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Module Website

The module website, with online lecture notes, problem sets. etc. are located
at

http://www.maths.tcd.ie/~dwilkins/Courses/MA3484/

Note

Previous examinations in this module have include a transportation problem
similar to question 1, and a simplex method problem similar to question 3,
part (b). In the case of question 3 they will have been told that, in previous
years, the simplex method problem could be solved by any one of three
methods developed in the lecture notes. The structure of these questions is
intended to simply present the bare bones of a problem of the relevant type,
without constraining students to a particular method of solution.
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1. [Seen similar.]

[Note: the following worked solution reproduces the detail of a
large number of small steps to explain, demonstrate and validate
the reasoning. A solution with this amount of detail would not
be expected in a solution written out during the course of an
examination.]

We now find a basic optimal solution to a transportation problem
with 4 suppliers and 3 recipients. We find an initial basic feasible
solution using the Minimum Cost Method, and then continue to
find a basic optimal solution using a form of the Simplex Method
adapted to the Transportation Problem.

The supply vector is (12, 8, 14, 16). The demand vector is (18, 19, 13).
The components of both the supply vector and the demand vector
add up to 50.

The costs are as specified in the following cost matrix:—
4 2 5
10 8 9
7 6 10
11 12 10

 .

We find an initial basic feasible solution using the Minimum Cost
Method, in which we select a cell with minimum cost for which
xi,j is as yet undetermined, then fill in the cell with the minimum
of the supply si and demand dj. Then either one column, or one
row is completed with zeros. This reduces to a transportation-
type problem of smaller size, and the Minimum Cost Method is
applied recursively until the initial basic feasible solution has been
found.

The cell (1, 2) is first selected, as being that with minimum cost,
and (1, 2) becomes the first selected element of the basis B The
corresponding variable x1,2 is increased to its maximum possible
value, which is 12, and row 1 is padded out with zeros in cells
(1, 1) and (1, 3).

Next the cell (3, 2) is selected, as being the undetermined cell
with minimum cost, and (3, 2) is added to the basis B. The corre-
sponding variable x3,2 is increased to its maximum possible value,
which is 7, and column 2 is padded out with zeros in cells (2, 2)
and (4, 2).
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Next the cell (3, 1) is selected, as being the undetermined cell with
minimum cost, and (3, 1) is added to the basis B. The correspond-
ing variable x3,1 is increased to its maximum possible value, which
is 7, and row 3 is padded out with a zero in cell (3, 3).

Next the cell (2, 3) is selected, as being the undetermined cell with
minimum cost, and (2, 3) is added to the basis B. The correspond-
ing variable x2,3 is increased to its maximum possible value, which
is 8, and row 2 is padded out with a zero in cells (2, 1).

Next the cell (4, 3) is selected, as being the undetermined cell with
minimum cost, and (4, 3) is added to the basis B. The correspond-
ing variable x4,3 is increased to its maximum possible value, which
is 5.

Finally the cell (4, 1) is selected, as being the undetermined cell
with minimum cost, and (4, 1) is added to the basis B. The cor-
responding variable x4,1 is given its only possible value, which is
11.

The completed tableau after determining the initial basic solution
by the Minimum Cost Method is as follows:—

ci,j ↘ xi,j si

4 2 • 5
0 12 0 12

10 8 9 •
0 0 8 8

7 • 6 • 10
7 7 0 14

11 • 12 10 •
11 0 5 16

dj 18 19 13 50

Our initial basic feasible solution is thus specified by the 4 × 3
matrix X, where

X =


0 12 0
0 0 8
7 7 0
11 0 5

 .

The initial basis B for the transportation problem is as follows:—

B = {(1, 2), (3, 2), (3, 1), (2, 3), (4, 3), (4, 1)}.
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The basis has six elements as expected. (The number of basis
elements should be m+n− 1, where m is the number of suppliers
and n is the number of recipients.)

The cost of the initial basic feasible solution is 358, as

2× 12 + 9× 8 + 7× 7 + 6× 7 + 11× 11 + 10× 5

= 24 + 72 + 49 + 42 + 121 + 50 = 358.

The next stage is to determine real numbers ui and vj for i =
1, 2, 3, 4 and j = 1, 2, 3 to satisfy the following conditions: ci,j =
vj − ui + qi,j for all i and j; qi,j = 0

The solution is exemplified in the following tableau:

ci,j ↘ qi,j ui

4 2 • 5 0
1 0 3

10 8 9 • −7
0 −1 0

7 • 6 • 10 −4
0 0 4

11 • 12 10 • −8
0 2 0

vj 3 2 2

The initial basic feasible solution is not optimal because one of
the quantities qi,j is negative. Indeed q2,2 = −1, We therefore seek
to bring (2, 2) into the basis.

