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A Proofs of Basic Results of Real Analysis

Lemma 1.1 Let p be a point of R", where p = (p1,p2,...,Pn). Then a
sequence X1,Xso,X3, ... of points in R™ converges to p if and only if the ith
components of the elements of this sequence converge to p; fori=1,2,...,n.

Proof of Lemma 1.1 Let (x;); denote the ¢th components of x;. Then
((x;); — pi| < |x; —p| fori=1,2,...,n and for all positive integers j. It
follows directly from the definition of convergence that if x; — p as j — 400
then (x;); — p; as j — +o0.

Conversely suppose that, for each integer i between 1 and n, (x;); —
pi as J — +oo. Let € > 0 be given. Then there exist positive integers
Ni, Na, ..., N, such that |(x;); —pi| < e/v/n whenever j > N;. Let N be the
maximum of Ny, Ny,...,N,. If 7 > N then j > N, forv =1,2,...,n, and

therefore . )
€
x; — p|* = Z((X])z —p)’ <n (%) =

=1

Thus x; — p as j — +oo, as required. |
The real number system satisfies the Least Upper Bound Principle:

Any set of real numbers which is non-empty and bounded above
has a least upper bound.

Let S be a set of real numbers which is non-empty and bounded above.
The least upper bound, or supremum, of the set S is denoted by sup .S, and
is characterized by the following two properties:

(i)  <supS for all z € S;
(ii) if w is a real number, and if z < u for all z € S, then sup S < w.

A straightforward application of the Least Upper Bound guarantees that
any set of real numbers that is non-empty and bounded below has a greatest
lower bound, or infimum. The greatest lower bound of such a set S of real
numbers is denoted by inf S.

Theorem 1.2 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.
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Proof of Theorem 1.2 Let x1, x5, 23,... be a non-decreasing sequence of
real numbers that is bounded above. It follows from the Least Upper Bound
Principle that there exists a least upper bound p for the set {z; : j € N}.
We claim that the sequence converges to p.

Let some strictly positive real number € be given. We must show that
there exists some positive integer N such that |z; — p| < € whenever j > N.
Now p — ¢ is not an upper bound for the set {z; : j € N} (since p is the
least upper bound), and therefore there must exist some positive integer N
such that xny > p —e. But then p — ¢ < x; < p whenever j > N, since
the sequence is non-decreasing and bounded above by p. Thus |z; —p| < ¢
whenever j > N. Therefore x; — p as j — +00, as required.

If the sequence w1, x5, T3, ... is non-increasing and bounded below then
the sequence —x1, —x9, —x3, ... is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence xq,xs,x3,... is also

convergent. |

Theorem 1.3 FEvery bounded sequence of real numbers has a convergent sub-
sequence.

Proof of Theorem 1.3 Let aq,a-,a3,... be a bounded sequence of real
numbers. We define a peak index to be a positive integer j with the property
that a; > a; for all positive integers k satisfying k > j. Thus a positive
integer j is a peak index if and only if the jth member of the infinite se-
quence ay, as, as, . .. is greater than or equal to all succeeding members of the
sequence. Let S be the set of all peak indices. Then

S={jeN:a; >aforal k> j}

First let us suppose that the set S of peak indices is infinite. Arrange the
elements of S in increasing order so that S = {j1, J2, J3, ja, - - -}, where j; <
Jo < Js < ja < ---. It follows from the definition of peak indices that a; >
aj, > aj, > a;, > ---. Thus a;,,a;,,a;,, ... is a non-increasing subsequence
of the original sequence ai,as, as,.... This subsequence is bounded below
(since the original sequence is bounded). It follows from Theorem 1.2 that
aj,, @jy, Qjy, - - . 15 @ convergent subsequence of the original sequence.

Now suppose that the set S of peak indices is finite. Choose a positive
integer j; which is greater than every peak index. Then j; is not a peak
index. Therefore there must exist some positive integer js satisfying js > j;
such that aj, > a;,. Moreover j, is not a peak index (because j, is greater
than j; and j; in turn is greater than every peak index). Therefore there
must exist some positive integer js satisfying js > js such that a;, > a;,. We
can continue in this way to construct (by induction on j) a strictly increasing
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subsequence a;, , a;,, a;,, ... of our original sequence. This increasing subse-
quence is bounded above (since the original sequence is bounded) and thus
is convergent, by Theorem 1.2. This completes the proof of the Bolzano-
Weierstrass Theorem. |}

We introduce some terminology and notation for discussing convergence
along subsequences of bounded sequences of points in Euclidean spaces.
This will be useful in proving the multi-dimensional version of the Bolzano-
Weierstrass Theorem.

Definition Let x;,x5,x3,... be an infinite sequence of points in R”, let J
be an infinite subset of the set N of positive integers, and let p be a point of
R™. We say that p is the limit of x; as j tends to infinity in the set J, and
write “x; — p as j — +oo in J” if the following criterion is satisfied:—

given any real number ¢ satisfying £ > 0 there exists some positive
integer N such that |x; — p| < ¢ whenever j € J and j > N.

The one-dimensional version of the Bolzano-Weierstrass Theorem asserts
that every bounded sequence of real numbers has a convergent subsequence.
We seek to generalize this result to bounded sequences of points in n-dimen-
sional Euclidean space R".

Now the one-dimensional version of the Bolzano-Weierstrass Theorem is
equivalent to the following statement:

Given any bounded infinite sequence x, xs9, x3,... of real num-
bers, there exists an infinite subset J of the set N of positive
integers and a real number p such that z; — p as 7 — 400 in J.

Given an infinite subset J of N, the elements of J can be labelled as
ki, ko, ks, ..., where k; < ky < k3 < ---, so that ky is the smallest positive
integer belonging of J, ko is the next smallest, etc. Therefore any standard
result concerning convergence of sequences of points can be applied in the
context of the convergence of subsequences of a given sequence of points.

The following result is therefore a direct consequence of the one-dimen-
sional Bolzano-Weierstrass Theorem:

Given any bounded infinite sequence x1, 9, x3,... of real num-
bers, and given an infinite subset J of the set N of positive inte-
gers, there exists an infinite subset K of J and a real number p
such that z; — p as j — +oo in K.

The above statement in fact corresponds to the following assertion:—
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Given any bounded infinite sequence xq, xs, x3,... of real num-
bers, and given any subsequence

xk1axk27'xk37”'

of the given infinite sequence, there exists a convergent subse-
quence

xk‘ml ) ka2 ; 'Ik:mga v

of the given subsequence. Moreover this convergent subsequence
of the given subsequence is itself a convergent subsequence of the
given infinite sequence, and it contains only members of the given
subsequence of the given sequence.

The basic principle can be presented purely in words as follows:

Given a bounded sequence of real numbers, and given a subse-
quence of that original given sequence, there exists a convergent
subsequence of the given subsequence. Moreover this subsequence
of the subsequence is a convergent subsequence of the original
given sequence.

We employ this principle in the following proof of the Multidimensional
Bolzano-Weierstrass Theorem.

