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Module Website

The module website, with online lecture notes, problem sets. etc. are located
at

http://www.maths.tcd.ie/~dwilkins/Courses/MA3486/

Notes

The examiner generally assesses the length of solutions, and thus judges
the time taken to complete them on the basis of the length of the solution,
which would normally approximate to one-and-a-half pages when typeset
with LATEX.

There are exceptions. If the worked solution comes out longer (as tends
to happening with linear programming problems in another module taught
in other years), then the examiner often tests the problem, writing out by
hand. This consideration does not seem applicable to the current paper.

If the problem requires the candidate to come up with proof-style argu-
ments that are unseen, then this would suggest a shorter worked solution.
The solution to question 1 on this paper is shorter than the others, but the
examiner suggests that, because the problem requires unseen proofs, as op-
posed to routine calculations, it may not be advisable to consider extending
the length of this question by adding any further parts. The examiner fur-
ther notes that the “Sample Paper” and the actual annual paper available
to candidates from 1986 contains specific examples that are essentially being
generalized in the context of the current question 1, and the question from
the 2016 “Sample Paper” has already been discussed in a “tutorial” session,
and worked solutions to the 2016 Annual Examination paper have already
been made available to the class on the module website. Thus well-prepared
candidates may well have particular instances of the more general results
near the surface of their minds to reflect on when attempting the question.

The answer to question 2(b) may be longer, but it seems more diffuse and
calculational. The general result has been included in one of the appendices
to the official lecture notes, and was covered in a sparsely-attended class
at 9am on Friday of the sixth week of term. (The length of the printed
proof seems surprisingly long in relation to the depth and difficulty of the
general result.) Currently it is intended that a broadly similar problem will be
included in a “tutorial” in a lecture slot within the next four weeks, probably
set up in the context of the first barycentric subdivision of a tetrahedron (or
maybe a 5-simplex). Assuming this happens, the corresponding example
problem discussed in class may well be embedded in a sequence of problems
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in some future problem set so as not to seem obviously destined for the
examination paper.

Question 3 is bookwork. Sperner’s Lemma has come up fairly regularly,
both in the small number of old MA3486 papers, and also in old Algebraic
Topology MA421 papers. It seems that the application of Sperner’s Lemma
to prove the non-existence of a continuous retraction from an n-simplex to
its boundary is here appearing on an MA3486 paper for the first time.

Question 4 is also bookwork. Practically all lecture material from 2016
has already been covered, and therefore almost everything intended for the
final weeks after Study Week is, at the time of writing, vapourware.

A set of draft notes on Perron-Frobenius Theory, reaching Perron’s origi-
nal theorem for positive square matrices, has already been written, based on
and amplifying the rather sketchy account in Appendix C of J.W.S. Cassels,
Economics for Mathematicians, (L.M.S. Lecture Note Series 62). The plan is
to discuss applications of these results to Leontieff Models (discussed in Cas-
sels’s Chapter 5, entitled Linear Economic Models). The draft notes written
to date should support two to three potential bookwork-style examination
questions, of which that included on the current MA3486 paper is one.
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1. [Seen analogous problems, but with f(x) and g(x) replaced by explicit
given functions. The more general problem here should be unseen.]

(a) The correspondence is upper hemicontinuous at 0 in this case. Let
V be an open set for which Φ(0) ⊂ V . Then [0, g(x)] ⊂ V . It
follows from the openness of V that there exists a real number v
satisfying v > g(x) for which [0, v) ⊂ V . Then f(0) ≤ g(0) < v.
It follows from the continuity of the function f that there exist
positive real numbers δ1 and δ2 such that f(x) < v whenever
−δ1 < x ≤ 0 and g(x) < v whenever 0 ≤ x < δ2. Let δ be
the minimum of δ1 and δ2. Then δ > 0, and if −δ < x < δ
then Φ(x) ⊂ [0, v] and therefore Φ(x) ⊂ V . Thus Φ is upper
hemicontinuous at 0 in this case.

