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4 The Simplex Method

4.1 Vector Inequalities and Notational Conventions

Let v be an element of the real vector space Rn. We denote by (v)j the jth
component of the vector v. The vector v can be represented in the usual
fashion as an n-tuple (v1, v2, . . . , vn), where vj = (v)j for j = 1, 2, . . . , n.
However where an n-dimensional vector appears in matrix equations it will
usually be considered to be an n × 1 column vector. The row vector corre-
sponding to an element v of Rn will be denoted by vT because, considered as
a matrix, it is the transpose of the column vector representing v. We denote
the zero vector (in the appropriate dimension) by 0.

Let x and y be vectors belonging to the real vector space Rn for some
positive integer n. We write x ≤ y (and y ≥ x) when (x)j ≤ (y)j for
j = 1, 2, . . . , n. Also we write x � y (and y � x) when (x)j < (y)j for
j = 1, 2, . . . , n.

These notational conventions ensure that x ≥ 0 if and only if (x)j ≥ 0
for j = 1, 2, . . . , n.

The scalar product of two n-dimensional vectors u and v can be repre-
sented as the matrix product uTv. Thus

uTv = u1v1 + u2v2 + · · ·+ unvn

for all u,v ∈ Rn, where uj = (u)j and vj = (v)j for j = 1, 2, . . . , n.
Given an m×n matrix A, where m and n are positive integers, we denote

by (A)i,j the coefficient in the ith row and jth column of the matrix A.

4.2 Feasible and Optimal Solutions

A general linear programming problem is one that seeks values of real vari-
ables x1, x2, . . . , xn that maximize or minimize some objective function

c1x1 + c2x2 + · · · cnxn

that is a linear functional of x1, x2, . . . , xn determined by real constants
c1, c2, . . . , cn, where the variables x1, x2, . . . , xn are subject to a finite number
of constraints that each place bounds on the value of some linear functional
of the variables. These constraints can then be numbered from 1 to m, for
an appropriate value of m, such that, for each value of i between 1 and m,
the ith constraint takes the form of an equation or inequality that can be
expressed in one of the following three forms:—

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = bi,
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ai,1x1 + ai,2x2 + · · ·+ ai,nxn ≥ bi,

ai,1x1 + ai,2x2 + · · ·+ ai,nxn ≤ bi

for appropriate values of the real constants ai,1, ai,2, . . . , ai,n and bi. In ad-
dition some, but not necessarily all, of the variables x1, x2, . . . , xn may be
required to be non-negative. (Of course a constraint requiring a variable to
be non-negative can be expressed by an inequality that conforms to one of
the three forms described above. Nevertheless constraints that simply re-
quire some of the variables to be non-negative are usually listed separately
from the other constraints.)

Definition Consider a general linear programming problem with n real vari-
ables x1, x2, . . . , xn whose objective is to maximize or minimize some objec-
tive function subject to appropriate constraints. A feasible solution of this
linear programming problem is specified by an n-dimensional vector x whose
components satisfy the constraints but do not necessarily maximize or min-
imize the objective function.

Definition Consider a general linear programming problem with n real vari-
ables x1, x2, . . . , xn whose objective is to maximize or minimize some objec-
tive function subject to appropriate constraints. A optimal solution of this
linear programming problem is specified by an n-dimensional vector x that is
a feasible solution that optimizes the value of the objective function amongst
all feasible solutions to the linear programming problem.

4.3 Programming Problems in Dantzig Standard Form

Let A be an m × n matrix of rank m with real coefficients, where m ≤ n,
and let b ∈ Rm and c ∈ Rn be vectors of dimensions m and n respectively.
We consider the following linear programming problem:—

Determine an n-dimensional vector x so as to minimize cTx sub-
ject to the constraints Ax = b and x ≥ 0.

We refer to linear programming problems presented in this form as being in
Dantzig standard form. We refer to the m× n matrix A, the m-dimensional
vector b and the n-dimensional vector c as the constraint matrix, target vector
and cost vector for the linear programming problem.

Remark Nomenclature in Linear Programming textbooks varies. Problems
presented in the above form are those to which the basic algorithms of George
B. Dantzig’s Simplex Method are applicable. In the series of textbooks by
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George B. Dantzig and Mukund N. Thapa entitled Linear Programming,
such problems are said to be in standard form. In the textbook Introduc-
tion to Linear Programming by Richard B. Darst, such problems are said
to be standard-form LP. On the other hand, in the textbook Methods of
Mathematical Economics by Joel N. Franklin, such problems are said to be
in canonical form, and the term standard form is used for problems which
match the form above, except that the vector equality Ax = b is replaced
by a vector inequality Ax ≥ b. Accordingly the term Danztig standard form
is used in these notes both to indicate that such problems are in standard
form at that term is used by textbooks of which Dantzig is the author, and
also to emphasize the connection with the contribution of Dantzig in creating
and popularizing the Simplex Method for the solution of linear programming
problems.

A linear programming problem in Dantzig standard form specified by an
m × n constraint matrix A of rank m, an m-dimensional target vector b
and an n-dimensional cost vector c has the objective of finding values of real
variables x1, x2, . . . , xn that minimize the value of the cost

c1x1 + c2x2 + · · ·+ cnxn

subject to constraints

A1,1x1 + A1,2x2 + · · ·+ A1,nxn = b1,

A2,1x1 + A2,2x2 + · · ·+ A2,nxn = b2,
...

Am,1x1 + Am,2x2 + · · ·+ Am,nxn = bm

and
x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.

In the above programming problem, the function sending the n-dimen-
sional vector x to the corresponding cost cTx is the objective function for
the problem. A feasible solution to the problem consists of an n-dimensional
vector (x1, x2, . . . , xn) whose components satisfy the above constraints but
do not necessarily minimize cost. An optimal solution is a feasible solution
whose cost does not exceed that of any other feasible solution.

4.4 Basic Feasible Solutions

We define the notion of a basis for a linear programming problem in Dantzig
standard form.
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Definition Let A be an m×n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn be an
n-dimensional column vector. Consider the following programming problem
in Dantzig standard form:

find x ∈ Rn so as to minimize cTx subject to constraints Ax = b
and x ≥ 0.

For each integer j between 1 and n, let a(j) denote the m-dimensional vector
determined by the jth column of the matrix A, so that (a(j))i = (A)i,j for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n. A basis for this linear programming
problem is a set consisting of m distinct integers j1, j2, . . . , jm between 1 and
n for which the corresponding vectors

a(j1), a(j2), . . . , a(jm)

constitute a basis of the vector space Rm.