Theorem 1.4 FEvery bounded sequence of points in a Euclidean space has a
convergent subsequence.

Proof of Theorem 1.4 Let x;,X5,X3,... be a bounded infinite sequence of
points in R”, and, for each positive integer j, and for each integer i between
1 and n, let (x;); denote the ith component of x;. Then

R (CINCHNNCN]

for all positive integers j. It follows from the one-dimensional Bolzano-
Weierstrass Theorem that there exists an infinite subset J; of the set N
of positive integers and a real number p; such that (x;); — p; as j — 400
in Ji.

Let k£ be an integer between 1 and n — 1. Suppose that there exists an
infinite subset .J, of N and real numbers pq,po, ..., pr such that, for each
integer i between 1 and k, (x;); — p; as j — +oo in Ji. It then follows
from the one-dimensional Bolzano-Weierstrass Theorem that there exists an
infinite subset Jy1 of Ji, and a real number py.q, such that (x;)g41 — Prta
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as j — +oo in Jii 1. Moreover the requirement that Ji,; C Ji then ensures
that, for each integer ¢ between 1 and k + 1, (x;); — p; as j — 400 in Jy41.
Repeated application of this result then ensures the existence of an infinite

subset J, of N and real numbers pq, po, ..., p, such that, for each integer ¢
between 1 and n, (x;); — p; as j — 400 in J,.
Let

Jn - {k17k27k37"‘}7
where ky < ky < k3 < ---. Then 'liI_El (Xk;)i = pi for i =1,2,...,n. It then
j—+oo

follows from Proposition 1.1 that 'liin Xp; = p. The result follows. |}
Jj—+oo

Lemma 1.5 Let X be a subset of R™, and let p be a point of X. Then, for

any positive real number r, the open ball Bx(p,r) in X of radius r about p

15 open in X.

Proof of Lemma 1.5 Let x be an element of Bx(p,r). We must show that
there exists some ¢ > 0 such that Bx(x,0) C Bx(p,r). Let 6 =r — |x — p].
Then § > 0, since |x — p| < r. Moreover if y € Bx(x,J) then

ly—p|<|y—x[+[x—p|<d+|x—p|=T1,

by the Triangle Inequality, and hence y € Bx(p,r). Thus Bx(x,0) C
Bx(p,r). This shows that Bx(p,r) is an open set, as required. |

Proposition 1.6 Let X be a subset of R™. The collection of open sets in X
has the following properties:—

(i) the empty set ) and the whole set X are both open in X ;
(i1) the union of any collection of open sets in X is itself open in X;

(i1i) the intersection of any finite collection of open sets in X is itself open
mn X.

Proof of Proposition 1.6 The empty set () is an open set by convention.
Moreover the definition of an open set is satisfied trivially by the whole set X.
This proves (i).

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself open in X.
Let x € U. Then x € V for some set V belonging to the collection A. It
follows that there exists some § > 0 such that Bx(x,6) C V. But V. C U,
and thus Bx(x,d) C U. This shows that U is open in X. This proves (ii).
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Finally let Vi, V5, V5, ..., Vi be a finite collection of subsets of X that
are open in X, and let V' denote the intersection Vi N'Vo N --- NV} of these
sets. Let x € V. Now x € Vj for j = 1,2,...,k, and therefore there
exist strictly positive real numbers 01, do, . .., & such that Bx(x,d;) C V; for
j=1,2,... k. Let 6 be the minimum of d;,ds,...,dt. Then § > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now Bx(x,0) C Bx(x,0;) C V; for j =1,2,... k, and thus Bx(x,0) C V.
Thus the intersection V' of the sets Vi, V5, ..., V} is itself open in X. This
proves (iii). |

Proposition 1.7 Let X be a subset of R, and let U be a subset of X. Then
U is open in X if and only if there exists some open set V' in R™ for which

U=VnX.

Proof of Proposition 1.7 First suppose that U = V N X for some open
set V' in R™. Let u € U. Then the definition of open sets in R™ ensures that
there exists some positive real number ¢ such that

{xeR":|x—u|<do}CV.

Then
{xeX:|x—u|<d}CU

This shows that U is open in X.
Conversely suppose that the subset U of X is open in X. For each point u
of U there exists some positive real number d,, such that

{xeX: :|x—u|<d,}CU.

For each u € U, let B(u,d,) denote the open ball in R" of radius d,, about
the point u, so that

B(u,0y) ={x € R": |[x —u| < 0y}

for all u € U, and let V be the union of all the open balls B(u,d,) as u
ranges over all the points of U. Then V is an open set in R™. Indeed every
open ball in R™ is an open set (Lemma 1.5), and any union of open sets in
R™ is itself an open set (Proposition 1.6). The set V' is a union of open balls.
It is therefore a union of open sets, and so must itself be an open set.

Now B(u,d,) N X C U. for all u € U. Also every point of V' belongs
to B(u,dy) for at least one point u of U. It follows that VN X C U. But
u € B(u,d,) and B(u,d,) C V for all u € U, and therefore U C V, and thus
UcCVnX. It follows that U =V N X, as required. |
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Lemma 1.8 A sequence X1,Xs, X3, ... of points in R"™ converges to a point p
if and only if, given any open set U which contains p, there exists some
positive integer N such that x; € U for all j satisfying j > N.

Proof of Lemma 1.8 Suppose that the sequence Xi,Xs,X3,... has the
property that, given any open set U which contains p, there exists some pos-
itive integer N such that x; € U whenever j > N. Let € > 0 be given. The
open ball B(p, €) of radius € about p is an open set by Lemma 1.5. Therefore
there exists some positive integer N such that x; € B(p, ) whenever j > N.
Thus |x; — p| < € whenever j > N. This shows that the sequence converges
to p.

Conversely, suppose that the sequence x, X5, X3, ... converges to p. Let
U be an open set which contains p. Then there exists some € > 0 such that
the open ball B(p, ) of radius € about p is a subset of U. Thus there exists
some € > 0 such that U contains all points x of X that satisfy |x — p| < e.
But there exists some positive integer N with the property that |x; —p| < e
whenever j > N, since the sequence converges to p. Therefore x; € U
whenever j > N, as required. |

Lemma 1.10 Let X be a subset of R™, and let F' be a subset of X which is
closed in X. Let x1,Xo,X3,... be a sequence of points of F which converges
to a point p of X. Then p € F.

Proof of Lemma 1.10 The complement X \ F' of F' in X is open, since
F is closed. Suppose that p were a point belonging to X \ F. It would
then follow from Lemma 1.8 that x; € X \ F for all values of j greater than
some positive integer N, contradicting the fact that x; € F' for all j. This
contradiction shows that p must belong to F', as required. |

Lemma 1.11 Let X, Y and Z be subsets of R™, R™ and R* respectively, and
let f: X =Y and g: Y — Z be functions satisfying f(X) C Y. Suppose
that f is continuous at some point p of X and that g is continuous at f(p).
Then the composition function go f: X — Z is continuous at p.