(b) The correspondence is not lower hemicontinuous at 0 in this case.
There exist real numbers u and v for which f(0) < u < v < g(0).
It follows from the continuity of f that there exists a positive
real number δ such that f(x) < u whenever −δ < x ≤ 0. Let
V = (u, v). Then V is open in R, V ∩Φ(0) 6= ∅, but V ∩Φ(x) = ∅
for all real numbers x satisfying −δ < x < 0. Thus Φ is not lower
hemicontinuous at 0 in this case.

(c) The correspondence is not upper hemicontinuous at 0 in this case.
There exists a real number v satisfying g(x) < v < f(x). The
continuity of f then ensures the existence of a positive real num-
ber δ such that f(x) > v whenever 0 ≤ x < δ. Let V = (−1, v).
Then V is an open set in R. Now Φ(0) = [0, g(x)]. It follows that
Φ(0) ⊂ V . But Φ(x) = [0, f(x)] when 0 < x < δ, and therefore
Φ(x) 6⊂ V when 0 < x < δ. Thus Φ is not upper hemicontinuous
at 0 in this case.

(d) The correspondence is lower hemicontinuous at 0 in this case. Let
V be an open set for which V ∩ Φ(0) 6= ∅. If g(0) ∈ V then
there exists some real number u satisfying 0 < u < g(0) for which
u ∈ V , because g(x) > 0 and the set V is open. If g(0) 6∈ V
then the condition V ∩ Φ(0) 6= ∅ ensures the existence of a real
number u satisfying 0 ≤ u < g(0) for which u ∈ V . It follows from
the continuity of f and g that there exist positive real numbers δ1
and δ2 such that f(x) > u whenever −δ1 < x ≤ −0 and g(x) > u
whenever 0 ≤ x ≤ δ2. Let δ be the minimum of δ1 and δ2. if
−δ < x < δ then u ∈ Φ(x), and thus V ∩ Φ(x) 6= ∅. Thus Φ is
lower hemicontinuous at 0 in this case.
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2. (a) [Definitions.] A simplex in Rk of dimension q with vertices

v0,v1, . . . ,vq

is defined to be a set of the form{
q∑
j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

}
,

where v0,v1, . . . ,vq are affinely independent points of Rk. Let x

be a point of this simplex. Then x =
q∑
j=0

tjvj where 0 ≤ tj ≤ 1 for

j = 0, 1, . . . , q and
q∑
j=0

tj = 1. The coefficients tj of the vertices in

this expression are the barycentric coordinate of the point x. The
barycentre of the simplex is the point whose barycentric coordi-
nates are all equal to 1/(q + 1), where q is the dimension of the
simplex.

(b) [Seen similar.] The definition of simplices ensures that

σ = {t0v0 + t1v1 + t2v2 : t0, t1, t2 ∈ [0, 1], t0 + t1 + t2 = 1}

and

τ = {u0σ̂0 + u1σ̂1 + u2σ̂2 : u0, u1, u2 ∈ [0, 1], u0 + u1 + u2 = 1}.

Now

σ̂0 = v2, σ̂1 = 1
2
(v0 + v2), σ̂2 = 1

3
(v0 + v1 + v2).

It follows that

τ = {(1
3
u2 + 1

2
u1)v0 + 1

3
u2v1 + (1

3
u2 + 1

2
u1 + u0)v2 :

u0, u1, u2 ∈ [0, 1] and u0 + u1 + u2 = 1}.

So let u0, u1, u2 ∈ [0, 1] satisfy u0 + u1 + u2 = 1, and let t0, t1 and
t2 be the real numbers determined by the equations

t0 = 1
3
u2 + 1

2
u1, t1 = 1

3
u2 and t2 = 1

3
u2 + 1

2
u1 + u0.

