Worked Solutions to Non-Bookwork Questions on the MA3486 Annual Paper 2017

1. (a) Let $\Phi: \mathbb{R} \rightrightarrows \mathbb{R}$ be the correspondence defined such that

$$\Phi(x) = \begin{cases} \{y \in \mathbb{R} : x \le y \le x+2\} & \text{if } x \le 0; \\ \{y \in \mathbb{R} : 0 \le xy^2 \le 1\} & \text{if } 0 < x \le 1; \\ \{y \in \mathbb{R} : x-2 \le y \le x\} & \text{if } x > 1. \end{cases}$$

Answer the following, fully justifying your answers:—

(i) Is $\Phi: \mathbb{R} \to \mathbb{R}$ upper hemicontinuous at x = 0?

The correspondence Φ is not upper hemicontinuous at x = 0. Note that $\Phi(0) = [0, 2]$. Let $V = (-1, 3) = \{y \in \mathbb{R} : -1 \le y < 3\}$. Then V is open in \mathbb{R} and $\Phi(0) \subset V$. But $4 \notin V$, though $4 \in \Phi(x)$ for all real numbers x satisfying $0 < x < \frac{1}{16}$. It follows that there cannot exist any positive real number δ with the property that $\Phi(x) \subset V$ for all real numbers x satisfying $|x| < \delta$.

(ii) Is $\Phi: \mathbb{R} \to \mathbb{R}$ lower hemicontinuous at x = 0?

The correspondence Φ is lower hemicontinuous at 0. Let V be an open set in \mathbb{R} for which $\Phi(0) \cap V \neq \emptyset$. Now $\Phi(0) = [0, 2]$. Therefore the open set V contains at least one real number in the interval [0, 2]. Moreover, because V is an open set, if $2 \in V$ then Valso contains positive real numbers less than 2. Let $s \in V$, where 0 < v < 2. If $v - 2 \leq x \leq 0$ then $v \in \Phi(x)$. Also if $0 < x < \frac{1}{4}$ then $0 \leq xv^2 < 1$ and therefore $v \in \Phi(x)$. Thus if $\delta \leq 2 - v$ and $\delta \leq \frac{1}{4}$ then $v \in \Phi(x) \cap V$ for all real numbers x satisfying $|x| < \delta$. It follows that $\Phi: \mathbb{R} \rightrightarrows \mathbb{R}$ is lower hemicontinuous at 0.

(iii) Is $\Phi: \mathbb{R} \to \mathbb{R}$ upper hemicontinuous at x = 1?

The correspondence Φ is upper hemicontinuous at 0. First note that $\Phi(1) = [-1, 1]$. Let V be an open set in \mathbb{R} for which $[-1, 1] \subset V$. Then there exists s > 1 for which $[-s, s] \subset V$. If 1 < x < s then $[x-2, x] \subset [-1, s) \subset V$. Also if $x > 1/s^2$ then $\Phi(x) \subset [-s, s] \subset V$. Thus if δ is the minimum of s - 1 and $1 - 1/s^2$ then $\Phi(x) \subset V$ for all real numbers x satisfying $|x - 1| < \delta$. It follows that the correspondence Φ is upper hemicontinuous at 1.

(iv) Is $\Phi: \mathbb{R} \to \mathbb{R}$ lower hemicontinuous at x = 1?

The correspondence Φ is lower hemicontinuous at 0. Let V be an open set in \mathbb{R} that intersects $\Phi(1)$. Now $\Phi(1) = [-1, 1]$. If $1 \in V$, or if $-1 \in V$ then $v \in V$ for some real number v satisfying -1 < v < 1. It follows that an open set V which has non-empty intersection with $\Phi(1)$ must always contain some real number vsatisfying -1 < v < 1. Then $v \in \Phi(x)$ for all real numbers xsatisfying $1 < x \leq v + 2$ (where v + 2 > 1), and also $v \in \Phi(x)$ for all real numbers x satisfying $0 < x \leq 1$. Thus if $0 < \delta < 1$ and $\delta \leq v + 1$, and if $|x - 1| < \delta$ then 0 < x < v + 2, and therefore $v \in \Phi(x)$. Thus $\Phi(x) \cap V \neq \emptyset$ for all real numbers x satisfying $|x - 1| < \delta$.