Proof of Lemma 1.11 Let € > 0 be given. Then there exists some 1 > 0
such that |g(y) — g(f(p))| < € for all y € Y satisfying |y — f(p)| < 1. But
then there exists some & > 0 such that |f(x) — f(p)] < n for all x € X
satisfying |x — p| < 6. It follows that |g(f(x)) — g(f(p))| < e for all x € X
satisfying |x — p| < 6, and thus g o f is continuous at p, as required. |}

Lemma 1.12 Let X and Y be a subsets of R™ and R™ respectively, and let
f: X =Y be a continuous function from X to Y. Let Xi,X3,X3,... be a
sequence of points of X which converges to some point p of X. Then the

sequence f(x1), f(x2), f(X3),... converges to f(p).
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Proof of Lemma 1.12 Let € > 0 be given. Then there exists some § > 0
such that |f(x) — f(p)| < € for all x € X satisfying |x — p| < ¢, since the
function f is continuous at p. Also there exists some positive integer N

such that |x; — p| < 0 whenever j > N, since the sequence X;,Xz,Xs, ...
converges to p. Thus if j > N then |f(x;) — f(p)| < €. Thus the sequence

f(x1), f(x2), f(x3),... converges to f(p), as required. |}

Proposition 1.11 Let X, Y and Z be subsets of R™, R" and R* respectively,
andlet f: X =Y and g: Y — Z be functions satisfying f(X) C Y. Suppose
that f is continuous at some point p of X and that g is continuous at f(p).
Then the composition function go f: X — Z is continuous at p.

Proof of Proposition 1.11 Note that the ith component f; of f is given
by f; = m o f, where m;: R® — R is the continuous function which maps
(Y1,Y2, -, Yn) € R™ onto its ith coordinate y;. Now any composition of
continuous functions is continuous, by Lemma 1.11. Thus if f is continuous
at p, then so are the components of f.

Conversely suppose that the components of f are continuous at p € X.
Let € > 0 be given. Then there exist positive real numbers 41, ds, . . ., d,, such
that |f;(x) — fi(p)] < &/+/n for x € X satisfying |x — p| < ;. Let ¢ be the
minimum of §y,ds, ..., d,. If x € X satisfies |x — p| < ¢ then

7609 = FB)F = Y1560 — ) <,
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and hence |f(x) — f(p)| < e. Thus the function f is continuous at p, as
required. |

Proposition 1.14 Let X be a subset of R™, and let f: X - R and g: X —
R be continuous functions from X to R. Then the functions f+gq, f—¢g and
f - g are continuous. If in addition g(x) # 0 for all x € X then the quotient
function f /g is continuous.

Proof of Proposition 1.14 First we prove that f + ¢ is continuous. Let
some strictly positive real number ¢ be given. Then there exist strictly pos-
itive real numbers 0; and d, such that |f(x) — f(p)| < ie whenever x € X
satisfies [x — p| < d; and |g(x) — g(p)| < & whenever x € X satisfies
|x — p| < 2. Let § be the minimum of §; and . If x € X satisfies
|x — p| < d then

(f+9)x) = (f+9)(P) < |f(x) = f(P)|+]9(x) —g(p)| < 56+ 36 =¢.

Thus the function f + ¢ is continuous at p.

The function —g is also continuous at p, and f —g = f+ (—g). It follows
that the function f — ¢ is continuous at p.

Next we prove that f - g is continuous. Let some strictly positive real
number ¢ be given. There exists some strictly positive real number §, such
that |f(x) — f(p)] < 1 and |g(x) — g(p)|] < 1 whenever x € X satisfies
|x — p| < do. Let M be the maximum of |f(p)| + 1 and |g(p)| + 1. Then
|f(x)] < M and |g(x)| < M whenever x € X satisfies |x — p| < dp. Now

f(x)g(x) = f(p)glp) = (f(x)— f(pP))g(x)+ f(p)(9(x) —g(p)),

and thus

F&)9) = f@g®)] < M(1Fx) = F®)] +l9(x) ~ g(p)])

whenever x € X satisfies |[x — p| < dp. There then exists some strictly
positive real number §, where 0 < § < §g, such that

€ €

|f<X> - f(p)| < m and |g(X) —g(p)| < m

whenever x € X satisfies |x — p| < ¢. But then

[f(x)g(x) = f(P)g(p)| <

whenever x € X satisfies |[x — p| < 0. Thus the function f - ¢ is continuous
at p.
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Now suppose that g(x) # 0 for all x € X. Note that 1/g = r o g, where
r: R\ {0} — R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. Thus the function 1/g is a composition
of continuous functions and is thus continuous. But then, using the fact that
a product of continuous real-valued functions is continuous, we deduce that
f/g is continuous. |

Lemma 1.15 Let X be a subset of R™, let f: X — R™ be a continuous
function mapping X into R", and let |f]: X — R be defined such that
|fl(x) = |f(x)| for all x € X. Then the real-valued function |f| is con-
tinuous on X.

Proof of Lemma 1.15 Let x and p be elements of X. Then

[F) = [(f(x) = F(p)) + f(p)| < |F(x) = f(p)| + [/ (P)]

and
fP) = 1(f(p) — f(x)) + f(x)| < [f(x) = f(P)| + [f(x)],

and therefore

&)= 1fP)]| < [f(x) = f(p)]-

The result now follows from the definition of continuity, using the above
inequality. Indeed let p be a point of X, and let some positive real number
be given. Then there exists a positive real number § small enough to ensure
that |f(x) — f(p)| < € for all x € X satisfying |x — p| < 0. But then

FE=1f )] < [f(x) = flp)| < e

for all x € X satisfying |x — p| < d, and thus the function |f| is continuous,
as required. |

Proposition 1.16 Let X andY be subsets of R™ and R™, and let f: X — Y
be a function from X toY . The function f is continuous if and only if f~1(V)
1s open in X for every open subset V of Y.

Proof of Proposition 1.16 Suppose that f: X — Y is continuous. Let
V be an open set in Y. We must show that f~'(V) is open in X. Let
p € f74V). Then f(p) € V. But V is open, hence there exists some
e > 0 with the property that By (f(p),e) C V. But f is continuous at p.
Therefore there exists some § > 0 such that f maps Bx(p, d) into By (f(p), ¢)
(see the remarks above). Thus f(x) € V for all x € Bx(p,?), showing that

76



/s T \\\
1 fBx(p.0))
‘\\ f_(_p) s
\Br(f(p),e) /

~

—_—

7



Bx(p,d) C f~%V). This shows that f~!(V) is open in X for every open
set Vin Y.