Then t0 ≥ 0, t1 ≥ 0, t2 ≥ 0 and t0 + t1 + t2 = 1. It then follows
that t0, t1, t2 ∈ [0, 1]. Moreover t1 ≤ t0 ≤ t2. We conclude that

τ ⊂ {t0v0 + t1v1 + t2v2 :

t0, t1, t2 ∈ [0, 1], t0 + t1 + t2 = 1 and t1 ≤ t0 ≤ t2},
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Now let t0, t1 and t2 be real numbers in the interval [0, 1] that
satisfy the conditions t0 + t1 + t2 = 1 and t1 ≤ t0 ≤ t2. We seek
to determine real numbers u0, u1 and u2 for which

t0 = 1
3
u2 + 1

2
u1, t1 = 1

3
u2 and t2 = 1

3
u2 + 1

2
u1 + u0.

Clearly u0 = t2 − t0 u1 = 2(t0 − t1) and u3 = 3t1. The conditions
t1 ≥ 0, t1 ≥ 0 and t1 ≤ t0 ≤ t2 ensure that u0 ≥ 0, u1 ≥ 0 and
u2 ≥ 0. Moreover

u0 + u1 + u2 = t2 − t0 + 2(t0 − t1) + 3t1 = t0 + t1 + t2 = 1.

Also
t0v0 + t1v1 + t2v2 = u0σ̂0 + u1σ̂1 + u2σ̂2.

It follows that

τ ⊃ {t0v0 + t1v1 + t2v2 :

t0, t1, t2 ∈ [0, 1], t0 + t1 + t2 = 1 and t1 ≤ t0 ≤ t2},

Therefore

τ = {t0v0 + t1v1 + t2v2 :

t0, t1, t2 ∈ [0, 1], t0 + t1 + t2 = 1 and t1 ≤ t0 ≤ t2},

as required.
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3. (a) [Bookwork.] Given integers i0, i1, . . . , iq between 0 and n, let
N(i0, i1, . . . , iq) denote the number of q-simplices of K whose ver-
tices are labelled by i0, i1, . . . , iq (where an integer occurring k
times in the list labels exactly k vertices of the simplex). We
must show that N(0, 1, . . . , n) is odd.

We prove the result by induction on the dimension n of the sim-
plex ∆; it is clearly true when n = 0. Suppose that the result
holds in dimensions less than n. For each simplex σ of K of di-
mension n, let p(σ) denote the number of (n−1)-faces of σ labelled
by 0, 1, . . . , n − 1. If σ is labelled by 0, 1, . . . , n then p(σ) = 1; if
σ is labelled by 0, 1, . . . , n − 1, j, where j < n, then p(σ) = 2; in
all other cases p(σ) = 0. Therefore

∑
σ∈K

dimσ=n

p(σ) = N(0, 1, . . . , n) + 2
n−1∑
j=0

N(0, 1, . . . , n− 1, j).

Now the definition of Sperner labellings ensures that the only (n−
1)-face of ∆ containing simplices of K labelled by 0, 1, . . . , n − 1
is that with vertices labelled by 0, 1, . . . , n − 1. Thus if M is the
number of (n−1)-simplices of K labelled by 0, 1, . . . , n−1 that are
contained in this face, then N(0, 1, . . . , n− 1)−M is the number
of (n − 1)-simplices labelled by 0, 1, . . . , n − 1 that intersect the
interior of ∆. It follows that∑

σ∈K
dimσ=n

p(σ) = M + 2
(
N(0, 1, . . . , n− 1)−M

)
,

since any (n−1)-simplex of K that is contained in a proper face of
∆ must be a face of exactly one n-simplex of K, and any (n− 1)-
simplex that intersects the interior of ∆ must be a face of exactly
two n-simplices of K. On combining these equalities, we see that
N(0, 1, . . . , n)−M is an even integer. But the induction hypothesis
ensures that Sperner’s Lemma holds in dimension n− 1, and thus
M is odd. It follows that N(0, 1, . . . , n) is odd, as required.

