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1. (a) [Seen similar.]

(i) Let V be an open set in R satisfying Φ(−1) ⊂ V . Now
Φ(−1) = {y ∈ R : y ≥ 0}. Now 0 ∈ V , and therefore
there exists δ > 0 such that (−δ, δ) ⊂ V . It follows that
{y ∈ R : y > −δ} ⊂ V . But then Φ(x) ⊂ V whenever
−1− δ < x < −1 + δ. Thus Φ:R ⇒ R is upper hemicontinu-
ous at −1.

(ii) Let V = {y ∈ R : 2 < y < 3}. Then Φ(−1) ∩ V 6= ∅
but Φ(x) ∩ V = ∅ for all real numbers x satisfying x < −1.
It follows that the correspondence Φ:R ⇒ R is not lower
hemicontinuous at −1.

(iii) Let V = {y ∈ R : 1 < y < 4}. Then V is open in R and
Φ(1) ⊂ V . Now if 9

10
< x < 1 then 0 < 1 − x2 < 19

100
< 1

5
.

It follows that follows that 5 ∈ Φ(x) for all real numbers x
satisfying 9

10
< x < 1. But 5 6∈ V . Thus Φ(x) 6⊂ V for all real

numbers x satisfying 9
10
< x < 1. It follows that Φ:R ⇒ R is

not upper hemicontinuous at 1.

(iv) Let V be an open set in R satisfying Φ(1) ∩ V 6= ∅. Now
Φ(1) = [2, 3]. Therefore there exists s ∈ V satisfying 2 ≤
s ≤ 3. Moreover V is open in R, and therefore there exists
δ1 > 0 such that y ∈ V for all real numbers y satisfying
s − δ1 < y < s + δ1. If 1 ≤ x < 1 + δ1 and if y = x + s − 1
then x + 1 ≤ y ≤ x + 2, and therefore y ∈ Φ(x). Also s ≤
y < s+ δ1 and therefore y ∈ V . Thus Φ(x)∩V 6= ∅ whenever
1 ≤ x < δ1. Also we have already verified that 1 − x2 ≤ 1

5

whenever 9
10

< x < 1. It follows that (1 − x2)s ≤ 3
5

and
therefore s ∈ Φ(x) whenever 9

10
< x < 1. Let δ = min(δ1,

1
10

.
Then Φ(x)∩ V 6= ∅ for all x ∈ R satisfying 1− δ < x < 1 + δ.
Thus Φ:R ⇒ R is lower hemicontinuous at 1.

(b) [Bookwork.] Suppose that the proposition were false. Then there
would exist infinite sequences x1,x2,x3, . . . and w1,w2,w3, . . .
such that xj ∈ K, wj ∈ X \V and |wj −xj| < 1/j for all positive
integers j. The set K is both closed and bounded in Rn. The mul-
tidimensional Bolzano-Weierstrass Theorem would then ensure
the existence of a subsequence xk1 ,xk2 ,xk3 , . . . of x1,x2,x3, . . .
converging to some point q of K. Moreover lim

j→+∞
(wj − xj) = 0,

and therefore
lim
j→∞

wkj = lim
j→∞

xkj = q.

But wj ∈ X \V . Moreover X \V is closed in X, and therefore any
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sequence of points in X\V that converges in X must converge to a
point of X\V . It would therefore follow that q ∈ K∩(X\V ). But
this is impossible, because K ⊂ V and therefore K ∩ (X \V ) = ∅.
Thus a contradiction would follow were the proposition false. The
result follows.

[N.B., the lecture notes contain three proofs of this result: a
proof using the multidimensional Bolzano-Weierstrass Theorem,
and proof using the multidimensional Heine-Borel Theorem, a
proof using the Extreme Value Theorem. Any of these proofs,
or any other correct proof that does not essentially beg the ques-
tion, is acceptable.]