Conversely suppose that f: X — Y is a function with the property that
f7H(V) is open in X for every open set V in Y. Let p € X. We must
show that f is continuous at p. Let € > 0 be given. Then By (f(p),¢) is
an open set in Y, by Lemma 1.5, hence f~' (By(f(p),¢)) is an open set
in X which contains p. It follows that there exists some § > 0 such that
Bx(p,d) C f'(By(f(p),e)). Thus, given any € > 0, there exists some
d > 0 such that f maps Bx(p,d) into By (f(p),e). We conclude that f is
continuous at p, as required. |}
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B Alternative Proofs of Results concerning
Correspondences

Proof of Proposition 2.9 using the Bolzano-Weierstrass Theorem

Suppose that the proposition were false. Then there would exist infinite se-
quences Xj,Xz, X3, ... and Wi, Wa, W3, ... such that x; € K, w; € X \ V and
\w; — x;| < 1/7 for all positive integers j. The set K is both closed and
bounded in R™. The multidimensional Bolzano-Weierstrass Theorem (Theo-

rem 1.4) would then ensure the existence of a subsequence Xy, , X, , Xks, - - - Of
X1, X2, X3, . . . converging to some point q of K. Moreover lim (w;—x;) =0,
Jj—+oo
and therefore
lim w;, = lim x;, = q.
Jj—00 Jj—o0

But w; € X \ V. Moreover X \ V is closed in X, and therefore any
sequence of points in X \ V' that converges in X must converge to a point of
X\ V (see Lemma 1.10). It would therefore follow that g € KN (X \ V). But
this is impossible, because K C V and therefore K N (X \ V) = ). Thus a
contradiction would follow were the proposition false. The result follows. |}

Proof of Proposition 2.9 using the Heine-Borel Theorem It follows
from the multidimensional Heine-Borel Theorem (Theorem 1.23) that the
set K is compact, and thus every open cover of K has a finite subcover.
Given point x of K let ex be a positive real number with the property that

BX(X, 2€X) C ‘/,

where
Bx(x,r)={x'e X : |x' —x| <r}

for all positive integers r. The collection of open balls By (x,ex) determined
by the points x of K covers K. By compactness this open cover of K has a
finite subcover. Therefore there exist points x1,Xs, ..., x; of K such that

K C B(X1,€xl) U B<X2,€X2) u---u B(Xk7€xk).

Let ¢ be the minimum of ex,,€x,,...,6x,. If x is a point of K then x €
Bx (x;, ex; for some integer j between 1 and k. But it then follows from the
Triangle Inequality that

B(X, 5) - Bx(Xj,QEXj) cV.

It follows from this that
Bx(K, 5) C V,

as required. |
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Proof of Proposition 2.12 using the Bolzano-Weierstrass Theorem
Let V' be a subset of Y that is open in Y, and let p be a point of X for which
®(p) C V. Let F =Y \ V. Then the set F' is a subset of ¥ that is closed in
Y, and ®(p) N F = (. Now Y is a closed bounded subset of R™, because it
is compact (Theorem 1.23). It follows that F' is closed in R™ (Lemma 1.18).

Suppose that there did not exist any positive number § such that ®(x) C
V for all x € X satisfying |x — p| < 0. Then there would exist an infinite
sequence Xi,Xs,Xs,... of points of X converging to the point p with the
property that ®(x;)NF # () for all positive integers j. There would then exist
an infinite sequence yi,y2,ys, ... of elements of Y such that y; € ®(x;) N F
for all positive integers j. Then (x;,y;) € Graph(®) for all positive integers j.
Moreover the infinite sequence yq,ys,ys, ... would be bounded, because the
set Y is bounded.

It would therefore follow from the multidimensional Bolzano-Weierstrass
Theorem (Theorem 1.4) that there would exist a convergent subsequence

Yki)Ykas Ykss - - -
of the sequence y1,y»2,y3,.... Let q = ‘lirjl Yk;- Then q € F', because the
Jj—+oo
set F'is closed in Y and yy, € F for all positive integers j (see Lemma 1.10).
Similarly (p,q) € Graph(®), because the set Graph(®) is closed in X x Y,
(Xk,;, Y&,;) € Graph(®) for all positive integers j, and

(p7 q) = JEIFOO(ija ij)

But were there to exist (p,q) € X x Y for which q € F and (p,q) €
Graph(®), it would follow that q € ®(p) N F. But this is impossible, because
®(p) N F = (. Thus a contradiction would arise were there to exist an
infinite sequence x;,Xz,Xs, ... of points of X for which ®(x;) N F # 0 and

lim x; = p. Therefore no such infinite sequence can exist, and therefore
Jj—+oo

there must exist some positive real number § such that ®(x) C V whenever
x € X satisfies |x — p| < J. We conclude that
{xeX:d(x)CV}
is open in X. The result follows. |}
Proof of Proposition 2.18 using Proposition 2.10 Let

W={xeX:(x,y)eUforalye o)},
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and let p € W. If ®(p) = () then it follows from Lemma 2.14 that there exists
some positive real number § such that ®(x) = @ for all x € X satisfying
|x — p| <. Then x € W for all x € X satisfying |x — p| < 9.

Suppose that ®(p) # 0. Let K = ®(p). Then K is a compact subset
of Y, because the correspondence ® is compact-valued. Also (p,y) € U for
all y € K. It follows from Proposition 2.10 that there exists some positive
real number ¢; such that (x,y) € U for all x € X and y € Y satisfying
|x — p| < d; and dy(y, K) < d1, where

dy(y, K) =inf{ly —z|:z € K}.

Let
V= {y eY: dy(y,K) < 51}

Then V is open in Y because the function sending y € Y to d(y, K) is
continuous on Y (see Lemma 2.8). Also &(p) C V. It follows from the
upper hemicontinuity of the correspondence ® that there exists some positive
number d such that ®(x) C V whenever |x —p| < d2. Let 6 be the minimum
of §; and dy. If x € X satisfies |[x — p| < ¢ then ®(x) C V. But then
dly,K) < 6, for all y € ®(x). Moreover |x — p| < §;. It follows that
(x,y) € U for all y € ®(x), and therefore x € W. This shows that W is an
open subset of X as required. |}

Proof of Proposition 2.18 using the Heine-Borel Theorem

Let ®: X — Y be a compact-valued upper hemicontinuous correspondence,
and let U be a subset of X x Y that is open in X x Y. Let

W={xeX:(x,y)eUforally € d(x)}.

We must prove that W is open in X.

Let K = ®(p). Then, given any point y of K, there exists an open
set Mpy in X and an open set V,,, in Y such that My, x V,, C U (see
Lemma 2.5). Now every open cover of K has a finite subcover, because K is
compact. Therefore there exist points yi1,ys,...,yr of K such that

K C Vp,yl U Vp,yz U---u Vp,yk'

Let

and
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Then
k k

Mp x Vp C U(Mp X Vpy;) C U(Mpyj X Vpy,;) CU.
j=1 j=1
Now M, is open in X, because it is the intersection of a finite number of
subsets of X that are open in X. Also it follows from the upper hemiconti-
nuity of the correspondence ® that ®*(V},) is open in X, where

(V) ={x€ X :P(x)CVp}

(see Lemma 2.1). Let Np = M,N®*(V}). Then N, is openin X and p € Np,.
Now if x € N, then x € M, and ®(x) C V}, and therefore (x,y) € U for all
y € ®(x). We have thus shown that N, C W for all p € W, where

W={xeX:(x,y)eUforally € &(x)}.

