (f) ensures that this content function is
countably subadditive. One could then adapt the approach of Subsection 7.2
of the module notes in order to define Lebesgue-Stieltjes outer measure µ∗F
on the real line R and show that it is indeed an outer measure. The gen-
eral theory of outer measures and measurable sets then ensures the existence
of Lebesgue-Stieltjes measure µF , defined on the class of Lebesgue-Stieltjes-
measurable subsets of the real line R. The general theory of Lebesgue integra-
tion developed in the module notes provides the appropriate definition of the
Lebesgue-Stieltjes integral of a Lebesgue-Stieltjes-measurable function g over
a Lebesgue-Stieltjes-measurable subset E of the real line. This Lebesgue-
Stieltjes integral may be denoted by

∫
E
g dµF , or simply by

∫
E
g dF .

A particular case of Stieltjes integration is that in which the non-decreasing
function determining the Stieltjes measure is the Heaviside function H de-
fined in accordance with the following requirements: H(x) = 1 if x >
0; H(x) = 0 if x < 0; H(0) is some determined value chosen to satisfy
0 ≤ H(0) ≤ 1. If E is a subset of the real line R, and if 0 ∈ E, then∫
E
g(x) dH = g(0). (Applied mathematicians typically consider the “deriva-

tive” of the Heaviside function H at zero to be the “Dirac delta function”.)
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