(c) [Bookwork.] Let V be an open set in Y that satisfies Φ(p) ⊂
V . Now Φ(p) is a compact subset of Y , because Φ:X → Y is
compact-valued. It follows from (ii) that there exists some positive
real number ε such that BY (Φ(p), ε) ⊂ V . There then exists some
positive number δ such that

Φ(x) ⊂ BY (Φ(p), ε) ⊂ V

whenever |x − p| < δ. Thus Φ:X ⇒ Y is upper hemicontinuous
at p.
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2. (a) [Bookwork.] Suppose that the points v0,v1, . . . ,vq are affinely
independent. Let t1, t2, . . . , tq be real numbers which satisfy the
equation

q∑
j=1

tj(vj − v0) = 0.

Then
q∑

j=0

tjvj = 0 and
q∑

j=0

tj = 0, where t0 = −
q∑

j=1

tj, and therefore

t0 = t1 = · · · = tq = 0.

It follows that the displacement vectors v1−v0,v2−v0, . . . ,vq−v0

are linearly independent.

Conversely, suppose that these displacement vectors are linearly
independent. Let t0, t1, t2, . . . , tq be real numbers which satisfy

the equations
q∑

j=0

tjvj = 0 and
q∑

j=0

tj = 0. Then t0 = −
q∑

j=1

tj, and

therefore

0 =

q∑
j=0

tjvj = t0v0 +

q∑
j=1

tjvj =

q∑
j=1

tj(vj − v0).

It follows from the linear independence of the displacement vectors
vj − v0 for j = 1, 2, . . . , q that

t1 = t2 = · · · = tq = 0.

But then t0 = 0 also, because t0 = −
q∑

j=1

tj. It follows that the

points v0,v1, . . . ,vq are affinely independent, as required.

(b) [Definitions.] A simplex in Rk of dimension q with vertices

v0,v1, . . . ,vq

is defined to be a set of the form{
q∑

j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

}
,

where v0,v1, . . . ,vq are affinely independent points of Rk. Let x

be a point of this simplex. Then x =
q∑

j=0

tjvj where 0 ≤ tj ≤ 1 for
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j = 0, 1, . . . , q and
q∑

j=0

tj = 1. The coefficients tj of the vertices in

this expression are the barycentric coordinate of the point x. The
barycentre of the simplex is the point whose barycentric coordi-
nates are all equal to 1/(q + 1), where q is the dimension of the
simplex.

(c) [Seen similar.] The simplices of σ, ordered so that the barycentric
coordinates of the point x occur in increasing order, are

v4,v3,v1,v5,v2,v0.

The barycentric coordinate of vertex v4 is equal to zero. Let σ0,
σ1, σ2 and σ3 be the simplices of K whose vertex sets are as
follows:—

Vert σ0 = {v0}, Vert σ1 = {v0,v2},

Vert σ2 = {v0,v1,v2,v5}, Vert σ3 = {v0,v1,v2,v3,v5}.

These sets are assigned as follows: the vertex set for σ3 consists
of all vertices where the associated barycentric coordinate of x
is greater than zero; the vertex set for σ2 consists of all vertices
where the associated barycentric coordinate of x is greater than
1
12

; the vertex set for σ1 consists of all vertices where the associated
barycentric coordinate of x is greater than 1

6
; the vertex set for σ0

consists of all vertices where the associated barycentric coordinate
of x is greater than 1

4
.

The simplex τ then has vertices w0,w1,w2,w3, where

w0 = σ̂0 = v0, w1 = σ̂1 = 1
2
(v0 + v2),

w2 = σ̂2 = 1
4
(v0+v1+v2+v5), w3 = σ̂3 = 1

5
(v0+v1+v2+v3+v5).

Then

x = 1
12
v3 + 1

6
(v1 + v5) + 1

4
v2 + 1

3
v0

= 1
12

(v3 + v1 + v5 + v2 + v0) + 1
12

(v1 + v5 + v2 + v0)

+ 1
12

(v2 + v0) + 1
12
v0

= 1
12
w0 + 1

6
w1 + 1

3
w2 + 5

12
w3.