Thus W is the union of the subsets N, as p ranges over the points of
W. Moreover the set N, is open in X for each p € W. It follows that W
must itself be open in X. Indeed, given any point p of W, there exists some
positive real number § such that

{xeX:|x—p|<d} C N, CW.
The result follows. |}

Remark The various proofs of Proposition 2.18 were presented in the con-
texts of correspondences between subsets of Eucldean spaces. All these proofs
generalize easily so as to apply to correspondence between subsets of metric
spaces. The last of the proofs can be generalized without difficulty so as to
apply to correspondences between topological spaces. Inded the notion of
correspondences between topological spaces is defined so that a correspon-
dence ®: X = Y between topological spaces X and Y associates to each
point of X a subset ®(x) of Y. Such a correspondence is said to be upper
hemicontinuous at a point p of X if, given any open subset V' of Y for which
®(p) C V, there exists an open set N(p) in X such that ®(z) C V for all
xr € N.

The proof of Proposition 2.18 using the Heine-Borel Theorem presented
above can be generalized to show that, given a compact-valued correspon-
dence ®: X = Y between topological spaces X and Y, and given a subset U
of Y, the set

{re X :(z,y) eUforally e &(z)}

is open in X.
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We describe another proof of the Berge Maximum Theorem using the
characterization of compact-valued upper hemicontinuous correspondences
using sequences established in Proposition 2.17 and the characterization of
lower hemicontinuous correspondences using sequences established in Propo-
sition 2.19. First we introduce some terminology.

Definition Let X and Y be subsets of R™ and R™ respectively, and let
®: X =3Y be a correspondence from X to Y. Let (x; : j € N) be a sequence
of points of the domain X of the correspondence. We say that an infinite
sequence (y; : j € N) in the codomain of the correspondence is a companion
sequence for (x;) with respect to the correspondence @ if y; € ®(x;) for all
positive integers j.

Let X and Y be subsets of R™ and R™ respectively, and let ®: X = Y be
a correspondence from X to Y. Then the continuity propertiesof &: X =Y
can be characterized in terms of companion sequences with respect to ® as
follows:—

e the correspondence ®: X = Y is compact-valued and upper hemicon-
tinuous at a point p of X if and only if, given any infinite sequence
(x;:j € N)in X converging to the point p, and given any companion
sequence (y; : j € N)in Y, that companion sequence has a subsequence
that converges to a point of ®(p) (Proposition 2.17);

e the correspondence ®: X = Y is lower hemicontinuous at a point p
of X if and only if, given any infinite sequence (x; : 7 € N) in X
converging to the point p, and given any point q of ®(p), there exists
a companion sequence (y; : 7 € N) in Y converging to the point q.
(Proposition 2.19).

Proof of Theorem 2.23 using Companion Sequences Let X and Y be
subsets of R™ and R™ respectively, let f: X x Y — R be a continuous real-
valued function on X x Y, and let ®: X = Y be a correspondence from
X to Y that is both upper and lower hemicontinuous and that also has the
property that ®(x) is non-empty and compact for all x € X. Let

m(x) = sup{ f(x,y) : y € ®(x)}

for all x € X, and let the correspondence M: X == Y be defined such that

M(x) ={y € ®(x) : f(x,y) = m(x)}
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for all x € X. We must prove that m: X — R is continuous, M (x) is
a non-empty compact subset of Y for all x € X, and the correspondence
M: X =Y is upper hemicontinuous.

It follows from the continuity of f: X x Y — R that M(x) is closed
in ®(x) for all x € X. It also follows from the Extreme Value Theorem
(Theorem 1.20) that M (x) is non-empty for all x.

Let (x;,j € N) be a sequence in X which converges to a point p of X,
and let (yj : j € N) be a companion sequence of (x;) with respect to the
correspondence M. Then, for each positive integer j, y; € ®(x;) and

f(xj7Y;) > f(Xj7Y)

for all y € ®(x;). Now the correspondence ® is compact-valued and upper
hemicontinuous. It follows from Proposition 2.17 that there exists a subse-
quence of (y; : j € N) that converges to an element q of ®(q). Let that
subsequence be the sequence (y} : j € N) whose members are

* * *
Yk17yk27yk37"’7

where k; < ky < k3 <---. Thenq= lim y;j .
j—too MY

We show that q € M(p). Let r € ®(p). The correspondence &: X — Y
is lower hemicontinuous. It follows that there exists a companion sequence
(z;:j € N) to (x;: j € N) with respect to the correspondence ® that
converges to r (Proposition 2.19). Then

lim y;, =q and lim z; =r.
j—=too Y j—+oo

It follows from the continuity of f: X x Y — R that

lim f(xx,,y;,)=f(p.a) and lim f(xy,,2x) = f(p,1).

Jj—+oo Jj—+oo

Now
f(ij ) YI:]) > f(ijy ij)
for all positive integers j, because yj € M (xx,). It follows that

f(pa q) = hm f(xkja YZ) > hm f(ijv ij) = f(p7r)
j—+oo J—r+o0
Thus f(p,q) > f(p,r) for all r € ®(p). It follows that q € M (p).

We have now shown that, given any sequence (x; : j € R) in X converging
to the point p, and given any companion sequence (yj : 7 € R) with respect
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to the correspondence M, there exists a subsequence of (y;‘ : 7 € R) that con-
verges to a point of M (x). It follows that the correspondence M: X — Y is
compact-valued and upper hemicontinuous at the point p (Proposition 2.17).

It remains to show that the function m: X — R is continuous at the
point p, where m(x) = f(x,y*) for all x € X and y* € M(x). Let (x;:j €
R) be an infinite sequence converging to the point p, and let v; = m(x;) for all
positive integers j. Then there exists an infinite sequence Let (y} : j € R) in
Y that is a companion sequence to (x;) with respect to the correspondence M.
Then y; € M(x;) and therefore v; = f(x;,y}) for all positive integers j. Now
the correspondence M: X = Y has been shown to be compact-valued and
upper hemicontinuous. There therefore exists a subsequence (y,’;j 7 €N) of
(y;) that converges to a point q of M (p). It then follows from the continuity
of the function f: X x Y — R that

jﬂlfoo m(Xg,) = jﬂlfoo Vg, = jggloo f(xk;,¥%,) = f(p,a) = m(p).

Now the result just proved can be applied with any subsequence of (x; :
j € N) in place of the original sequence. It follows that every subsequence of
of (vj : j € R) itself has a subsequence that converges to m(p).

Let some positive real number € be given. Suppose that there did not
exist any positive integer N with the property that |[v; —m(p)| < € whenever
J > N. Then there would exist infinitely many positive integers j for which
lv; —m(p)| > e. It follows that there would exist some subsequence

Uh?Ulzvvlga"-

of vy, v2,v3,... with the property that |v;, — m(p)| > ¢ for all positive in-
tegers 7. This subsequence would not in turn contain any subsequences
converging to the point m(p).

But we have shown that every subsequence of (v; : j € N) contains
a subsequence converging to m(p). It follows that there must exist some
positive integer N with the property that |v; — m(p)| < € whenever j > N.
We conclude from this that jlijrnoo m(x;) = m(p).