The procedure for achieving this requires us to determine a 4× 3
matrix Y satisfying the following conditions:—

• y2,2 = 1;

• yi,j = 0 when (i, j) 6∈ B ∪ {(2, 2)};
• all rows and columns of the matrix Y sum to zero.

The unique solution is evident from the following tableau with
those coefficients yi,j of the matrix Y that correspond to cells in
the current basis (marked with the • symbol), so that all rows
sum to zero and all columns sum to zero:—
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yi,j 1 2 3

1 0 • 0
2 1 ◦ −1 • 0
3 1 • −1 • 0
4 −1 • 0 • 1 0

0 0 0 0

The following 4×3 matrix Y therefore satisfies our requirements:—

Y =


0 0 0
0 1 −1
1 −1 0
−1 0 1

 .

Now X + λY is a feasible solution of the given transportation
problem for all values of λ for which the coefficients are all non-
negative. Now

X + λY =


0 12 0
0 λ 8− λ

7 + λ 7− λ 0
11− λ 0 5 + λ

 .

We can increase λ, decreasing the cost by λ up to λ = 7. This
gives us a new basic feasible solution, which we take to be the
current basic feasible solution.

Let X now denote the current basic feasible solution after the first
iteration, and let B now denote the associated basis. Then

X =


0 12 0
0 7 1
14 0 0
4 0 12

 .

and
B = {(1, 2), (2, 2), (2, 3), (3, 1), (4, 1), (4, 3)}.

We next compute the numbers ui and vj and qi,j so that ci,j =
vj − ui for all (i, j) ∈ B and ci,j = vj − ui + qi,j for i = 1, 2, 3, 4
and j = 1, 2, 3.
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We following tableau exhibits the values of qi,j corresponding to
the basis obtained at the first iteration:

ci,j ↘ qi,j ui

4 2 • 5 0
0 0 2

10 8 • 9 • −6
0 0 0

7 • 6 10 −3
0 1 4

11 • 12 10 • −7
0 3 0

vj 4 2 3

The fact that all qi,j are non-negative ensures that the current
feasible solution is optimal.

Indeed let xi,j be the components of a feasible solution to the
problem. Then

4∑
i=1

3∑
j=1

ci,jxi,j =
3∑
j=1

vjdj −
4∑
i=1

uisi +
4∑
i=1

3∑
j=1

qi,jxi,j.

The last summand is always non-negative, and is equal to zero for
the current feasible solution.

The cost of the this optimal solution is 351, as

2× 12 + 8× 7 + 9× 1 + 7× 14 + 11× 4 + 10× 12

= 24 + 56 + 9 + 98 + 44 + 120 = 351.
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2. [Bookwork.] Let m and n be positive integers, and let let the m × n
matrix X represent a feasible solution of a transportation problem with
supply vector s, demand vector d and cost matrix C, where C is an
m×n matrix with real coefficients. Then si ≥ 0 for i = 1, 2, . . . ,m and
dj ≥ 0 for j = 1, 2, . . . , n, where

s = (s1, s2, . . . , sm), d = (d1, d2, . . . , dn).

Also xi,j ≥ 0 for all i and j,
n∑
j=1

xi,j = si for i = 1, 2, . . . ,m and

m∑
i=1

xi,j = dj for j = 1, 2, . . . , n. The cost of the feasible solution X is

then
m∑
i=1

n∑
j=1

ci,jxi,j, where ci,j is the coefficient in the ith row and jth

column of the cost matrix C.

If the feasible solution X is itself basic then there is nothing to prove.
Suppose therefore that X is not a basic solution. We show that there
then exists a feasible solution X with fewer non-zero components than
the given feasible solution.

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, and let

K = {(i, j) ∈ I × J : xi,j > 0}.

Because X is not a basic solution to the Transportation Problem, there
does not exist any basis B for the transportation problem satisfying
K ⊂ B. Therefore there exists a non-zero m × n matrix Y whose
coefficients yi,j satisfy the following conditions:—

•
n∑
j=1

yi,j = 0 for i = 1, 2, . . . ,m;

•
m∑
i=1

yi,j = 0 for j = 1, 2, . . . , n;

• yi,j = 0 when (i, j) 6∈ K.

