
Course MA3486: Hilary Term 2018.

Solutions to Revision Problems.

1. Let F :R ⇒ R and Let G:R ⇒ R be the correspondences defined such
that

F (x) =

{
{y ∈ R : y ≥ ex + 1} if x < 0,
{y ∈ R : y ≥ e−x − x2} if x ≥ 0,

G(x) =

{
{y ∈ R : y ≥ e−x + x2} if x < 0;
{y ∈ R : y ≥ ex + 1} if x ≥ 0.

Make the following determinations, justifying your answer in each case.

(a) Determine whether or not the correspondence F is upper hemicon-
tinuous at x = 0.

This correspondence is upper hemicontinuous at x = 0. Note that
F (0) = [1,+∞). Let V be an open set in R for which F (0) ⊂ V . Then
1 ∈ V , and V is open in R, and therefore there exists some real number s
satisfying s < 1 for which (s, 1] ⊂ V . Then (s,+∞) ⊂ V . Now ex > 0
and therefore F (x) ⊂ (1,∞) whenever x < 0. It follows that F (x) ⊂
V whenever x < 0. In order to complete the verification of upper
hemicontinuity, we need to show that F (x) ⊂ V for all positive values
of x that lie sufficiently close to zero. Now the function x 7→ e−x − x2
is decreasing for non-negative values of x. Nevertheless the continuity
of this function ensures the existence of a positive real number δ with
the property that e−x − x2 > s whenever 0 ≤ x < δ. Then F (x) ⊂
(s,+∞) ⊂ V for all real numbers x satisfying |x| < δ. We conclude
that the correspondence F is upper hemicontinuous at zero.

[N.B., it would, in principle, be possible to quantify matters, determin-
ing, given any value of s satisfying s < 1, a value of the positive real
number δ that ensures that F (x) ⊂ V whenever 0 ≤ x < δ. But this
would just make unnecessary work. An appeal to the (ε–δ) continuity
of the relevant (single-valued) functions is sufficient.]

(b) Determine whether or not the correspondence F is lower hemicon-
tinuous at x = 0.

The correspondence F is not lower hemicontinuous x = 0. Note that
F (0) = [1,+∞) whereas F (x) ⊂ (3

2
,∞) whenever x < 0. Thus the set

F (x) in some sense “abruptly collapses” as x moves away from zero in
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the negative direction. To get a formal counter-example we note that
there exists a negative real number u such that ex + 1 > 3

2
whenever

u < x < 0. Thus if, for example, V = {y ∈ R : 1
2
< y < 3

2
, then V is

open in R and F (0) ∩ V 6= ∅, but F (x) ∩ V = ∅ for all real numbers x
satisfying u < x < 0. Thus there cannot possibly exist any positive
real number δ with the property that F (x) ∩ V 6= ∅ whenever |x| < δ.
This concludes the verification that the correspondence F is not lower
hemicontinuous at x = 0.

(c) Determine whether or not the correspondence G is upper hemicon-
tinuous at x = 0.

The correspondence G is not upper hemicontinuous at x = 0. In outline
G(0) = [2,+∞), and G(x) ⊂ [2,+∞) whenever x ≥ 0. But as x moves
from “leftwards” from zero to negative values, the set G(x) “abruptly
inflates” to intervals whose lower endpoint is close to 1.

To get an explicit counter-example, take V = {y ∈ R : y > 3
2
. Then

V is open in R, and G(0) ⊂ V . Now the function x 7→ e−x + x2

is continuous at x = 0, where it takes the value 1. It follows from
continuity that there exists some negative real number u such that
e−x + x2 < 3

2
whenever u < x < 0. It follows that if u < x < 0

then G(x) ∩ [0, 3
2
] 6= ∅. Therefore G(x) is not a subset of V for any

real number x satisfying u < x < 0. Therefore the correspondence G
cannot be upper hemicontinuous at x = 0.

(d) Determine whether or not the correspondence G is lower hemicon-
tinuous at x = 0.