(b) [Bookwork.] Suppose that such a map r : ∆ → ∂∆ were to exist.
It would then follow from the Simplicial Approximation Theorem
that there would exist a simplicial approximation s : K → L to
the map r, where L is the simplicial complex consisting of all of
the proper faces of ∆, and K is the jth barycentric subdivision,
for some sufficiently large j, of the simplicial complex consisting
of the simplex ∆ together with all of its faces.
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If v is a vertex of K belonging to some proper face Σ of ∆ then
r(v) = v, and hence s(v) must be a vertex of Σ, since s : K → L is
a simplicial approximation to r : ∆→ ∂∆. In particular s(v) = v
for all vertices v of ∆. Thus if v 7→ m(v) is a labelling of the
vertices of ∆ by the integers 0, 1, . . . , n, then v 7→ m(s(v)) is a
Sperner labelling of the vertices of K. Thus Sperner’s Lemma
guarantees the existence of at least one n-simplex σ of K labelled
by 0, 1, . . . , n. But then s(σ) = ∆, which is impossible, since ∆
is not a simplex of L. We conclude therefore that there cannot
exist any continuous map r : ∆ → ∂∆ satisfying r(x) = x for all
x ∈ ∂∆.
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4. (a) [Bookwork.] Suppose that the matrix T is positive. Then Tj,k > 0
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Let v ∈ Rn satisfy both
v 6= 0 and v ≥ 0. Then

(Tv)j =
n∑
k=1

(T )j,k(v)k > 0

for each integer j between 1 and m, because (T )j,k(v)k ≥ 0 for k =
1, 2, . . . , n and (T )j,k(v)k > 0 for at least one integer k between 1
and n. Therefore Tv >> 0.

Conversely suppose that T is an m × n matrix with with real
coefficients which has the property that if and only if Tv >> 0
for all non-zero n-dimensional vectors v with non-negative real
coefficients. Let e1, e2, . . . , en be the standard basis of Rn with

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , 0n = (0, 0, . . . , 1).

Then Tek >> 0 for k = 1, 2, . . . , n, and therefore (T )j,k = (Tek)j >
0 for j = 1, 2, . . . ,m and k = 1, 2, . . . , n. The result follows.

(b) [Bookwork.] The definition of the Perron root µ of T ensures that
there exists a non-zero vector b with the properties that b ≥ 0
and Tb ≥ µb. Suppose it were the case that Tb 6= µb. Let
v = Tb. Then

Tv − µv = T (Tb− µb) >> 0,

because Tb − µb ≥ 0, Tb − µb 6= 0 and T >> 0 (by (a)). But
then there would exist real numbers ρ satisfying ρ > µ that were
sufficiently close to µ to ensure that Tv − ρv >> 0 and thus
Tv ≥ ρv. This would contradict the condition on the statement
of the proposition that characterizes the value of µ. We conclude
therefore that Tb = µb. Now Tb >> 0, because T >> 0 and
b ≥ 0. It follows that µ > 0 and b >> 0.

(c) [Bookwork.] Let u be an n-dimensional vector with real coeffi-
cients for which Tu ≥ µu. If s is positive and sufficiently large
then then sb−u >> 0. On the other hand if s is negative and |s|
is sufficiently large then then sb − u << 0. It follows from this
that there exists a well-defined real number t defined so that

t = inf{s ∈ R : sb− u ≥ 0}.
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Then tb−u ≥ 0, and moreover there exists some integer j between
1 and n for which t(b)j − (u)j = 0. Now

T (tb− u) = µtb− Tu ≤ µ(tb− u),

and therefore (T (tb− u))j ≤ 0. If it were the case that tb− u 6=
0 then the inequalities tb − u ≥ 0 and T >> 0 would ensure
that T (tb − u) >> 0 (by (a)), from which it would follow that
(T (tb− u))j > 0. Because this latter inequality does not hold, it
must be the case that tb − u = 0, and thus u = tb. The result
follows.
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