Worked Solution to Hemicontinuity Question

1. Let $\Phi: \mathbb{R} \rightrightarrows \mathbb{R}$ be the correspondence defined such that

$$\Phi(x) = \begin{cases} \left\{ y \in \mathbb{R} : xy^2 + (1 - x^2)y - x \ge 0 \right\} & \text{if } x < 0; \\ \left\{ y \in \mathbb{R} : y \ge 0 \right\} & \text{if } x = 0; \\ \left\{ y \in \mathbb{R} : y^2 - y - x - x^2 \le 0 \right\} & \text{if } 0 < x < 1; \\ \left\{ y \in \mathbb{R} : 0 \le xy \le 2 \right\} & \text{if } x \ge 1. \end{cases}$$

Answer the following, fully justifying your answers:—

(i) Is $\Phi: \mathbb{R} \to \mathbb{R}$ upper hemicontinuous? at x = 0?

We need to investigate the nature of the set $\Phi(x)$ when x < 0 and also when 0 < x < 1. Now, if x < 0, Let x and y be real numbers, where x < 0. Then $y \in \Phi(x)$ if and only if $xy^2 + (1-x^2)y - x \ge 0$. Now $xy^2 + (1-x^2)y - x$ is a quadratic polynomial in y whose roots are

$$\frac{1}{2x} \left(-(1-x^2) \pm \sqrt{(1-x^2)^2 + 4x^2} \right).$$

But $(1-x^2)^2 + 4x^2 = (1+x^2)^2$. Thus the roots of the quadratic polynomial are

$$\frac{1}{2x} \left(x^2 - 1 \pm (1 + x^2) \right)$$

and are thus x and -1/x. Moreover $0 \in \Phi(x)$ when x < 0. We deduce that

$$\Phi(x) = \left[x, -\frac{1}{x}\right]$$
 whenever $x < 0$.

Next we consider the behaviour of $\Phi(x)$ when 0 < x < 1. Now $y^2 - y - x - x^2$ is a quadratic polynomial in y whose roots are $\frac{1}{2}(1 \pm \sqrt{1 + 4x + 4x^2})$. Moreover $1 + 4x + 4x^2 = (2x + 1)^2$. It follows that the roots of the quadratic polynomial are x + 1 and -x. Moreover $0 \in \Phi(x)$ when 0 < x < 1. It follows that

$$\Phi(x) = [-x, x+1]$$
 whenever $0 < x < 1$.

Note furthermore that $\Phi(0) = [0, +\infty)$.

We are now in a position to determine whether or not the correspondence is upper hemicontinuous at x=0. Let V be an open set for which $\Phi(0) \subset V$. Then there exists $\delta > 0$ for which $[-\delta, +\infty) \subset V$. If $-\delta < x < 0$ then

$$\Phi(x) = [x, -1/x] \subset [x, +\infty) \subset [-\delta, +\infty) \subset V.$$

Also if $0 < x < \delta$ then

$$\Phi(x) = [-x, x+1] \subset [-x, +\infty) \subset [-\delta, +\infty) \subset V.$$

It follows that $\Phi(x) \subset V$ for all real numbers x satisfying $|x| < \delta$. Thus Φ is upper hemicontinuous at 0.

(ii) Is $\Phi: \mathbb{R} \to \mathbb{R}$ lower hemicontinuous at x = 0?

We make use of results obtained in investigating the previous part. For a counter-example, let $V = \{y \in \mathbb{R} : 2 < y < 3\}$. Then $\Phi(0) \cap V = V$ and thus $\Phi(0) \cap V \neq \emptyset$. But if 0 < x < 1 then y < 2 for all $y \in \Phi(x)$, and therefore $\Phi(x) \cap V = \emptyset$. Thus the open set V provides the required counter-example, demonstrating that the correspondence Φ is not lower hemicontinuous at 0.

(iii) Is $\Phi: \mathbb{R} \to \mathbb{R}$ upper hemicontinuous at x = 1?

Note that

$$Phi(x) = \left[0, \frac{2}{x}\right]$$
 whenever $x \ge 1$.

In particular $\Phi(1) = [0, 2]$.

The correspondence Φ is not upper hemicontinuous at 1. For a counter-example let $V = \{y \in \mathbb{R} : -\frac{1}{2} < x < 3\}$. Then $\Phi(1) \subset V$. But if $x > \frac{1}{2}$ then $-x \in \Phi(x)$ but $-x \notin V$. It follows that $\Phi(x)$ is not contained in V for any x satisfying $\frac{1}{2} < x < 1$. This counter-example demonstrates that Phi is not upper hemicontinuous at 1

(iv) Is $\Phi: \mathbb{R} \to \mathbb{R}$ lower hemicontinuous at x = 1?

The correspondence Φ is lower hemicontinuous at 1. We have already noted that $\Phi(1) = [0,2]$. If V is an open set in \mathbb{R} , and if either $0 \in V$ or $2 \in V$ then there exists $v \in V$ satisfying 0 < v < 2. It follows that if V is an open set in \mathbb{R} which has nonempty intersection with [0,2] then there exists some element v of V that satisfies 0 < v < 2. If x satisfies v - 1 < x < 1 then v < x + 1 and therefore $v \in \Phi(x)$. Also if $1 \le x < 2/v$ then xv < 2 and therefore $v \in \Phi(x)$. It follows that $\Phi(x) \cap V \neq \emptyset$ for all real numbers x satisfying v - 1 < x < 2/v. Thus Φ is lower hemicontinuous at 1.