The correspondence G is lower hemicontinuous at x = 0. In summary,
any open set V that has non-empty intersection with G(0) must contain
some real number greater than 2, and this real number will be in G(x)
for all values of x sufficiently close to 0.

Indeed let V be an open set in R with the property that V ∩G(0) 6= ∅.
Now G(0) = [2,+∞), and if 2 ∈ V then there exists ε0 > 0 such that
y ∈ V for all real numbers y satisfying 2 − ε0 < y < 2 + ε0. Thus
V ∩ [2,+∞) 6= ∅ if and only if V ∩ (2,+∞) 6= ∅. It follows that if V is
an open set in R, and if V ∩G(0) 6= ∅, then there exists v ∈ V satisfying
v > 2. It follows from the continuity of the functions x 7→ ex + x2 and
x 7→ e−x + 1 that there exists some positive real number δ such that
ex + x2 < v for all real numbers x satisfying 0 < x < δ and e−x + 1 < v
for all real numbers x satisfying 0 ≤ x < δ. Then v ∈ G(x) for all
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real numbers x satisfying |x| < δ, and thus G(x) ∩ V 6= ∅ for all real
numbers x satisfying |x| < δ.

2. Let σ be the simplex with vertices v0, v1, v2, v3, where

v0 = (20, 30, 40), v1 = (40, 60, 70),

v2 = (70, 70, 80), v3 = (20, 50, 40),

and let x = (34, 50, 54). Determine the barycentric coordinates of x
with respect to the vertices of σ, and hence determine the vertices of
the unique simplex in the barycentric subdivision of σ that contains the
point x in its interior.

Let t0, t1, t2 and t3 denote the barycentric coordinates of x with respect
to the vertices of σ, so that

x = t0v0 + t1v1 + t2v2 + t3v3.

and t0 + t1 + t2 + t3 = 1. On substituting t0 = 1− t1 − t2 − t3, we find
that

x− v0 = t1(v1 − v0) + t2(v2 − v0) + t3(v3 − v0).

Thus  14
20
17

 = t1

 20
30
30

+ t2

 50
40
40

+ t3

 0
20
0

 .

This can be written as a set of simultaneous linear equations in the
form 

20t1 + 50t2 = 14
30t1 + 40t2 + 20t3 = 20

30t1 + 40t2 = 14

Subtracting the third equation from the second, we find that 20t3 = 6.
Thus t3 = 0.3. Multiplying the first and third equations by 3 and 2
respectively, and then subtracting, we find that

60t1 + 150t2 = 42 and 60t1 + 80t2 = 28,

and therefore 70t2 = 14. Thus t2 = 0.2. But then 20t1 = 14 − 50t2 =
14− 10 = 4, and therefore t1 = 0.2. Finally t0 = 1− t1 − t2 − t3 = 0.3.
Thus

t0 = 0.3, t1 = 0.2, t2 = 0.2, t3 = 0.3.
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The unique simplex in the barycentric subdivision of σ containing the
point x in its interiors as that whose vertices are the barycentres w0

and w1 of τ0 and τ1 respectively, where τ0 has vertices v0 and v3 and
τ1 has vertices v0, v1, v2 and v3. Then

w0 = 1
2
(v0 + v3) = (20, 40, 40)

and
w1 = 1

4
(v0 + v1 + v2 + v3) = (37.5, 52.5, 57.5).

With these values we find that x = 0.2w0 + 0.8w1.

3. Let v0,v1, . . . ,v6 be the vertices of a 7-simplex σ, let τ0 be the face of
σ spanned by v3 and v5, let τ1 be the face of σ, spanned by v2, v3 and
v5, and let τ3 be the face of σ spanned by v0, v2, v3, v5 and v6, and let
w0, w1 and w2 denote the barycentres τ̂0, τ̂1 and τ̂2 of the simplices τ0,
τ1 and τ2 respectively. Let t0, t1, . . . , t6 be the barycentric coordinates of
some point x of σ with respect to v0,v1, . . . ,v6, so that

x = t0v0 + t1v1 + · · ·+ t6v6

where 0 ≤ ti ≤ 1 for i = 0, 1, . . . , 6 and
6∑

i=0

ti = 1. Determine necessary

and sufficient conditions which, if satisfied by t0, t1, . . . , t6 ensure that
the point x belongs to the 2-simplex of the first barycentric subdivision
of σ spanned by vertices w0, w1 and w2. [Appropriately justify your
answer.]

