A Note on the Barycentric Subdivision of a Simplex

Let σ be a simplex. Then the collection K_{σ} of all faces of σ is a simplicial complex (see MA3486, notes for Hilary Term 2018, example in subsection 4.1, page 50). This simplicial complex has a first barycentric subdivision K'_{σ} . It is convenient to refer to this simplicial complex K'_{σ} as the barycentric subdivision or first barycentric subdivision of the simplex σ .

The definition of the barycentric subdivision of a simplicial complex (see MA3486, notes for Hilary Term 2018, definition in subsection 4.2, page 52) determines what are the simplices of the first barycentric subdivision K'_{σ} of σ . The vertices of an *r*-simplex of the first barycentric subdivision can be listed in the form $\tau_0, \tau_1, \ldots, \tau_r$, where each τ_j is a face of σ and τ_{j-1} is a face of τ_j for $2 \leq j \leq r$.

To make the discussion less abstract, we consider a particular example, making arbitrary choices of the dimensions of the simplices involved (subject to the requirements of the definition). Accordingly let us suppose that σ is a 12-dimensional simplex and that its vertices are

$$\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{12}.$$

Let τ be a 3-dimensional simplex of the first barycentric subdivision of σ . Then the vertices of τ are the barycentres of a 'chain' of faces of σ , where each face in the 'chain' other than the last is a face of the next face in the chain. Making fairly arbitrary choices of the vertices spanning the faces, we may consider, for example, the instance where τ has vertices $\hat{\tau}_0$, $\hat{\tau}_1$, $\hat{\tau}_2$ and $\hat{\tau}_3$, where

 τ_0 has vertices \mathbf{v}_3 and \mathbf{v}_9 , τ_1 has vertices \mathbf{v}_3 , \mathbf{v}_7 and \mathbf{v}_9 , τ_2 has vertices \mathbf{v}_0 , \mathbf{v}_3 , \mathbf{v}_5 , \mathbf{v}_7 and \mathbf{v}_9 , τ_3 has vertices \mathbf{v}_0 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_5 , \mathbf{v}_7 , \mathbf{v}_9 , \mathbf{v}_{11} and \mathbf{v}_{12} .

Let the vertices of τ be denoted by \mathbf{w}_0 , \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 , where \mathbf{w}_j is the barycentre $\hat{\tau}_j$ of the simplex τ_j for j = 0, 1, 2, 3. It follows from the definition of barycentres of simplices (see MA3486, notes for Hilary Term 2018, subsection 4.2, page 52) that

$$\begin{split} \mathbf{w}_0 &= \frac{1}{2}(\mathbf{v}_3 + \mathbf{v}_9), \\ \mathbf{w}_1 &= \frac{1}{3}(\mathbf{v}_3 + \mathbf{v}_7 + \mathbf{v}_9), \\ \mathbf{w}_2 &= \frac{1}{5}(\mathbf{v}_0 + \mathbf{v}_3 + \mathbf{v}_5 + \mathbf{v}_7 + \mathbf{v}_9), \\ \mathbf{w}_3 &= \frac{1}{8}(\mathbf{v}_0 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_5 + \mathbf{v}_7 + \mathbf{v}_9 + \mathbf{v}_{11} + \mathbf{v}_{12}). \end{split}$$

The points of the simplex τ of the barycentric subdivision can each be expressed uniquely in the form

$$u_0\mathbf{w}_0 + u_1\mathbf{w}_1 + u_2\mathbf{w}_2 + u_3\mathbf{w}_3$$

where u_0 , u_1 , u_2 and u_3 are real numbers between 0 and 1 for which $u_0 + u_1 + u_2 + u_3 = 1$. Moreover, according to the definition of the *interior* of a simplex, (see MA3486, notes for Hilary Term 2018, definition in subsection 3.5, page 41) a point of τ belongs to the interior of τ if and only those real numbers u_0 , u_1 , u_2 and u_3 are strictly positive. The requirement that these barycentric coordinates sum to one then ensure that, for a point in the interior of τ , the barycentric coordinates u_0 , u_1 , u_2 , u_3 of that point with respect to the vertices of τ satisfy $0 < u_j < 1$ for j = 0, 1, 2, 3. Conversely when these strict inequalities are satisfied by these barycentric coordinates, the point determined by them belongs to the interior of the simplex τ .

So let **x** be a point of τ , and let

$$\mathbf{x} = u_0 \mathbf{w}_0 + u_1 \mathbf{w}_1 + u_2 \mathbf{w}_2 + u_3 \mathbf{w}_3$$

where $0 \le u_j \le 1$ for j = 0, 1, 2, 3 and $u_0 + u_1 + u_3 + u_4$, and let $\mathbf{x} = \sum_{k=0}^{12} t_k \mathbf{v}_k$,

where $\sum_{k=0}^{12} t_k = 1$. Then t_0, t_1, \ldots, t_{12} are the barycentric coordinates of the point **x** with respect to the vertices of σ .

First note that

$$t_1 = t_4 = t_6 = t_8 = t_{10} = 0.$$

Indeed the vertices of σ associated with these barycentric coordinates are not vertices of any of the faces τ_0 , τ_1 , τ_2 , and τ_3 .

Next note that, because the coefficients u_0 , u_1 , u_2 and u_3 are non-negative, the barycentric coordinates associated with the vertices \mathbf{v}_0 , \mathbf{v}_3 , \mathbf{v}_5 , \mathbf{v}_7 and \mathbf{v}_9 will be at least as large in numerical value as those associated with the other vertices \mathbf{v}_2 , \mathbf{v}_{11} and \mathbf{v}_{12} . Indeed

$$t_2 = t_{11} = t_{12} = \frac{1}{8}u_3,$$

whilst t_0, t_3, t_5, t_7 and t_9 must equal or exceed $\frac{1}{8}u_3$. Similarly

$$t_0 = t_5 = \frac{1}{8}u_3 + \frac{1}{5}u_2,$$

whilst t_3 , t_7 and t_9 must equal or exceed the common value of t_0 and t_1 .