We have shown that if (x; : j € N) is an infinite sequence in X and

if lim x; = p then lim m(x;) = m(p). It follows that the function
J—+oo Jj—+oo

m: X — R is continuous at p. This completes the proof of Berge’s Maximum
Theorem. |
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C Historical Note on Berge’s Maximum The-
orem

In 1959, the French mathematician Claude Berge published a book entitled
FEspaces topologiques: fonctions multivoques (Dunod, Paris, 1959). This book
was subsequently translated into English by E.M. Patterson, and the trans-
lation was published with the title Topological spaces, including a treatment
of multi-valued functions, vector spaces and converity (Oliver and Boyd, Ed-
inburgh and London, 1963).

Claude Berge had completed his Ph.D. at the University of Paris in 1953,
supervised by the differential geometer and mathematical physicist André
Lichnerowicz. His thesis was entitled Sur une théorie ensembliste des jeuz
alternatifs, and a paper of that name was published by him (J. Math. Pures
Appl. 32 (1953), 129-184). He subsequently published Théorie Générale des
Jeuz a N Personnes (Gauthier Villars, Paris, 1957). The title translates as
“General theory of n-person games”.

Claude Berge was Professor at the Institute of Statistics at the Univer-
sity of Paris from 1957 to 1964, and subsequently directed the International
Computing Center in Rome. Following his early work in game theory, his
research developed in the fields of combinatorics and graph theory.

The preface of the 1959 book, FEspaces topologiques: fonctions multivo-
ques, includes a passage translated by E.M. Patterson as follows:—

In Set Topology, with which we are concerned in this book,
we study sets in topological spaces and topological vector spaces;
whenever these sets are colletions of n-tuples or classes of func-
tions, we recover well-known results of classical analysis.

But the role of topology does not stop there; the majority
of text-books seem to ignore certain problems posed by the cal-
culus of probabilities, the decision functions of statistics, linear
programming, cybernetics, economics; thus, in order to provide
a topological tool which is of equal interest to the student of
pure mathematics and the student of applied mathematics, we
have felt it desirable to include a systematic devcelopment of the
properties of multi-valued functions.

The following theorem is included in Espaces topologiques by Claude
Berge (Chapter 6, Section 3, page 122):—

Théoréme du maximum. — Si ¢(y) est une fonction
numérique continue dans Y, et si I' est un application continue
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de X dans Y telle que I'z # () pour tout z,

M(z) = max{p(y)/y € Tz}

est une fonction numérique continue dans X, et

dr ={y/y € I'r,0(y) = M(x)}

est une application u.s.c. de X dans Y.

This theorem is translated by E.M. Patterson as follows (Topological
Spaces, Claude Berge, translated by E.M. Patterson, Oliver and Boyd, Ed-
inburgh, 1963, in Chapter 6, Section 3, page 116):—

Maximum Theorem — If ¢ is a continuous numerical func-
tion in Y and T is a continuous mapping of X into Y such that,
for each x, 'z # (), then the numerical function M defined by

M (z) = max{p(y)/y € [z}

is continuous in X and the mapping ® defined by

dr = {y/y € Tx,p(y) = M(z)}

is an u.s.c. mapping of X into Y.

In this context X and Y are Hausdorff topological spaces. Indeed in
Chapter 4, Section 5 of Espaces topologiques, Berge introduces the concept
of a separated (or Hausdorff) space and then, after some discussion of sep-
aration properties, makes that statement translated by E.M. Patterson as
follows:—

In what follows all the topological spaces which we consider
will be assumed to be separated.

It seems that, in the original statement, the objective function ¢ was
required to be a continuous function on Y, but the first sentence of the
proof of the “Maximum Theorem” notes that ¢ is continuous on X x Y. A
“mapping” in Berge is a correspondence. A mapping (or correspondence)
is said by Berge to be “upper semi-continuous” when it is both compact-
valued and upper hemicontinuous; a mapping is said by Berge to be “lower
semi-continuous” when it is lower hemicontinuous.

Berge’s proof of the Théoréme du maximum is just one short paragraph,
but requires the work of earlier theorems. We discuss his proof using the
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terminology adopted in these lectures. In Theorem 1 of Chapter 6, Section
4, Berge shows that if the correpondence I': X = Y is compact-valued and
upper hemicontinuous then, given any point xg of X, and given any posi-
tive real number ¢, the function M (z) equal to the maximum value of the
objective function ¢ on I'(x) satisfies M(x) < M (xy) + ¢ throughout some
open neighbourhood of the point zy. (This result can be compared with
Lemma 2.21 and the first proof of Theorem 2.23 presented in these notes.)
In Theorem 2 of Chapter 6, Section 4, Berge shows that if the correspon-
dence I' is lower hemicontinuous then, given any point xy of X, and given
any positive real number ¢, the function M (x) equal to the maximum value
of the objective function ¢ on I'(x) satisfies M (z) > M (zy) — ¢ throughout
some open neighbourhood of the point xg.

(This result can be compared with Lemma 2.22 and the first proof of
Theorem 2.23 presented in these notes.) These two results ensure that if I’
is compact-valued, everywhere non-empty and both upper and lower hemi-
continuous then the function function M is continuous on X. In Theo-
rem 7 of Chapter 6, Section 1, Berge had proved that the intersection of a
compact-valued upper hemicontinuous correspondence and a correspondence
with closed graph is compact valued and upper hemicontinuous (see Propo-
sition 2.20 of these notes). Berge completes the proof of the Théoréme du
maximum by putting these results together in a fashion to obtain a proof
(in the contexts of correspondences between Hausdorff topological spaces)
similar in structure to the first proof of Theorem 2.23 presented in these
notes.

The definitions of “upper-semicontinuous” and “lower-semicontinuous”
mappings (i.e., correspondences) Given by Claude Berge at the beginning of
Chapter VI are accompanied by a footnote translated by E.M. Patterson as
follows (C. Berge, translated E.M. Patterson, Topological Spaces, loc. cit.,
p. 109):—

The two kinds of semi-continuity of a multivalued function
were introduced independently by Kuratowski (Fund. Math. 18,
1932, p.148) and Bouligand (Ens. Math., 1932, p. 14). In gen-
eral, the definitions given by different authors do not coincide
whenever we deal with non-compact spaces (at least for upper
semi-continuity, which is the more important from the point of
view of applications). The definitions adopted here, which we
have developed elsewhere (C. Berge, Mém. Sc. Math. 138), en-
able us to include the case when the image of a point z can be
empty.

In 1959, the year in which Claude Berge published Espaces topologiques,
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Gérard Debreu published his influential monograph Theory of value: an ax-
iomatic analysis of economic equilibrium (Cowles Foundation Monographs
17, 1959). Section 1.8 of Debreu’s monograph discusses “continuous cor-
respondences”, developing the theory of correspondences ¢ from S to T,
where S is a subset of R™ and T is a compact subset of R". Debreu also
requires correspondences to be non-empty-valued. In consequence of these
conventions, closed-valued correspondences from S to T" must necessarily be
compact-valued. Also a correspondence from S to 1" is upper hemicontinuous
if and only if its graph is closed (see Propositions 2.11 2.12 of these notes).