The necessary and sufficient conditions are that

0 = t1 = t4 ≤ t0 = t6 ≤ t2 ≤ t3 = t5 ≤ 1

and
6∑

i=0

ti = 1. [The latter condition on the sum of the ti can be

presumed to be satisfied without needing to be explicitly stated, given
the inclusion of this condition in the statement of the problem.] Indeed
the point x belongs to the simplex spanned by w0, w1 and w2 if and
only if there exist non-negative real numbers u0, u1 and u2 such that

x = u0w0 + u1w1 + u2w2,

where
w0 = 1

2
(w3 + w5), w1 = 1

3
(w2 + w3 + w5),
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w2 = 1
5
(w0 + w2 + w3 + w5 + w6)

and u0 + u1 + u2 = 1. Let x be expressible in this fashion, and let x =
6∑

t=0

tivi. It then follows from the affine independence of v0,v1, . . . ,v6

that
t1 = t4 = 0, t0 = t6 = 1

5
u2, t2 = 1

5
u2 + 1

3
u1,

t3 = t5 = 1
5
u2 + 1

3
u1 + 1

2
u0.

0 = t1 = t4 ≤ t0 = t6 ≤ t2 ≤ t3 = t5 ≤ 1,

because u0 ≥ 0, u1 ≥ 0 and u2 ≥ 0, and
6∑

i=0

ti = u1 + u2 + u3 = 1.

Conversely, given t0, t1, . . . , t6 satisfying these conditions, let

u2 = 5t0, u1 = 3(t2 − t0), u0 = 2(t3 − t2).

Then u0 ≥ 0, u1 ≥ 0, u2 ≥ 0,

u0 + u1 + u2 = 2t0 + t2 + 2t3 =
6∑

i=0

ti = 1.

Moreover

t1 = t4 = 0, t0 = t6 = 1
5
u2, t2 = 1

3
u1 + t0 = 1

3
u1 + 1

5
u2,

t3 = t5 = 1
2
u0 + t2 = 1

2
u0 + 1

3
u1 + 1

5
u2,

and thus if x =
6∑

i=0

tivi then

x = 1
2
(v3 + v5) + 1

3
(v2 + v3 + v5) + 1

5
(v0 + v2 + v3 + v5 + v6)

= u0w0 + u1w1 + u2w2.

Thus the conditions of t0, t1, . . . , t6 are indeed necessary and sufficient
to ensure that x belongs to the simplex spanned by w0, w1 and w2.

4. This question has the objective of demonstrating, by fairly direct calcu-
lation, that the main conclusions of Perron’s Theorem (Theorem 6.12
in 2017/18) hold for positive 2× 2 matrices. Let(

a b
c d

)
be such a matrix, where a, b, c and d are strictly positive real numbers.
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(a) Determine the characteristic polynomial of this matrix, and deter-
mine the roots of this characteristic polynomial in terms of a, b, c and
d. Hence, by means of these calculations, show that the roots of the
characteristic polynomial are both real, and are simple roots, and that
the maximum of the two roots has absolute value greater than the min-
imum of these roots.

The characteristic polynomial is χ(λ), where

χ(λ) =

∣∣∣∣ λ− a −b
−c λ− d

∣∣∣∣ = λ2 − (a+ d)λ+ ad− bc.

The roots of the characteristic polynomial are therefore 1
2
(a+ d+

√
D)

and 1
2
(a+ d−

√
D), where by the formula

1
2

(
(a+ d)±

√
(a+ d)2 − 4ad+ 4bc

)
.