Thus the barycentric coordinates of the point x with respect to
the vertices w0,w1,w2,w3 of τ are 1

12
, 1

6
, 1

3
and 5

12
respectively.
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3. (a) [Bookwork.] Every point of |K| belongs to the interior of a unique
simplex of K It follows that the complement |K|\stK(x) of stK(x)
in |K| is the union of the interiors of those simplices of K that do
not contain the point x. But if a simplex of K does not contain
the point x, then the same is true of its faces. Moreover the union
of the interiors of all the faces of some simplex is the simplex itself.
It follows that |K| \ stK(x) is the union of all simplices of K that
do not contain the point x. But each simplex of K is closed in
|K|. It follows that |K| \ stK(x) is a finite union of closed sets,
and is thus itself closed in |K|. We deduce that stK(x) is open in
|K|. Also x ∈ stK(x), since x belongs to the interior of at least
one simplex of K.

(b) [Bookwork.] Let s:K → L be a simplicial approximation to f : |K| →
|L|, let v be a vertex of K, and let x ∈ stK(v). Then x and f(x)
belong to the interiors of unique simplices σ ∈ K and τ ∈ L.
Moreover v must be a vertex of σ, by definition of stK(v). Now
s(x) must belong to τ (since s is a simplicial approximation to the
map f), and therefore s(x) must belong to the interior of some
face of τ . But s(x) must belong to the interior of s(σ), since x
is in the interior of σ. It follows that s(σ) must be a face of τ ,
and therefore s(v) must be a vertex of τ . Thus f(x) ∈ stL(s(v)).
We conclude that if s:K → L is a simplicial approximation to
f : |K| → |L|, then f (stK(v)) ⊂ stL (s(v)).

Conversely let s: VertK → VertL be a function with the prop-
erty that f (stK(v)) ⊂ stL (s(v)) for all vertices v of K. Let
x be a point in the interior of some simplex of K with vertices
v0,v1, . . . ,vq. Then x ∈ stK(vj) and hence f(x) ∈ stL (s(vj))
for j = 0, 1, . . . , q. It follows that each vertex s(vj) must be a
vertex of the unique simplex τ ∈ L that contains f(x) in its in-
terior. In particular, s(v0), s(v1), . . . , s(vq) span a face of τ , and
s(x) ∈ τ . We conclude that the function s: VertK → VertL rep-
resents a simplicial map which is a simplicial approximation to
f : |K| → |L|, as required.

(c) [Bookwork.] The collection consisting of the stars stL(w) of all
vertices w of L is an open cover of |L|, since each star stL(w) is
open in |L| and the interior of any simplex of L is contained in
stL(w) whenever w is a vertex of that simplex. It follows from the
continuity of the map f : |K| → |L| that the collection consisting
of the preimages f−1(stL(w)) of the stars of all vertices w of L is
an open cover of |K|.
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Now the set |K| is a closed bounded subset of a Euclidean space.
It follows that there exists a Lebesgue number δL for the open
cover consisting of the preimages of the stars of all the vertices
of L. This Lebesgue number δL is a positive real number with
the following property: every subset of |K| whose diameter is less
than δ is contained in the preimage of the star of some vertex w
of L. It follows that every subset of |K| whose diameter is less
than K is mapped by f into stL(w) for some vertex w of L.