In the notes to Chapter 1 of the Theory of Value, Debreu notes that
“a study of the continuity of correspondences from a topological space to a
topological space will be found in C. Berge [1], Chapter 6”. The reference is
to Espace Topologiques.

According to Debreu, the correspondence ¢ is upper semicontinuous at
the point 20 if the following condition is satisfied:

07 «,,0

“rt — 20 y? € p(x7), y? — y*” implies “y° € p(2°)”.

This condition is satisfied at each point of the domain of a correspondence if
and only if that correspondence has closed graph. Thus Debreu’s definition
is in accordance with the definition of upper hemicontinuity for those cor-
respondences, and only those correspondences, where the codomain of the
correspondence is a compact subset of a Euclidean space. Indeed Debreu
notes the following in Section 1.8 of the Theory of Value:—

“(1) The correspondence ¢ is upper semicontinuous on S if and
only if its graph is closed in S X T.”

Again according to Debreu, the correspondence ¢ is lower semicontinuous
at the point 2° if the following condition is satisfied:

“pi — 20 y° € p(2°)” implies “there is (y?) such that y? €
09

p(x9), y? — y"".

This condition is satisfied at each point of the domain of a correspondence if
and only if that correspondence is lower hemicontinuous (in accordance with
the definitions adopted in those notes, see Proposition 2.19 of these notes).

A correspondence from S to T is said by Debreu to be continuous if
it is both upper semicontinuous and lower semicontinuous according to his
definitions.

Debreu discusses Berge’s Maximum Theorem, in the context of a corre-
spondence ¢ from a subset S of R™ to a compact subset T" of R”, as follows
(Theory of Value, Section 1.8, page 19):—
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The interest of these concepts for economics lies, in particular,
in the interpretations of an element x of S as the environment of
a certain agent, of T" as the set of actions a priori available to
him, and of ¢(z) (assumed here to be closed for every = in S)
as the subset of T" to which his choice is actually restricted by
the environment x. Let f be a continuous real-valued function
on S x T, and interpret f(z,y) as the gain for that agent when
his environment is x and his action y. Given x, one is interested
in the elements of ¢(x) which mazximize f (now a function of y
alone) on ¢(x); they form a set p(z). What can be said about
the continuity of the correspondence p from S to 77

One is also interested in g(x), the value of the mazximum of f
on ¢(x) for a given x. What can be said about the continuity of
the real-valued function g on S?7 An answer to these two questions
is given by the following result (the proof of the continuity of g
should not be attempted).

(4) If f is continuous on S x T, and if ¢ is continuous at z € S,
then p is upper semicontinuous at x, and ¢ is continuous on .

The book Infinite dimensional analysis: a hitchhiker’s guide by Char-
alambos D. Aliprantis and Kim C. Border (2nd edition, Springer-Verlag,
1999) discusses the theory of continuous correspondences between topologi-
cal spaces (Chapter 16). Berge’s Maximum Theorem is stated and proved,
in the context of correspondences between topological spaces, as Theorem
16.31 (p. 539). The definitions of upper hemicontinuity and lower hemiconti-
nuity for correspondences are consistent with the definitions adopted in these
lecture notes. These definitions are accompanied by the following footnote:—

J. C. Moore [...] identifies five slightly different definitions of
upper semicontinuity in use by economists, and points out some
of the differences for compositions, etc. T. Ichiishi [...] and
E. Klein and A. C. Thompson [...]| also give other notions of
continuity.

The book Mathematical Methods and Models for Economists by Angel de
la Fuente (Cambridge University Press, 2000) includes a section on continuity
of correspondences between subsets of Euclidean spaces (Chapter 2, Section
11). The definitions of upper and lower hemicontinuity adopted there are
consistent with those given in these lecture notes. The sequential character-
ization of compact-valued upper hemicontinuous correspondences in terms
of companion sequences (Proposition 2.17 of these lecture notes) is stated
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and proved as Theorem 11.2 of Chapter 2 of Angel de la Fuente’s textbook.
Similarly the sequencial characterization of lower hemicontinuous correspon-
dences in terms of companion sequences Proposition 2.19 is stated and proved
as Theorem 11.3 of that textbook.

Theorem 11.6 in Chapter 2 of that textbook covers the result that a
closed-valued upper hemicontinuous correspondence has a closed graph (see
Proposition 2.11) and the result that a correspondence with closed graph
whose codomain is compact is upper hemicontinuous (see Proposition 2.12).
The result that the intersection of a compact-valued upper hemicontinuous
correspondence and a correspondence with closed graph is compact-valued
and upper hemicontinuous (see Proposition 2.20) is Theorem 11.7 in Chap-
ter 2 of the textbook by Angel de la Fuente. Berge’s Maximal Theorem is
Theorem 2.1 in Chapter 7 of that textbook. The proof is based on the use of
the sequential characterizations of upper and lower hemicontinuity in terms
of existence and properties of companion sequences.
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D Further Results Concerning Barycentric Sub-
division
D.1 The Barycentric Subdivision of a Simplex

Proposition D.1 Let o be a simplex in RY with vertices vo, vy, ..., v,, and
let mg,my, ..., m, be integers satisfying

0<my<mi<---<m,<q.

Let p be the simplex in RN with vertices 79,1, ..., 7., where 73, denotes the
barycentre of the simplex T, with vertices vo,Vi,...,Vy, fork =12 ... 1.
Then the simplex p is the set consisting of all points of RN that can be repre-
sented in the form Z?:o t;vj, where to, 11, ..., 1, are real numbers satisfying
the following conditions:

(Z) Ogtjglforj:071a7Q7
.. q
(i) Y t;=1;
=0
(iii) to >t > -+ >t

(iv) t; =ty for all integers j satisfying j < my;

(v) tj = ty, for all integers j and k satisfying 0 < k <r and my_1 < j <
my,

(vi) t; =0 for all integers j satisfying j > m,.

Moreover the interior of the simplex p is the set consisting of all points of
q

RYN that can be represented in the form > t;v;, where to,t1,...,t, are real
§=0

numbers satisfying conditions (i)—-(iv) above together with the following extra

condition:

(Vii) ty,_, > tm, >0 for all integers k satisfying 0 < k < r.