Now

D = (a+ d)2 − 4ad+ 4bc = a2 + d2 + 2ad− 4ad+ 4bc

= a2 + d2 − 2ad+ 4bc = (d− a)2 + 4bc,

Now a, b, c and d are all strictly positive real numbers. It follows that
D > 0. Thus the roots of the characteristic polynomial are real and
distinct. Moreover the average of those two roots is the strictly positive
real number 1

2
(a + d). It follows that the two roots are simple roots,

and the maximum of the two roots is strictly positive and has absolute
value greater than that of the other root.

(b) The Perron root (or Perron-Frobenius eigenvalue) µ is the maxi-
mum of the two eigenvalues of the given 2 × 2 matrix. Determine the
coefficients of a corresponding eigenvector having at least one strictly
positive coefficient, and verify that both coefficients of this eigenvector
are then strictly positive.

The Perron-Frobenius eigenvalue µ is given by the equation

µ = 1
2
(a+ d+

√
D),

where D = (d−a)2+4bc (see (a)). To find an eigenvector corresponding
to the Perron-Frobenius eigenvalue µ, we must solve the vector equation(

µ− a −b
−c µ− d

)(
u
v

)
=

(
0
0

)
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to find (up to a scalar multiple) the values of the real numbers u and
v in terms of a, b, c and d. We therefore require that

(µ− a)u = bv

It follows that (
b

µ− a
, 1

)
is an eigenvector corresponding to the Perron-Frobenius eigenvalue.
This eigenvector will have positive coefficients if and only if µ− a > 0.

Now
√
D =

√
(d− a)2 + 4bc > |d− a|. It follows that

µ− a = 1
2
(d− a+

√
D) > 1

2
(d− a+ |d− a|) ≥ 0.

It follows that the eigenvector corresponding to the Perron-Frobenius
eigenvalue specified above does have strictly positive coefficients, which
accords with the general result guaranteed by Perron’s Theorem in this
situation.

5. Let n be a positive integer, and let

∆ = {x ∈ Rn : x ≥ 0 and
n∑

i=1

(x)i = 1}.

Let T be an n × n matrix with strictly positive coefficients. (It then
follows that Tv >> 0 for all v ∈ ∆.) Let f : ∆→ ∆ be defined so that

f(v) =
1

n∑
1=1

(Tv)i

Tv

for all v ∈ R. Show that an element v is an eigenvector of T if and
only if it is a fixed point of the continuous map f : ∆ → ∆ (i.e., show
that v is an eigenvector of T if and only if f(v) = v). Show also that
if v is an eigenvector of T , and if v ∈ ∆, then v >> 0. (Note that
this result, combined with the Brouwer Fixed Point Theorem, guaran-
tees that every positive matrix has at least one eigenvector with strictly
positive coefficients.)

Let v ∈ ∆. Then Tv >> 0, because the non-negative vector v has at
least one strictly positive coefficient and the n×n matrix T has strictly
positive coefficients. Suppose that v is an eigenvector of T . Then there
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exists some real number λ for which Tv = λv. It then follows from the
definition of the simplex ∆ that

n∑
i=1

(Tv)i = λ

n∑
i=1

(v)i = λ.

Thus if v ∈ ∆ is an eigenvector of T then v = f(v). Conversely
it follows immediately from the definition of the function f that if

f(v) = v then Tv = λv, where λ =
n∑

i=1

(Tv)i. Thus an element v of

the simplex ∆ is an eigenvector of T if and only if it is a fixed point of
T .

Now let v be an eigenvector of T with eigenvalue λ. Then λ > 0 and
v = λ−1Tv. But Tv >> 0. It follows that v >> 0. Thus all coefficients
of the eigenvector v have strictly positive coefficients.

In view of the above, the Brouwer Fixed Point Theorem guarantees
that every square matrix with positive coefficients has at least one
eigenvector with strictly positive coefficients.
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