We next define what is meant by saying that a feasible solution of a
programming problem Dantzig standard form is a basic feasible solution for
the programming problem.

Definition Let A be an m×n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn be an
n-dimensional column vector. Consider the following programming problem
in Dantzig standard form:—

find x ∈ Rn so as to minimize cTx subject to constraints Ax = b
and x ≥ 0.

A feasible solution x for this programming problem is said to be basic if there
exists a basis B for the linear programming problem such that (x)j = 0 when
j 6∈ B.

Lemma 4.1 Let A be an m×n matrix of rank m with real coefficients, where
m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn be an
n-dimensional column vector. Consider the following programming problem
in Dantzig standard form:

find x ∈ Rn so as to minimize cTx subject to constraints Ax = b
and x ≥ 0.
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Let a(j) denote the vector specified by the jth column of the matrix A for
j = 1, 2, . . . , n. Let x be a feasible solution of the linear programming problem.
Suppose that the m-dimensional vectors a(j) for which (x)j > 0 are linearly
independent. Then x is a basic feasible solution of the linear programming
problem.

Proof Let x be a feasible solution to the programming problem, let xj = (x)j
for all j ∈ J , where J = {1, 2, . . . , n}, and let K = {j ∈ J : xj > 0}. If the
vectors a(j) for which j ∈ K are linearly independent then basic linear algebra
ensures that further vectors a(j) can be added to the linearly independent set
{a(j) : j ∈ K} so as to obtain a finite subset of Rm whose elements constitute
a basis of that vector space (see Proposition 2.2). Thus exists a subset B of
J satisfying K ⊂ B ⊂ J such that the m-dimensional vectors a(j) for which
j ∈ B constitute a basis of the real vector space Rm. Moreover (x)j = 0
for all j ∈ J \ B. It follows that x is a basic feasible solution to the linear
programming problem, as required.

Theorem 4.2 Let A be an m × n matrix of rank m with real coefficients,
where m ≤ n, let b ∈ Rm be an m-dimensional column vector, let c ∈ Rn

be an n-dimensional column vector. Consider the following programming
problem in Dantzig standard form:

find x ∈ Rn so as to minimize cTx subject to constraints Ax = b
and x ≥ 0.

If there exists a feasible solution to this programming problem then there exists
a basic feasible solution to the problem. Moreover if there exists an optimal
solution to the programming problem then there exists a basic optimal solution
to the problem.

Proof Let J = {1, 2, . . . , n}, and let a(j) denote the vector specified by the
jth column of the matrix A for all j ∈ J .

Let x be a feasible solution to the programming problem, let xj = (x)j
for all j ∈ J , and let K = {j ∈ J : xj > 0}. Suppose that x is not basic.
Then the vectors a(j) for which j ∈ K must be linearly dependent. We show
that there then exists a feasible solution with fewer non-zero components
than the given feasible solution x.

Now there exist real numbers yj for j ∈ K, not all zero, such that∑
j∈K

yja
(j) = 0, because the vectors a(j) for j ∈ K are linearly dependent.

Let yj = 0 for all j ∈ J \ K, and let y ∈ Rn be the n-dimensional vector
satisfying (y)j = yj for j = 1, 2, . . . , n. Then

Ay =
∑
j∈J

yja
(j) =

∑
j∈K

yja
(j) = 0.
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It follows that A(x − λy) = b for all real numbers λ, and thus x − λy is
a feasible solution to the programming problem for all real numbers λ for
which x− λy ≥ 0.

Now y is a non-zero vector. Replacing y by −y, if necessary, we can
assume, without loss of generality, that at least one component of the vector y
is positive. Let

λ0 = minimum

(
xj
yj

: j ∈ K and yj > 0

)
,

and let j0 be an element of K for which λ0 = xj0/yj0 . Then
xj
yj
≥ λ0 for

all j ∈ J for which yj > 0. Multiplying by the positive number yj, we find
that xj ≥ λ0yj and thus xj − λ0yj ≥ 0 when yj > 0. Also λ0 > 0 and
xj ≥ 0, and therefore xj − λ0yj ≥ 0 when yj ≤ 0. Thus xj − λ0yj ≥ 0 for
all j ∈ J . Also xj0 − λ0yj0 = 0, and xj − λ0yj = 0 for all j ∈ J \ K. Let
x′ = x−λ0y. Then x′ ≥ 0 and Ax′ = b, and thus x′ is a feasible solution to
the linear programming problem with fewer non-zero components than the
given feasible solution.

Suppose in particular that the feasible solution x is optimal. Now there
exist both positive and negative values of λ for which x − λy ≥ 0. If it
were the case that cTy 6= 0 then there would exist values of λ for which
both x− λy ≥ 0 and λcTy > 0. But then cT (x− λy) < cTx, contradicting
the optimality of x. It follows that cTy = 0, and therefore x − λy is an
optimal solution of the linear programming problem for all values of λ for
which x − λy ≥ 0. The previous argument then shows that there exists a
real number λ0 for which x− λ0y is an optimal solution with fewer non-zero
components than the given optimal solution x.

We have shown that if there exists a feasible solution x which is not basic
then there exists a feasible solution with fewer non-zero components than x.
It follows that if a feasible solution x is chosen such that it has the smallest
possible number of non-zero components then it is a basic feasible solution
of the linear programming problem.

Similarly we have shown that if there exists an optimal solution x which
is not basic then there exists an optimal solution with fewer non-zero com-
ponents than x. It follows that if an optimal solution x is chosen such that
it has the smallest possible number of non-zero components then it is a basic
optimal solution of the linear programming problem.

4.5 A Simplex Method Example

Example We consider the following linear programming problem:—
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minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

The constraints require that x1, x2, x3, x4, x5 be non-negative real numbers
satisfying the matrix equation

(
5 3 4 7 3
4 1 3 8 4

)
x1
x2
x3
x4
x5

 =

(
11
6

)
.

Thus we are required to find a (column) vector x with components x1,
x2, x3, x4 and x5 satisfying the equation Ax = b, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
.

Let

a(1) =

(
5
4

)
, a(2) =

(
3
1

)
, a(3) =

(
4
3

)
,

a(4) =

(
7
8

)
and a(5) =

(
3
4

)
.

For a feasible solution to the problem we must find non-negative real numbers
x1, x2, x3, x4, x5 such that

x1a
(1) + x2a

(2) + x3a
(3) + x4a

(4) + x5a
(5) = b.