We can assume without loss of generality that
m∑
i=1

n∑
j=1

ci,jyi,j ≥ 0, where

the quantities ci,j are the coefficients of the cost matrix C, because
otherwise we can replace Y with −Y .

Let Zλ = X − λY for all real numbers λ, and let zi,j(λ) denote the
coefficient (Zλ)i,j in the ith row and jth column of the matrix Zλ. Then
zi,j(λ) = xi,j − λyi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Moreover
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•
n∑
j=1

zi,j(λ) = si;

•
m∑
i=1

zi,j(λ) = dj;

• zi,j(λ) = 0 whenever (i, j) 6∈ K;

•
m∑
i=1

n∑
j=1

ci,jzi,j(λ) ≤
m∑
i=1

n∑
j=1

ci,jxi,j whenever λ ≥ 0.

Now the matrix Y is a non-zero matrix whose rows and columns all sum
to zero. It follows that at least one of its coefficients must be strictly
positive. Thus there exists at least one ordered pair (i, j) belonging to
the set K for which yi,j > 0. Let

λ0 = minimum

{
xi,j
yi,j

: (i, j) ∈ K and yi,j > 0

}
.

Then λ0 > 0. Moreover if 0 ≤ λ < λ0 then xi,j − λyi,j > 0 for all
(i, j) ∈ K, and if λ > λ0 then there exists at least one element (i0, j0)
of K for which xi0,j0 − λyi0,j0 < 0. It follows that xi,j − λ0yi,j ≥ 0 for
all (i, j) ∈ K, and xi0,j0 − λ0yi0,j0 = 0.

Thus Zλ0 is a feasible solution of the given transportation problem
whose cost does not exceed that of the given feasible solution X. More-
over Zλ0 has fewer non-zero components than the given feasible solu-
tion X.

If Zλ0 is itself a basic feasible solution, then we have found the required
basic feasible solution whose cost does not exceed that of the given
feasible solution. Otherwise we can iterate the process until we arrive
at the required basic feasible solution whose cost does not exceed that
of the given feasible solution.
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3. (a) [Unseen.] A vector x of the form (0, x2, 0, x4, 0) satisfies the matrix
equation Ax = b, where A is the constraint matrix and b is the
target vector, if and only if(

2 3
5 4

)(
x2
x4

)
=

(
9
5

)
.

But then(
x2
x4

)
=

1

7

(
−4 3
5 −2

)(
9
5

)
=

1

7

(
−21
35

)
.

This is not a feasible solution. Thus there cannot exist a basic
feasible solution corresponding to the basis {2, 4}.

(b) [Seen similar.]

Note: There are several ways of organizing the calculation us-
ing tableaux. Any method that arrives at and verifies the optimal
solution is acceptable.

The problem is to maximize cTx subject to constraints Ax = b,
and x ≥ 0, where

A =

(
1 2 2 3 5
2 5 1 4 3

)
, b =

(
9
5

)
and

cT =
(

13 24 8 32 25
)
, xT =

(
x1 x2 x3 x4 x5

)
.

We have an initial solution x = (0, 0, 2, 0, 1) with initial basis
B = {3, 5} and initial cost 41. We find p ∈ R2 to satisfy the
matrix equation (

8 25
)

=
(
c3 c5

)
= pTMB,

where

MB =

(
2 5
1 3

)
, M−1

B =

(
3 −5
−1 2

)
,

and thus

pT =
(
c3 c5

)
M−1

B =
(

8 25
)( 3 −5
−1 2

)
=
(
−1 10

)
.
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Then

cT − pTA =
(

13 24 8 32 25
)
−
(
−1 10

)( 1 2 2 3 5
2 5 1 4 3

)
=

(
13 24 8 32 25

)
−
(

19 48 8 37 25
)

=
(
−6 −24 0 −5 0

)
Let x be a feasible solution, where x = (x1, x2, x3, x4, x5). Then
Ax = b and xj ≥ 0 for j = 1, 2, 3, 4, 5. Then

cTx = pTAx + qTx = pTb + qTx = 41 + qTx

= 41− 6x1 − 24x2 − 5x4,

where qT = cT − pTA. The initial basic feasible solution cannot
be optimal, because the vector q has some negative coefficients.
Cost reduces at the fastest rate if x2 is increased. We therefore
look for a basis that includes 2. Now

a(2) = t3,2a
(3) + t5,2a

(5) = MB

(
t3,2
t5,2

)
.

Therefore(
t3,2
t5,2

)
= M−1

B a(2) =

(
3 −5
−1 2

)(
2
5

)
=

(
−19

8

)
.