Proof Let wp =7 for k =0,1,...,r. Then

mg

1

Jj=0
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Let x € p, and let the real numbers ug, uy, ..., u, be the barycentric coordi-

nates of the point x with respect to the Vertlces WO, Wi, ..., W, of p, so that
O0<u,<lfork=0,1,...,7, Zukwk—x and Zuk—l
k=0 k=0
Also let

K(j)={keZ:0<k<randmg>j}

q
for j =0,1,...,¢q. Then x = ) t;v;, where
=0

when 0 < 57 <m,, and ¢t; = 0 when m, < j < ¢. Moreover

q
U
> - - ¥

j=0 Jj=0 keK(g (j,k)EL
T T
= = uk‘ = 1’
Z Z m 1
k=0 j=0 'k + k=0

where
L={(,k)€Z’:0<j<q, 0<k<randj<m}

Now t; > 0 for j = 0,1,...,¢q, because u;, > 0 for & = 0,1,...,r, and

therefore .
0<t; <> =1
=0

Also tj < t; for all integers j and j’ satisfying 0 < 5 < j' < m,, because
K(j) C K( ). If 0 < j < mg then K(j) = K(my), and therefore t; = t,,,.
Similarly if 0 < k& < r, and my_1 < j < my then K(j) = K(my), and

therefore t; = ¢,,,. Thus the real numbers #y,;,...,?; satisfy conditions
(i)—(vi) above.
Now let tg,t1,...,t, be real numbers satisfying conditions (i)-(vi), let

ur = (my + D)ty

and
U = (mk + 1)(tmk - tmk+1)
for k=0,1,...,7—1. Then




for k=0,1,...,r. Alsoup >0 for k=0,1,...,r, and

T r—1
Zm = Z(mk + 1)(tmk — tmkﬂ) + (my + Dty,
k=0 k=0
r—1 r—2
= (mo + 1)tm0 + (mk + 1)tmk - (mk + 1)tmk+1
k=1 k=0
(my—1 + D)t + (my + D)t
r—1 r—1
k= k=1
+ ( 1)tmr

But
q
Dty = Zt DD
7=0 k=1 j=my_ 1+1
= (mo+ 1)tm, + Z(mk — M1ty
k=1
because conditions (i)-(vi) satisfied by the real numbers ty,t1,...,t, ensure

that t; = t,,,, when 0 < j <myg, t; =t,,, when 1 <k <7, and my_; < j <
my, and t; = 0 when j > m,. Thus

Zuk (mo+ 1) m0+ka—mk 1), Zt =1.
k=0

k=1
It follows that ug, uq, ..., u, are the barycentric coordinates of a point of the
simplex with vertices wg, wi,...,w,. Moreover
U,
b=,
e KU) my + 1
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for 7 =0,1,...,q, and therefore

T ' mp
> -
UWK — V;
m 1
k=0 k=0 j—0 K +
Ug
- my —I— 1 J
(4,k)eL
q
> -
= J
, +1
=0 keK(j) = *
q
= thj.
j=0

We conclude the the simplex p is the set of all points of R that are rep-
q
resentable in the form ) t;v;, where the coefficients to,ty,...,t, are real
j=0
numbers satisfying conditions (i)—(vi).

q
Now the point ) ¢;v; belongs to the interior of the simplex p if and only
=0

‘77
if upy > 0for k=0,1,...,7, where u, = (m, +1)t,,, and ux = (mg+1) ({1, —
tme,,) for K =0,1,...,r — 1. This point therefore belongs to the interior of
the simplex p if and only if ¢,,, > 0 and ¢,,, > ¢, for k=0,1,...,r —1.
q
Thus the interior of the simplex p consists of those points > ¢;v; of ¢ whose
7=0
barycentric coordinates ty, t1, . . ., t, with respect to the vertices vg, vy, ..
of o satisfy conditions (i)—(vii), as required. [

., Vg

Corollary D.2 Let o be a simplex in some Euclidean space RN, and let
K, be the simplicial complex consisting of the simplexr o together with all
of its faces. Let vy, vy,...,v, be the vertices of o, and let to,t1,...,t, be
the barycentric coordinates of some point x of o, so that 0 < t; < 1 for

17=0,1,...,q, f: tjv; = x and zq: t; = 1. Then there exists a permutation
of the set {0, 1,J.:.0. ,q} and mtegje:r(?s Mo, M1, ..., M, satisfying

0<meg<mi <---<m,<q.
such the following conditions are satisfied:

(i0i) tro) > ey 2+ + > ta(g);

(1) tr(j) = ta(mo) for all integers j satisfying j < mo;
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(V) tr() = tamy) for all integers j and k satisfying 0 < k <1 and my_; <
J < my;

(vi) tr;) = 0 for all integers j satisfying j > m,.

(Vii) tr(my_yy > trmy) > 0 for all integers k satisfying 0 <k <.
Let p be the simplex of the first barycentric subdivision K of the simplical

complex K, with vertices 7y, 71, . .., 7., where Ty 1s the barycentre of the sim-
plex Ty, with vertices Vx(oy, Vr(1)s - - > Va(my) for k =0,1,...,r. Then p is the

unique simplex of K! that contains the point x in its interior.

Proof The required permutation 7 can be any permutation that rearranges
the barycentric coordinates in descending order, so that 1 > #;) > trq) >
... > tr = 0. The required result then follows immediately on applying
Proposition D.1. |}

Corollary D.2 may be applied to determine the simplices of the first
barycentric subdivision K/ of the simplicial complex K, that consists of
some simplex o together with all of its faces.

Example Let K be the simplicial complex consisting of a triangle with
vertices vg, vi and vy, together with all its edges and vertices, and let K’
be the first barycentric subdivision of the simplicial complex K. Then K’
consists of six triangles Po12, P102, Po21, L£120, P201 and £210, together with all
the edges and vertices of those triangles, where

Vo

Lo12 £102

Vo Vi
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Poi2 = { }

P2 = { Vil =2 j }
2 2

Po21 = {thvjzlztOZtgztleand th:]_},

P120 = { ME j }

P01 =

2 2
P210 = {thvjzlthZtlztOZOand th:].}

J=0 J=0

The intersection of any two of those triangles is a common edge or vertex of
those triangles. For example, the intersection of the triangles pg12 and pygo
is the edge poi2 N p1o2, Where

2 2
p012ﬂp102: {thVj 01 Zt():tl Ztg annd th _1}

=0 =0
And the intersection of the triangle pp1o and pig is the barycentre of the
2

triangle v vq vo, and is thus the point ) ¢;v; whose barycentric coordinates
=0
to, t1, to satisfy tg = t1 =ty = 3.

Let o be a g-simplex with vertices vo, vy,..., vy, let K, be the simplicial
complex consisting of the simplex o, together with all its faces, and let K
be the first barycentric subdivision of the simplicial complex K,. Then the
g-simplices of K are the simplices of the form py,gm, ..m,, Where the list
mo, M1, ..., My is a rearrangement of the list 0,1, ..., ¢ (so that each integer
between 0 and ¢ occurs exactly one in the list mg, mq, ..., m,), and where

Prmo m My

q q
= {thvj:1ztmo >ty >0 > by, >0 and th:1}.
J=0 §=0



A point of o belongs to the interior of one of the simplices of K/ if and only if

its barycentric coordinates ty,%1,...,%¢, are all distinct and strictly positive.
q
Moreover if a point ) t;v; of ¢ with barycentric coordinates o, t1,...,1,
7=0
belongs to the interior of some r-simplex of K then there are exactly r 4 1
distinct values amongst the real numbers to,t1,...,t, (i.e., {to,t1,...,t,} is

a set with exactly r 4+ 1 elements).
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