An optimal solution to the problem is a feasible solution that minimizes

c1x1 + c2x2 + c3x3 + c4x4 + c5x5

amongst all feasible solutions to the problem, where c1 = 3, c2 = 4, c3 = 2,
c4 = 9 and c5 = 5.

Let c denote the column vector whose ith component is ci respectively.
Then

cT =
(

3 4 2 9 5
)
,
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and an optimal solution is a feasible solution that minimizes cTx amongst all
feasible solutions to the problem. We refer to the quantity cTx as the cost
of the feasible solution x.

Let I = {1, 2, 3, 4, 5}. A basis for this optimization problem is a subset
{j1, j2} of I, where j1 6= j2, for which the corresponding vectors a(j1), a(j2)

constitute a basis of R2. By inspection we see that each pair of vectors taken
from the list a(1), a(2), a(3), a(4), a(5) consists of linearly independent vectors,
and therefore each pair of vectors from this list constitutes a basis of R2. It
follows that every subset of I with exactly two elements is a basis for the
optimization problem.

A feasible solution (x1, x2, x3, x4, x5) to this optimization problem is a
basic feasible solution if there exists a basis B for the optimization problem
such that xj = 0 when j 6= B.

In the case of the present problem, all subsets of {1, 2, 3, 4, 5} with exactly
two elements are bases for the problem. It follows that a feasible solution to
the problem is a basic feasible solution if and only if the number of non-zero
components of the solution does not exceed 2.

We take as given the following initial basic feasible solution x1 = 1,
x2 = 2, x3 = x4 = x5 = 0. One can readily verify that a(1) + 2a(2) = b. This
initial basic feasible solution is associated with the basis {1, 2}. The cost of
this solution is 11.

We apply the procedures of the simplex method to test whether or not
this basic feasible solution is optimal, and, if not, determine how to improve
it.

The basis {1, 2} determines a 2× 2 minor MB of A consisting of the first
two columns of A. Thus

MB =

(
5 3
4 1

)
.

We now determine the components of the vector p ∈ R2 whose transpose(
p1 p2

)
satisfies the matrix equation(

c1 c2
)

=
(
p1 p2

)
MB.

Now

M−1
B = −1

7

(
1 −3
−4 5

)
.

It follows that

pT =
(
p1 p2

)
=
(
c1 c2

)
M−1

B

= −1

7

(
3 4

)( 1 −3
−4 5

)
=

(
13
7
−11

7

)
.
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We next compute a vector q ∈ R5, where qT = cT − pTA. Solving the
equivalent matrix equation for the transpose qT of the column vector q, we
find that

qT = cT − pTA

=
(

3 4 2 9 5
)
−
(

13
7
−11

7

)( 5 3 4 7 3
4 1 3 8 4

)
=

(
3 4 2 9 5

)
−
(

3 4 19
7

3
7
−5

7

)
=

(
0 0 −5

7
60
7

40
7

)
.

We denote the jth component of the vector j by qj.
Now q3 < 0. We show that this implies that the initial basic feasible

solution is not optimal, and that it can be improved by bringing 3 (the index
of the third column of A) into the basis.

Suppose that x is a feasible solution of this optimization problem. Then
Ax = b, and therefore

cTx = pTAx + qTx = pTb + qTx.

The initial basic feasible solution x satisfies

qTx =
5∑

j=1

qjxj = 0,

because q1 = q2 = 0 and x3 = x4 = x5 = 0. This comes about because the
manner in which we determined first p then q ensures that qj = 0 for all
j ∈ B, whereas the components of the basic feasible solution x associated
with the basis B satisfy xj = 0 for j 6∈ B. We find therefore that pTb is the
cost of the initial basic feasible solution.

The cost of the initial basic feasible solution is 11, and this is equal to
the value of pTb. The cost cTx of any other basic feasible solution satisfies

cTx = 11− 5
7
x3 + 60

7
x4 + 40

7
x5,

where xj denotes the jth component of x.
We seek to determine a new basic feasible solution x for which x3 > 0,

x4 = 0 and x5 = 0. The cost of such a basic feasible solution will then be
less than that of our initial basic feasible solution.

In order to find our new basic feasible solution we determine the relation-
ships between the coefficients of a feasible solution x for which x4 = 0 and
x5 = 0. Now such a feasible solution must satisfy

x1a
(1) + x2a

(2) + x3a
(3) = b = x1a

(1) + x2a
(2),
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where x1 and x2 are the non-zero coefficients of the initial basic feasible
solution. Now the vectors a(1) and a(2) constitute a basis of the real vector
space R2. It follows that there exist real numbers t1,3 and t2,3 such that
a(3) = t1,3a

(1) + t2,3a
(2). It follows that

(x1 + t1,3x3)a
(1) + (x2 + t2,3x3)a

(2) = x1a
(1) + x2a

(2).

The linear independence of a(1) and a(2) then ensures that x1+t1,3x3 = x1
and x2 + t2,3x3 = x2. Thus if x3 = λ, where λ ≥ 0 then

x1 = x1 − λt1,3, x2 = x2 − λt2,3.

Thus, once t1,3 and t2,3 have been determined, we can determine the range
of values of λ that ensure that x1 ≥ 0 and x2 ≥ 0.

In order to determine the values of t1,3 and t2,3 we note that

a(1) =

(
5
4

)
=

(
5 3
4 1

)(
1
0

)
a(2) =

(
3
1

)
=

(
5 3
4 1

)(
0
1

)

and therefore

a(3) = t3,1a
(1) + t3,2a

(2) =

(
5 3
4 1

)(
t3,1
t3,2

)
= MB

(
t3,1
t3,2

)
,

where

MB =

(
5 3
4 1

)
.

It follows that(
t3,1
t3,2

)
= M−1

B a(3) = −1

7

(
1 −3
−4 5

)(
4
3

)
=

(
5
7
1
7

)
.

Thus t3,1 = 5
7

and t3,2 = 1
7
.

We now determine the feasible solutions x of this optimization problem
that satisfy x3 = λ and x4 = x5 = 0. we have already shown that

x1 = x1 − λt1,3, x2 = x2 − λt2,3.

Now x1 = 1, x2 = 2, t1,3 = 5
7

and t2,3 = 1
7
. It follows that x1 = 1 − 5

7
λ and

x2 = 2− 1
7
λ. Now the components of a feasible solution must satisfy x1 ≥ 0
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and x2 ≥ 0. it follows that 0 ≤ λ ≤ 7
5
. Moreover on setting λ = 7

5
we find

that x1 = 0 and x2 = 9
5
. We thus obtain a new basic feasible solution x

associated to the basis {2, 3}, where

xT =
(

0 9
5

7
5

0 0
)
.