Thus
a(2) + 19a(3) − 8a(5) = 0.

It follows that (
0 λ 2 + 19λ 0 1− 8λ

)
is a feasible solution of the problem whenever all components are
non-negative. We obtain another basic solution on determining
λ such that 1 − 8λ = 0. We find that λ = 1

8
and the new basic

feasible solution is (
0 1

8
35
8

0 0
)

We now let this row vector represent the current basic solution.
The current cost is then 38 and the current basis B is given by
B = {2, 3}. Now let MB now consist of the 2nd and 3rd columns
of the matrix A. We find that

MB =

(
2 2
5 1

)
, M−1

B =
1

8

(
−1 2
5 −2

)
.
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We then let

pT =
(
c2 c3

)
M−1

B =
1

8

(
24 8

)( −1 2
5 −2

)
=
(

2 4
)
.

Then

cT − pTA =
(

13 24 8 32 25
)
−
(

2 4
)( 1 2 2 3 5

2 5 1 4 3

)
=

(
13 24 8 32 25

)
−
(

10 24 8 22 22
)

=
(

3 0 0 10 3
)

Because all components of this last row vector are non-negative,
the argument presented at the end of the first iteration now demon-
strates that the current basic feasible solution is optimal.
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4. (a) [Bookwork.] The constraints satisfied by the vectors x and p
ensure that

cTx− pTb = (cT − pTA)x + pT (Ax− b).

But x ≥ 0, p ≥ 0, Ax − b ≥ 0 and cT − pTA ≥ 0. It follows
that cTx− pTb ≥ 0. and therefore cTx ≥ pTb. Moreover cTx−
pTb = 0 if and only if (cT −pTA)j(x)j = 0 for j = 1, 2, . . . , n and
(p)i(Ax − b)i = 0, and therefore cTx = pTb if and only if the
complementary slackness conditions are satisfied.

(b) [Standard definition.] A subset C of Rm is said to be a convex cone
in Rm if λv + µw ∈ C for all v,w ∈ C and for all real numbers λ
and µ satisfying λ ≥ 0 and µ ≥ 0.

(c) [Bookwork.] Let v and w be elements of C. Then there exist non-
negative real numbers s1, s2, . . . , sn and t1, t2, . . . , tn such that

v =
n∑
j=1

sja
(j) and w =

n∑
j=1

tja
(j).

Let λ and µ be non-negative real numbers. Then

λv + µw =
n∑
j=1

(λsj + µtj)a
(j),

and λsj +µtj ≥ 0 for j = 1, 2, . . . , n. It follows that λv+µw ∈ C,
as required.

(d) [Bookwork.] Let a(1), a(2), . . . , a(n) be the vectors in Rm deter-
mined by the columns of the matrix A, so that (a(j))i = (A)i,j for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and let

C =

{
n∑
j=1

xja
(j) : xj ≥ 0 for j = 1, 2, . . . , n

}
.

Then C is a closed convex cone in Rm. Moreover

C = {Ax : x ∈ Rn and x ≥ 0}.

Thus b ∈ C if and only if there exists x ∈ Rn such that b = Ax
and x ≥ 0. Therefore statement (i) in the statement of Farkas’
Lemma is true if and only if b ∈ C.
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If b 6∈ C then it follows from a result stated on the examination
paper that there exists a linear functional ϕ:Rm → R such that
ϕ(v) ≥ 0 for all v ∈ C and ϕ(b) < 0. Then there exists y ∈ Rm

with the property that ϕ(v) = yTv for all v ∈ Rm. Now Ax ∈ C
for all x ∈ Rn satisfying x ≥ 0. It follows that yTAx ≥ 0 for all
x ∈ Rn satisfying x ≥ 0. In particular (yTA)i = yTAe(i) ≥ 0 for
i = 1, 2, . . . ,m, where e(i) is the vector in Rm whose ith component
is equal to 1 and whose other components are zero. Thus if b 6∈ C
then there exists y ∈ Rm for which yTA ≥ 0 and yTb < 0.

Conversely suppose that there exists y ∈ Rm such that yTA ≥ 0
and yTb < 0. Then yTAx ≥ 0 for all x ∈ Rn satisfying x ≥ 0,
and therefore yTv ≥ 0 for all v ∈ C. But yTb < 0. It follows that
b 6∈ C. Thus statement (ii) in the statement of Farkas’s Lemma
is true if and only if b 6∈ C. The result follows.
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