(c) The point (6,7) of ℝ² belongs to the triangle in ℝ² with vertices (0,0), (6,6) and (8,10). Determine the barycentric coordinates of (6,7) with regard to the vertices of this triangle.

We need to determine real numbers t_0 , t_1 and t_2 between 0 and 1 such that

$$t_0(0,0) + t_1(6,6) + t_2(8,10) = (6,7)$$

and $t_0 + t_1 + t_2 = 1$. Then $6t_1 + 8t_2 = 6$ and $6t_1 + 10t_2 = 7$. Subtracting the second equation from the first, we find that $2t_2 = 1$ and therefore $t_2 = \frac{1}{2}$. Then $6t_1 + 4 = 6$ and therefore $t_1 = \frac{1}{3}$. Using the identity $t_0 + t_1 + t_2 = 1$, we deduce that $t_0 = \frac{1}{6}$. Thus the barycentric coordinates of the point (6,7) with respect to the given vertices are (in the given order) $\frac{1}{6}, \frac{1}{3}, \frac{1}{2}$.

(d) Let σ be a 5-dimensional simplex with vertices $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$, let K be the simplicial complex consisting of the simplex σ together with all its faces, let K' be the first barycentric subdivision of σ , let

$$\mathbf{x} = \frac{1}{5}\mathbf{v}_0 + \frac{7}{15}\mathbf{v}_1 + \frac{2}{15}\mathbf{v}_3 + \frac{1}{5}\mathbf{v}_4,$$

and let τ be the unique simplex of K' that contains the point **x** in its interior (so that **x** belongs to τ but does not belong to any proper face of τ). Determine the barycentric coordinates of the vertices of τ with respect to the vertices of σ , and determine the barycentric coordinates of the point **x** with respect to the vertices of τ . The ordering of the values of the barycentric coordinates of \mathbf{x} with respect to the vertices of σ is as follows:

$$\frac{2}{15}, \quad \frac{1}{5}, \quad \frac{7}{15}.$$

(Note that $\frac{1}{5} = \frac{3}{15}$.) It follows that

$$\mathbf{x} = \frac{2}{15} (\mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_3 + \mathbf{v}_4) + \frac{1}{15} (\mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_4) + \frac{4}{15} \mathbf{v}_1$$

= $\frac{4}{15} \mathbf{w}_0 + \frac{1}{5} \mathbf{w}_1 + \frac{8}{15} \mathbf{w}_2,$

where

$$\mathbf{w}_0 = \mathbf{v}_1, \quad \mathbf{w}_1 = \frac{1}{3}(\mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_4), \quad \mathbf{w}_2 = \frac{1}{4}(\mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_3 + \mathbf{v}_4).$$

The simplex τ has vertices \mathbf{w}_0 , \mathbf{w}_1 and \mathbf{w}_2 , as specified above. The barycentric coordinates of the vertices of τ with respect to the vertices of σ , in the given order, are as follows: for \mathbf{w}_0 , 0, 0, 0, 0, 1; for \mathbf{w}_1 , $\frac{1}{3}, \frac{1}{3}, 0, 0, \frac{1}{3}$; for $\mathbf{w}_2, \frac{1}{4}, \frac{1}{4}, 0, \frac{1}{4}, \frac{1}{4}$. Moreover the barycentric coordinates of \mathbf{x} with respect to the vertices of τ are, in the given order, $\frac{4}{15}, \frac{1}{5}, \frac{8}{15}$. (Note that these barycentric coordinates do indeed add up to 1, as they are required to do.)