The cost of this new basic feasible solution is 10.
We now let B′ and x′ denote the new basic and new associated basic

feasible solution respectively, so that B′ = {2, 3} and

x′T =
(

0 9
5

7
5

0 0
)
.

We also let MB′ be the 2 × 2 minor of the matrix A with columns indexed
by the new basis B, so that

MB′ =

(
3 4
1 3

)
and M−1

B′ =
1

5

(
3 −4
−1 3

)
.

We now determine the components of the vector p′ ∈ R2 whose transpose(
p′1 p′2

)
satisfies the matrix equation(

c2 c3
)

=
(
p′1 p′2

)
MB′ .

We find that (
p′1 p′2

)
=

(
c2 c3

)
M−1

B′

=
1

5

(
4 2

)( 3 −4
−1 3

)
=

(
2 −2

)
.

We next compute the components of the vector q′ ∈ R5 so as to ensure
that

q′T = cT − p′TA

=
(

3 4 2 9 5
)
−
(

2 −2
)( 5 3 4 7 3

4 1 3 8 4

)
=

(
3 4 2 9 5

)
−
(

2 4 2 −2 −2
)

=
(

1 0 0 11 7
)
.

The components of the vector q′ determined using the new basis {2, 3} are all
non-negative. This ensures that the new basic feasible solution is an optimal
solution.
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Indeed let x be a feasible solution of this optimization problem. Then
Ax′ = b, and therefore

cTx = p′TAx + q′Tx′ = p′Tb + q′Tx.

Moreover p′Tb = 10. It follows that

cTx = 10 + x1 + 11x4 + 7x5 ≥ 10,

and thus the new basic feasible solution x′ is optimal.
We summarize the result we have obtained. The optimization problem

was the following:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

We have found the following basic optimal solution to the problem:

x1 = 0, x2 =
9

5
, x3 =

7

5
, x4 = 0, x5 = 0.

We now investigate all bases for this linear programming problem in order
to determine which bases are associated with basic feasible solutions.

The problem is to find x ∈ R5 that minimizes cTx subject to the con-
straints Ax = b and x ≥ 0, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
and

cT =
(

3 4 2 9 5
)
.

For each two-element subset B of {1, 2, 3, 4, 5} we compute MB, M−1
B

and M−1
B b, where MB is the 2× 2 minor of the matrix A whose columns are

indexed by the elements of B. We find the following:—
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B MB M−1
B M−1

B b cTM−1
B b

{1, 2}
(

5 3
4 1

)
−1

7

(
1 −3
−4 5

) (
1
2

)
11

{1, 3}
(

5 4
4 3

)
−
(

3 −4
−4 5

) (
−9
14

)
1

{1, 4}
(

5 7
4 8

)
1
12

(
8 −7
−4 5

) ( 23
6

−7
6

)
1

{1, 5}
(

5 3
4 4

)
1
8

(
4 −3
−4 5

) ( 13
4

−7
4

)
1

{2, 3}
(

3 4
1 3

)
1
5

(
3 −4
−1 3

) ( 9
5
7
5

)
10

B MB M−1
B M−1

B b cTM−1
B b

{2, 4}
(

3 7
1 8

)
1
17

(
8 −7
−1 3

) ( 46
17
7
17

)
247
17

{2, 5}
(

3 3
1 4

)
1
9

(
4 −3
−1 3

) ( 26
9
7
9

)
139
9

{3, 4}
(

4 7
3 8

)
1
11

(
8 −7
−3 4

) ( 46
11

− 9
11

)
1

{3, 5}
(

4 3
3 4

)
1
7

(
4 −3
−3 4

) ( 26
7

−9
7

)
1

{4, 5}
(

7 3
8 4

)
1
4

(
4 −3
−8 7

) ( 13
2

−23
2

)
1

From this data, we see that there are four basic feasible solutions to the
problem. We tabulate them below:—

B x Cost

{1, 2} (1, 2, 0, 0, 0) 11

{2, 3} (0, 9
5
, 7
5
, 0, 0) 10

{2, 4} (0, 46
17
, 0, 7

17
, 0) 247

17
= 14.529 . . .

{2, 5} (0, 26
9
, 0, 0, 7

9
) 139

9
= 15.444 . . .
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4.6 A Linear Tableau Example

Example Consider the problem of minimizing cTx subject to constraints
Ax = b and x ≥ 0, where

A =

 1 2 3 3 5
2 3 1 2 3
4 2 5 1 4

 , b =

 13
13
20

 ,

cT =
(

2 4 3 1 4
)
.

As usual, we denote by Ai,j the coefficient of the matrix A in the ith row
and jth column, we denote by bi the ith component of the m-dimensional
vector b, and we denote by cj the jth component of the n-dimensional vec-
tor c.

We let a(j) be the m-dimensional vector specified by the jth column of
the matrix A for j = 1, 2, 3, 4, 5. Then

a(1) =

 1
2
4

 , a(2) =

 2
3
2

 , a(3) =

 3
1
5

 ,

a(4) =

 3
2
1

 and a(5) =

 5
3
4

 .

A basis B for this linear programming problem is a subset of {1, 2, 3, 4, 5}
consisting of distinct integers j1, j2, j3 for which the corresponding vectors
a(j1), a(j2), a(j3) constitute a basis of the real vector space R3.

Given a basis B for the linear programming programming problem, where
B = {j1, j2, j3}, we denote by MB the matrix whose columns are specified
by the vectors a(j1), a(j2) and a(j3). Thus (MB)i,k = Ai,jk for i = 1, 2, 3 and
k = 1, 2, 3. We also denote by cB the 3-dimensional vector defined such that

cT
B =

(
cj1 cj2 cj3

)
.

The ordering of the columns of MB and cB is determined by the ordering
of the elements j1, j2 and j3 of the basis. However we shall proceed on the
basis that some ordering of the elements of a given basis has been chosen,
and the matrix MB and vector cB will be determined so as to match the
chosen ordering.

Let j1 = 1, j2 = 2 and j3 = 3, and let B = {j1, j2, j3} = {1, 2, 3}. Then
B is a basis of the linear programming problem, and the invertible matrix
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MB determined by a(jk) for k = 1, 2, 3 is the following 3× 3 matrix:—

MB =

 1 2 3
2 3 1
4 2 5

 .

This matrix has determinant −23, and

M−1
B =

−1

23

 13 −4 −7

−6 −7 5

−8 6 −1

 =

 −
13
23

4
23

7
23

6
23

7
23

− 5
23

8
23

− 6
23

1
23

 .