Finally we note that

$$t_7 = \frac{1}{8}u_3 + \frac{1}{5}u_2 + \frac{1}{3}u_1$$

and

$$t_3 = t_9 = \frac{1}{8}u_3 + \frac{1}{5}u_2 + \frac{1}{3}u_1 + \frac{1}{2}u_0.$$

Summarizing the equalities and inequalities, we see that

$$0 = t_1 = t_4 = t_6 = t_8 = t_{10} \le t_2 = t_{11} = t_{12} \le t_0 = t_5 \le t_7 \le t_3 = t_9.$$

Moreover the point **x** belongs to the interior of the simplex τ if and only if

$$0 = t_1 = t_4 = t_6 = t_8 = t_{10} < t_2 = t_{11} = t_{12} < t_0 = t_5 < t_7 < t_3 = t_9$$

because these strict inequalities are the necessary and sufficient conditions to ensure that u_0 , u_1 , u_2 and u_3 are strictly positive.

We have above determined the ordering (in terms of numerical size) that characterizes the barycentric coordinates, with respect to the vertices of σ , of points in the interior of the particular simplex τ of the barycentric subdivision of σ . It should be clear how, once the barycentric coordinates of a given point of σ are ranked in increasing numerical order, one can write down the vertices of the unique simplex of the barycentric subdivision of σ that contains the given point in its interior.

We now return to our particular example. We show that if $\sum_{j=0}^{3} u_j = 1$ then $\sum_{k=0}^{12} t_k = 1$. Now the equations expressing t_0, t_1, \ldots, t_{12} in terms of u_0, u_1, u_2, u_3 are determined by a matrix $A_{k,j}$ so that $t_k = \sum_{j=0}^{3} A_{k,j} u_j$, where the matrix A with coefficient $A_{k,j}$ in the kth row and jth column is the following 13×4 matrix:

$$A = \begin{pmatrix} \frac{1}{8} & \frac{1}{5} & 0 & 0\\ 0 & 0 & 0 & 0\\ \frac{1}{8} & 0 & 0 & 0\\ \frac{1}{8} & \frac{1}{5} & \frac{1}{3} & \frac{1}{2}\\ 0 & 0 & 0 & 0\\ \frac{1}{8} & \frac{1}{5} & 0 & 0\\ 0 & 0 & 0 & 0\\ \frac{1}{8} & \frac{1}{5} & \frac{1}{3} & 0\\ 0 & 0 & 0 & 0\\ \frac{1}{8} & \frac{1}{5} & \frac{1}{3} & \frac{1}{2}\\ 0 & 0 & 0 & 0\\ \frac{1}{8} & \frac{1}{5} & \frac{1}{3} & \frac{1}{2}\\ 0 & 0 & 0 & 0\\ \frac{1}{8} & 0 & 0 & 0\\ \frac{1}{8} & 0 & 0 & 0\\ \frac{1}{8} & 0 & 0 & 0 \end{pmatrix}$$

•

Note that the columns of this matrix sum up to one. Thus $\sum_{k=0}^{12} A_{k,j} = 1$. It follows that

$$\sum_{k=0}^{12} t_k = \sum_{k=0}^{12} \sum_{j=0}^3 A_{k,j} u_j = \sum_{j=0}^3 \left(\sum_{k=0}^{12} A_{k,j} \right) u_j = \sum_{j=0}^3 u_j = 1.$$

Now let, for example,

$$\mathbf{x} = \frac{17}{240}\mathbf{v}_0 + \frac{1}{48}\mathbf{v}_2 + \frac{77}{240}\mathbf{v}_3 + \frac{17}{240}\mathbf{v}_5 + \frac{37}{240}\mathbf{v}_7 + \frac{77}{240}\mathbf{v}_9 + \frac{1}{48}\mathbf{v}_{11} + \frac{1}{48}\mathbf{v}_{12}.$$

In ranking the barycentric coordinates in numerical order, we note that $\frac{1}{48} = \frac{5}{240}$. So, denoting the coefficient of \mathbf{v}_k by t_k , as above, we find that

 $t_1 = t_4 = t_6 = t_8 = t_{10} < t_2 = t_{11} = t_{12} < t_0 = t_5 < t_7 < t_3 = t_9.$

Thus the point **x** belongs to the interior of the simplex τ . Now

$$\frac{17}{240} - \frac{1}{48} = \frac{17 - 5}{240} = \frac{12}{240} = \frac{1}{20},$$
$$\frac{37}{240} - \frac{17}{240} = \frac{20}{240} = \frac{1}{12},$$
$$\frac{77}{240} - \frac{37}{240} = \frac{40}{240} = \frac{1}{6}.$$

It follows that

$$\mathbf{x} = \frac{1}{48} (\mathbf{v}_0 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_5 + \mathbf{v}_7 + \mathbf{v}_9 + \mathbf{v}_{11} + \mathbf{v}_{12}) + \frac{1}{20} (\mathbf{v}_0 + \mathbf{v}_3 + \mathbf{v}_5 + \mathbf{v}_7 + \mathbf{v}_9) + \frac{1}{12} (\mathbf{v}_3 + \mathbf{v}_7 + \mathbf{v}_9) + \frac{1}{6} (\mathbf{v}_3 + \mathbf{v}_9) = \frac{1}{3} \mathbf{w}_0 + \frac{1}{4} \mathbf{w}_1 + \frac{1}{4} \mathbf{w}_2 + \frac{1}{6} \mathbf{w}_3$$