Now the mesh µ(K(j)) of the jth barycentric subdivision of K
tends to zero as j → +∞. Thus we can choose j such that
µ(K(j)) < 1

2
δ. If v is a vertex of K(j) then each point of stK(j)(v)

is within a distance 1
2
δ of v, and hence the diameter of stK(j)(v)

is at most δ. We can therefore choose, for each vertex v of K(j) a
vertex s(v) of L such that f(stK(j)(v)) ⊂ stL(s(v)). In this way we
obtain a function s: VertK(j) → VertL from the vertices of K(j)

to the vertices of L. This is the desired simplicial approximation
to f .
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4. (a) [Bookwork.] The closed n-dimensional ball En is itself homeo-
morphic to an n-dimensional simplex ∆. It follows that there
exists a homeomorphism h:X → ∆ mapping the set X onto the
simplex ∆. Then the continuous map f :X → X determines a
continuous map g: ∆→ ∆, where g(h(x) = h(f(x)) for all x ∈ X.
Suppose that it were the case that f(x) 6= x for all x ∈ X. Then
g(z) 6= z for all z ∈ ∆. There would then exist a well-defined con-
tinuous map r: ∆→ ∂∆ mapping each point z of ∆ to the unique
point r(z) of the boundary ∂∆ of ∆ at which the half line starting
at g(z) and passing through z intersects ∂∆. Then r: ∆ → ∂∆
would be continuous, and r(z) = z for all z ∈ ∂∆. However there
does not exist any continuous map r: ∆→ ∂∆ with these proper-
ties. Therefore the map f must have at least one fixed point, as
required.

(b) [Bookwork.] Let v: ∆→ Rn be the function with ith component vi
given by

vi(p) =

{
pi + zi(p) if zi(p) > 0;
pi if zi(p) ≤ 0.

Note that v(p) 6= 0 and the components of v(p) are non-negative
for all p ∈ ∆. It follows that there is a well-defined map ϕ: ∆→ ∆
given by

ϕ(p) =
1

n∑
i=1

vi(p)
v(p),

The Brouwer Fixed Point Theorem ensures that there exists p∗ ∈
∆ satisfying ϕ(p∗) = p∗. Then v(p∗) = λp∗ for some λ ≥ 1. We
claim that λ = 1.

Suppose that it were the case that λ > 1. Then vi(p
∗) > p∗i ,

and thus zi(p
∗) > 0 whenever p∗i > 0. But p∗i ≥ 0 for all i, and

p∗i > 0 for at least one value of i, since p∗ ∈ ∆. It would follow
that p∗.z(p∗) > 0, contradicting the requirement that p.z(p) ≤ 0
for all p ∈ ∆. We conclude that λ = 1, and thus vi = p∗i and
zi(p

∗) ≤ 0 for all i, as required.

(c) [Bookwork.] Let f(p,q) = pTMq for all p ∈ ∆P and q ∈ ∆Q.
Given q ∈ ∆Q, let

µP (q) = sup{f(p,q) : p ∈ ∆P}

and let
P (q) = {p ∈ ∆P : f(p,q) = µP (q)}.
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Similarly given q ∈ ∆Q, let

µQ(p) = inf{f(p,q) : q ∈ ∆Q}

and let
Q(p) = {q ∈ ∆Q : f(p,q) = µQ(q)}.

An application of Berge’s Maximum Theorem ensures that the
functions µP : ∆P → R and µQ: ∆Q → R are continuous, and
that the correspondences P : ∆Q ⇒ ∆P and Q: ∆P ⇒ ∆Q are
non-empty, compact-valued and upper hemicontinuous. These
correspondences therefore have closed graphs. Morever P (q) is
convex for all q ∈ ∆Q and Q(p) is convex for all p ∈ ∆P . Let
X = ∆P ×∆Q, and let Φ:X ⇒ X be defined such that

Φ(p,q) = P (q)×Q(p)

for all (p,q) ∈ X. Kakutani’s Fixed Point Theorem then ensures
that there exists (p∗,q∗) ∈ X such that (p∗,q∗) ∈ Φ(p∗,q∗).
Then p∗ ∈ P (q∗) and q∗ ∈ Q(p∗) and therefore

f(p,q∗) ≤ f(p∗,q∗) ≤ f(p∗,q)

for all p ∈ ∆P and q ∈ ∆Q, as required.
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