Then

M−1
B a(1) =

 1
0
0

 , M−1
B a(2) =

 0
1
0

 , M−1
B a(3) =

 0
0
1

 ,

M−1
B a(4) =

 −
24
23

27
23
13
23

 and M−1
B a(5) =

 −
25
23

31
23
26
23

 .

Also

M−1
B b =

 1
3
2

 .

It follows that x is a basic feasible solution of the linear programming prob-
lem, where

xT =
(

1 3 2 0 0
)
.

The vectors a(1), a(2), a(3), a(4), a(5), b, e(1), e(2) and e(3) can then be ex-
pressed as linear combinations of a(1), a(2), a(3) with coefficients as recorded
in the following tableau:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23
−25

23
1 −13

23
4
23

7
23

a(2) 0 1 0 27
23

31
23

3 6
23

7
23

− 5
23

a(3) 0 0 1 13
23

26
23

2 8
23

− 6
23

1
23

· · · · · · · · ·

There is an additional row at the bottom of the tableau. This row is
the criterion row of the tableau. The values in this row have not yet been
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calculated, but, when calculated according to the rules described below, the
values in the criterion row will establish whether the current basic feasible
solution is optimal and, if not, how it can be improved.

Ignoring the criterion row, we can represent the structure of the remainder
of the tableau in block form as follows:—

a(1) · · · a(5) b e(1) · · · e(3)

a(j1)

... M−1
B A M−1

B b M−1
B

a(j3)

· · ·

We now employ the principles of the Simplex Method in order to deter-
mine whether or not the current basic feasible solution is optimal and, if not,
how to improve it by changing the basis.

Let p be the 3-dimensional vector determined so that

pT = cT
BM

−1
B .

Then pTMB = cT
B, and therefore pTa(jk) = cjk for k = 1, 2, 3. It follows that

(pTA)j = cj whenever j ∈ B. Putting in the relevant numerical values, we
find that

pTMB = cT
B =

(
cj1 cj2 cj3

)
=
(
c1 c2 c3

)
=
(

2 4 3
)
,

and therefore

pT =
(

2 4 3
)
M−1

B =
(

22
23

18
23

−3
23

)
.

We enter the values of p1, p2 and p3 into the cells of the criterion row
in the columns labelled by e(1), e(2) and e(3) respectively. The tableau with
these values entered is then as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23
−25

23
1 −13

23
4
23

7
23

a(2) 0 1 0 27
23

31
23

3 6
23

7
23

− 5
23

a(3) 0 0 1 13
23

26
23

2 8
23

− 6
23

1
23

· · · · · · 22
23

18
23

− 3
23

The values in the criterion row in the columns labelled by e(1), e(2) and
e(3) can be calculated from the components of the cost vector c and the values
in these columns of the tableau. Indeed let ri,k = (M−1

B )i,k for i = 1, 2, 3 and
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k = 1, 2, 3. Then each ri,k is equal to the value of the tableau element located
in the row labelled by a(ji) and the column labelled by e(k). The definition
of the vector p then ensures that

pk = cj1r1,k + cj2r2,k + cj3r3,k

for k = 1, 2, 3, where, for the current basis, j1 = 1, j2 = 2 and j3 = 3.
The cost C of the current basic feasible solution x satisfies C = cTx.

Now (pTA)j = cj for all j ∈ B, where B = {1, 2, 3}. Moreover the current
basic feasible solution x satisfies xj = 0 when j 6∈ B, where xj = (x)j for
j = 1, 2, 3, 4, 5. It follows that

C − pTb = cTx− pTAx =
5∑

j=1

(cj − (pTA)j)xj

=
∑
j∈B

(cj − (pTA)j)xj = 0,

and thus
C = cTx = pTb.

Putting in the numerical values, we find that C = 20.
We enter the cost C into the criterion row of the tableau in the column

labelled by the vector b. The resultant tableau is then as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23
−25

23
1 −13

23
4
23

7
23

a(2) 0 1 0 27
23

31
23

3 6
23

7
23

− 5
23

a(3) 0 0 1 13
23

26
23

2 8
23

− 6
23

1
23

· · · · · 20 22
23

18
23

− 3
23

Let si denote the value recorded in the tableau in the row labelled by a(ji)

and the column labelled by b for i = 1, 2, 3. Then the construction of the
tableau ensures that

b = s1a
(j1) + s2a

(j2) + s3a
(j3),

and thus si = xji for i = 1, 2, 3, where (x1, x2, x3, x4, x5) is the current basic
feasible solution. It follows that

C = cj1s1 + cj2s2 + cj3s3,

where, for the current basis, j1 = 1, j2 = 2 and j3 = 3. Thus the cost of the
current basic feasible solution can be calculated from the components of the
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cost vector c and the values recorded in the rows above the criterion row of
the tableau in the column labelled by the vector b.

We next determine a 5-dimensional vector q such that cT = pTA + qT .
We find that

−qT = pTA− cT

=
(

22
23

18
23

−3
23

) 1 2 3 3 5
2 3 1 2 3
4 2 5 1 4


−
(

2 4 3 1 4
)

=
(

2 4 3 99
23

152
23

)
−
(

2 4 3 1 4
)

=
(

0 0 0 76
23

60
23

)
Thus

q1 = 0, q2 = 0, q3 = 0, q4 = −76
23
, q5 = −60

23
.

The 4th and 5th components of the vector q are negative. It follows that
the current basic feasible solution is not optimal. Indeed let x be a feasible
solution to the problem, and let xj = (x)j for j = 1, 2, 3, 4, 5. Then the cost
C of the feasible solution x satisfies

C = cTx = pTAx + qTx = pTb + qTx = C + qTx

= C − 76

23
x4 −

60

23
x5.

It follows that the feasible solution x will have lower cost if either x4 > 0 or
x5 > 0.

We enter the value of −qj into the criterion row of the tableau in the
column labelled by a(j) for j = 1, 2, 3, 4, 5. The completed tableau associated
with basis {1, 2, 3} is then as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23
−25

23
1 −13

23
4
23

7
23

a(2) 0 1 0 27
23

31
23

3 6
23

7
23

− 5
23

a(3) 0 0 1 13
23

26
23

2 8
23

− 6
23

1
23

0 0 0 76
23

60
23

20 22
23

18
23

− 3
23

We refer to this tableau as the extended simplex tableau associated with
the basis {1, 2, 3}.

The general structure of the extended simplex tableau is then as follows:—
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a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(j1) t1,1 t1,2 t1,3 t1,4 t1,5 s1 r1,1 r1,2 r1,3
a(j2) t2,1 t2,2 t2,3 t2,4 t2,5 s2 r2,1 r2,2 r2,3
a(j3) t3,1 t3,2 t3,3 t3,4 t3,5 s3 r3,1 r3,2 r3,3

−q1 −q2 −q3 −q4 −q5 C p1 p2 p3

where j1, j2 and j3 are the elements of the current basis, and where the
coefficients ti,j si and ri,k are determined so that

a(j) =
3∑

i=1

ti,ja
(ji), b =

3∑
i=1

sia
(ji), e(k) =

3∑
i=1

ri,ka
(ji)

for j = 1, 2, 3, 4, 5 and k = 1, 2, 3.
The coefficients of the criterion row can then be calculated according to

the following formulae:—

pk =
3∑

i=1

cjiri,k, C =
3∑

i=1

pibi, −qj =
3∑

i=1

piAi,j − cj.

The extended simplex tableau can therefore be presented in block form
as follows:—

a(1) · · · a(5) b e(1) · · · e(3)

a(j1)

... M−1
B A M−1

B b M−1
B

a(j3)

pTA− cT pTb pT

The values in the criterion row in any column labelled by some a(j) can
also be calculated from the values in the relevant column in the rows above
the criterion row.

To see this we note that the value entered into the tableau in the row
labelled by a(ji) and the column labelled by a(j) is equal to ti,j, where ti,j
is the coefficient in the ith row and jth column of the matrix M−1

B A. Also
pT = cT

BM
−1
B , where (cB)i = cji for i = 1, 2, 3. It follows that

(pTA)j = (cT
BM

−1
B A)j =

3∑
i=1

cjiti,j.

Therefore

−qj = (pTA)j − cj
= cj1t1,j + cj2t2,j + cj3t3,j − cj
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for j = 1, 2, 3, 4, 5.
The coefficients of the criterion row can then be calculated according to

the formulae

pk =
3∑

i=1

cjiri,k, C =
3∑

i=1

cjisi, −qj =
3∑

i=1

cjiti,j − cj.

The extended simplex tableau can therefore also be presented in block
form as follows:—

a(1) · · · a(5) b e(1) · · · e(3)

a(j1)

... M−1
B A M−1

B b M−1
B

a(j3)

cT
BM

−1
B A− cT cT

BM
−1
B b cT

BM
−1
B

We now carry through procedures for adjusting the basis and calculating
the extended simplex tableau associated with the new basis.

We recall that the extended simplex tableau corresponding to the old
basis {1, 2, 3} is as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23
−25

23
1 −13

23
4
23

7
23

a(2) 0 1 0 27
23

31
23

3 6
23

7
23

− 5
23

a(3) 0 0 1 13
23

26
23

2 8
23

− 6
23

1
23

0 0 0 76
23

60
23

20 22
23

18
23

− 3
23

We now consider which of the indices 4 and 5 to bring into the basis.
Suppose we look for a basis which includes the vector a(4) together with

two of the vectors a(1), a(2) and a(3). A feasible solution x with x5 = 0 will
satisfy

xT =
(

1 + 24
23
λ 3− 27

23
λ 2− 13

23
λ λ 0

)
,

where λ = x4. Indeed A(x − x) = 0, where x is the current basic feasible
solution, and therefore

(x1 − 1)a(1) + (x2 − 3)a(2) + (x3 − 2)a(3) + x4a
(4) = 0.

Now
a(4) = −24

23
a(1) + 27

23
a(2) + 13

23
a(3),
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It follows that

(x1 − 1− 24
23
x4)a

(1) + (x2 − 3 + 27
33
x4)a

(2) + (x3 − 2 + 13
23
x4)a

(3) = 0.

But the vectors a(1), a(2) and a(3) are linearly independent. Thus if x4 = λ
and x5 = 0 then

x1 − 1− 24
23
λ = 0, x2 − 3 + 27

23
λ = 0, x3 − 2 + 13

23
λ = 0,

and thus
x1 = 1 + 24

23
λ, x2 = 3− 27

23
λ, x3 = 2− 13

23
λ.

For the solution x to be feasible the components of x must all be non-
negative, and therefore λ must satisfy

λ ≤ min
(
3× 23

27
, 2× 23

13

)
.

Now 3× 23
27

= 69
27
≈ 2.56 and 2× 23

13
= 46

13
≈ 3.54. It follows that the maximum

possible value of λ is 69
27

. The feasible solution corresponding to this value of
λ is a basic feasible solution with basis {1, 3, 4}, and passing from the current
basic feasible solution x to the new feasible basic solution would lower the
cost by −q4λ, where −q4λ = 76

23
× 69

27
= 228

27
≈ 8.44.

We examine this argument in more generality to see how to calculate the
change in the cost that arises if an index j not in the current basis is brought
into that basis. Let the current basis be {j1, j2, j3}. Then

b = s1a
(j1) + s2a

(j2) + s3a
(j3)

and
a(j) = t1,ja

(j1) + t2,ja
(j2) + t3,ja

(j3).

Thus if x is a feasible solution, and if (x)j′ = 0 for j′ 6∈ {j1, j2, j3, j}, then

xj1a
(j1) + xj2a

(j2) + xj3a
(j3) + xja

(j) − b = 0.

Let λ = xj. Then

(xj1 + λt1,j − s1)a(j1) + (xj2 + λt2,j − s2)a(j2) + (xj3 + λt3,j − s3)a(j3) = 0.

But the vectors a(j1), a(j2), a(j3) are linearly independent, because {j1, j2, j3}
is a basis for the linear programming problem. It follows that

xji = si − λti,j

for i = 1, 2, 3.
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For a feasible solution we require λ ≥ 0 and si − λti,j ≥ 0 for i = 1, 2, 3.
We therefore require

0 ≤ λ ≤ min

(
si
ti,j

: ti,j > 0

)
.

We could therefore obtain a new basic feasible solution by ejecting from the

current basis an index ji for which the ratio
si
ti,j

has its minimum value, where

this minimum is taken over those values of i for which ti,j > 0. If we set λ
equal to this minimum value, then the cost is then reduced by −qjλ.

With the current basis we find that s2/t4,2 = 69
27

and s3/t4,3 = 46
13

. Now
69
27
< 46

13
. It follows that we could bring the index 4 into the basis, obtaining

a new basis {1, 3, 4}, to obtain a cost reduction equal to 228
13

, given that
76
23
× 69

27
= 228

13
≈ 8.44.

We now calculate the analogous cost reduction that would result from
bringing the index 5 into the basis. Now s2/t5,2 = 69

31
and s3/t5,3 = 46

26
.

Moreover 46
26
< 69

31
. It follows that we could bring the index 5 into the basis,

obtaining a new basis {1, 2, 5}, to obtain a cost reduction equal to 60
23
× 46

26
=

120
26
≈ 4.62.
We thus obtain the better cost reduction by changing basis to {1, 3, 4}.
We need to calculate the tableau associated with the basis {1, 3, 4}. We

will initially ignore the change to the criterion row, and calculate the updated
values in the cells of the other rows. The current tableau with the values in
the criterion row deleted is as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 0 0 −24
23
−25

23
1 −13

23
4
23

7
23

a(2) 0 1 0 27
23

31
23

3 6
23

7
23

− 5
23

a(3) 0 0 1 13
23

26
23

2 8
23

− 6
23

1
23

· · · · · · · · ·

Let v be a vector in R3 and suppose that

v = µ1a
(1) + µ2a

(2) + µ3a
(3) = µ′1a

(1) + µ′2a
(4) + µ′3a

(3).

Now
a(4) = −24

23
a(1) + 27

23
a(2) + 13

23
a(3).

On multiplying this equation by 23
27

, we find that

23
27

a(4) = −24
27

a(1) + a(2) + 13
27

a(3),
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and therefore
a(2) = 24

27
a(1) + 23

27
a(4) − 13

27
a(3).

It follows that

v = (µ1 + 24
27
µ2)a

(1) + 23
27
µ2a

(4) + (µ3 − 13
27
µ2)a

(3),

and thus
µ′1 = µ1 + 24

27
µ2, µ′2 = 23

27
µ2, µ′3 = µ3 − 13

27
µ2.

Now each column of the tableau specifies the coefficients of the vector
labelling the column of the tableau with respect to the basis specified by the
vectors labelling the rows of the tableau.

The pivot row of the old tableau is that labelled by the vector a(2) that
is being ejected from the basis. The pivot column of the old tableau is that
labelled by the vector a(4) that is being brought into the basis. The pivot
element of the tableau is the element or value in both the pivot row and the
pivot column. In this example the pivot element has the value 27

23
.

We see from the calculations above that the values in the pivot row of the
old tableau are transformed by multiplying them by the reciprocal 23

27
of the

pivot element; the entries in the first row of the old tableau are transformed
by adding to them the entries below them in the pivot row multiplied by the
factor 24

27
; the values in the third row of the old tableau are transformed by

subtracting from them the entries above them in the pivot row multiplied by
the factor 13

27
.

Indeed the coefficients ti,j, si, ri,k, t′i,j, s
′
i and r′i,k are defined for i = 1, 2, 3,

j = 1, 2, 3, 4, 5 and k = 1, 2, 3 so that

a(j) =
3∑

i=1

ti,ja
(ji) =

3∑
i=1

t′i,ja
(j′i),

b =
3∑

i=1

sia
(ji) =

3∑
i=1

s′ia
(j′i),

e(k) =
3∑

i=1

ri,ka
(ji) =

3∑
i=1

r′i,ka
(j′i),

where j1 = j′1 = 1, j3 = j′3 = 3, j2 = 2 and j′2 = 4.
The general rule for transforming the coefficients of a vector when chang-

ing from the basis a(1), a(2), a(3) to the basis a(1), a(4), a(3) ensure that

t′2,j =
1

t2,4
t2,j,
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t′i,j = ti,j −
ti,4
t2,4

t2,j (i = 1, 3).

s′2 =
1

t2,4
s2,

s′i = si −
ti,4
t2,4

s2 (i = 1, 3).

r′2,k =
1

t2,4
r2,j,

r′i,k = ri,k −
ti,4
t2,4

r2,k (i = 1, 3).

The quantity t2,4 is the value of the pivot element of the old tableau. The
quantities t2,j, s2 and r2,k are those that are recorded in the pivot row of
that tableau, and the quantities ti,4 are those that are recorded in the pivot
column of the tableau.

We thus obtain the following tableau:–

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 24
27

0 0 3
27

99
27
− 9

27
12
27

3
27

a(4) 0 23
27

0 1 31
27

69
27

6
27

7
27

− 5
27

a(3) 0 −13
27

1 0 13
27

15
27

6
27

−11
27

4
27

· · · · · · · · ·

The values in the column of the tableau labelled by the vector b give
us the components of a new basic feasible solution x′. Indeed the column
specifies that

b = 99
27

a(1) + 69
27

a(4) + 15
27

a(3),

and thus Ax′ = b where

x′T =
(

99
27

0 15
27

69
27

0
)
.

We continue the discussion of how the extended simplex tableau trans-
forms under a change of basis.

We now calculate the new values for the criterion row. The new basis B′

is given by B′ = {j′1, j′2, j′3}, where j′1 = 1, j′2 = 4 and j′3 = 3. The values p′1,
p′2 and p′3 that are to be recorded in the criterion row of the new tableau in
the columns labelled by e(1), e(2) and e(3) respectively are determined by the
equation

p′k = cj′1r
′
1,k + cj′2r

′
2,k + cj′3r

′
3,k
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for k = 1, 2, 3, where

cj′1 = c1 = 2, cj′2 = c4 = 1, cj′3 = c3 = 3,

and where r′i,k denotes the ith component of the vector e(k) with respect to

the basis a(1), a(4), a(3) of R3.
We find that

p′1 = cj′1r
′
1,1 + cj′2r

′
2,1 + cj′3r

′
3,1

= 2×
(
− 9

27

)
+ 1× 6

27
+ 3× 6

27
= 6

27
,

p′2 = cj′1r
′
1,2 + cj′2r

′
2,2 + cj′3r

′
3,2

= 2× 12
27

+ 1× 7
27

+ 3×
(
−11

27

)
= − 2

27
,

p′3 = cj′1r
′
1,3 + cj′2r

′
2,3 + cj′3r

′
3,3

= 2× 3
27

+ 1×
(
− 5

27

)
+ 3× 4

27
= 13

27
.

We next calculate the cost C ′ of the new basic feasible solution. The
quantities s′1, s

′
2 and s′3 satisfy s′i = x′ji for i = 1, 2, 3, where (x′1, x

′
2, x
′
3, x
′
4, x
′
5)

is the new basic feasible solution. It follows that

C ′ = cj′1s
′
1 + cj′2s

′
2 + cj′3s

′
3,

where s1, s2 and s3 are determined so that

b = s′1a
(j′1) + s′2a

(j′2) + s′3a
(j′3).

The values of s′1, s
′
2 and s′3 have already been determined, and have been

recorded in the column of the new tableau labelled by the vector b.
We can therefore calculate C ′ as follows:—

C ′ = cj′1s
′
1 + cj′2s

′
2 + cj′3s

′
3 = c1s

′
1 + c4s

′
2 + c3s

′
3

= 2× 99
27

+ 69
27

+ 3× 15
27

= 312
27
.

Alternatively we can use the identity C ′ = p′Tb to calculate C ′ as follows:

C ′ = p′1b1 + p′2b2 + p′3b3 = 6
27
× 13− 2

27
× 13 + 13

27
× 20 = 312

27
.

We now enter the values of p′1, p
′
2, p

′
3 and C ′ into the tableau associated

with basis {1, 4, 3}. The tableau then takes the following form:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 24
27

0 0 3
27

99
27
− 9

27
12
27

3
27

a(4) 0 23
27

0 1 31
27

69
27

6
27

7
27

− 5
27

a(3) 0 −13
27

1 0 13
27

15
27

6
27

−11
27

4
27

· · · · · 312
27

6
27

− 2
23

13
23
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In order to complete the extended tableau, it remains to calculate the
values −q′j for j = 1, 2, 3, 4, 5, where q′j satisfies the equation −q′j = p′Taj−cj
for j = 1, 2, 3, 4, 5.

Now q′j is the jth component of the vector q′ that satisfies the matrix
equation −q′T = p′TA− cT . It follows that

−q′
T

= p′TA− cT

=
(

6
27

−2
27

13
27

) 1 2 3 3 5
2 3 1 2 3
4 2 5 1 4


−
(

2 4 3 1 4
)

=
(

2 32
27

3 1 76
27

)
−
(

2 4 3 1 4
)

=
(

0 −76
27

0 0 −32
27

)
Thus

q′1 = 0, q′2 = 76
27
, q′3 = 0, q′4 = 0, q′5 = 32

27
.

The value of each q′j can also be calculated from the other values recorded

in the column of the extended simplex tableau labelled by the vector a(j).
Indeed the vector p′ is determined so as to satisfy the equation p′Ta(j′) = cj′
for all j′ ∈ B′. It follows that

p′Ta(j) =
3∑

i=1

t′i,jp
′Ta(j′i) =

3∑
i=1

cj′it
′
i,j,

and therefore

−q′j =
3∑

i=1

cj′it
′
i,j − cj.

The extended simplex tableau for the basis {1, 4, 3} has now been com-
puted, and the completed tableau is as follows:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(1) 1 24
27

0 0 3
27

99
27
− 9

27
12
27

3
27

a(4) 0 23
27

0 1 31
27

69
27

6
27

7
27

− 5
27

a(3) 0 −13
27

1 0 13
27

15
27

6
27

−11
27

4
27

0 −76
27

0 0 −32
27

312
27

6
27

− 2
23

13
23

The fact that q′j ≥ 0 for j = 1, 2, 3, 4, 5 shows that we have now found our

basic optimal solution. Indeed the cost C of any feasible solution x satisfies

C = cTx = p′TAx + q′Tx = p′Tb + q′Tx
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= C ′ + q′Tx

= C ′ +
76

27
x2 +

32

27
x5,

where x2 = (x)2 and x5 = (x)5.
Therefore x′ is a basic optimal solution to the linear programming prob-

lem, where
x′T =

(
99
27

0 15
27

69
27

0
)
.

It is instructive to compare the pivot row and criterion row of the tableau
for the basis {1, 2, 3} with the corresponding rows of the tableau for the basis
{1, 4, 3}.

These rows in the old tableau for the basis {1, 2, 3} contain the following
values:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(2) 0 1 0 27
23

31
23

3 6
23

7
23

− 5
23

0 0 0 76
23

60
23

20 22
23

18
23

− 3
23

The corresponding rows in the new tableau for the basis {1, 4, 3} contain
the following values:—

a(1) a(2) a(3) a(4) a(5) b e(1) e(2) e(3)

a(4) 0 23
27

0 1 31
27

69
27

6
27

7
27

− 5
27

0 −76
27

0 0 −32
27

312
27

6
27

− 2
23

13
23

If we examine the values of the criterion row in the new tableau we find
that they are obtained from corresponding values in the criterion row of the
old tableau by subtracting off the corresponding elements of the pivot row of
the old tableau multiplied by the factor 76

27
. As a result, the new tableau has

value 0 in the cell of the criterion row in column a(4). Thus the same rule
used to calculate values in other rows of the new tableau would also have
yielded the correct elements in the criterion row of the tableau.

We now investigate the reasons why this is so.
First we consider the transformation of the elements of the criterion row

in the columns labelled by a(j) for j = 1, 2, 3, 4, 5. Now the coefficients ti,j
and t′i,j are defined for i = 1, 2, 3 and j = 1, 2, 3, 4, 5 so that

a(j) =
3∑

i=1

ti,ja
(ji) =

3∑
i=1

t′i,ja
(j′i),
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where j1 = j′1 = 1, j3 = j′3 = 3, j2 = 2 and j′2 = 4. Moreover

t′2,j =
1

t2,4
t2,j

and

t′i,j = ti,j −
ti,4
t2,4

t2,j (i = 1, 3).

Now

−qj =
3∑

i=1

cjiti,j − cj

= c1t1,j + c2t2,j + c3t3,j − cj,

−q′j =
3∑

i=1

cj′it
′
i,j − cj.

= c1t
′
1,j + c4t

′
2,j + c3t

′
3,j − cj.

Therefore

qj − q′j = c1(t
′
1,j − t1,j) + c4t

′
2,j − c2t2,j + c3(t

′
3,j − t3,j)

=
1

t2,4
(−c1t1,4 + c4 − c2t2,4 − c3t3,4) t2,j

=
q4
t2,4

t2,j

and thus
−q′j = −qj +

q4
t2,4

t2,j

for j = 1, 2, 3, 4, 5.
Next we note that

C =
3∑

i=1

cjisi = c1s1 + c2s2 + c3s3,

C ′ =
3∑

i=1

cj′is
′
i = c1s

′
1 + c4s

′
2 + c3s

′
3.

Therefore

C ′ − C = c1(s
′
1 − s1) + c4s

′
2 − c2s2 + c3(s

′
3 − s3)

=
1

t2,4
(−c1t1,4 + c4 − c2t2,4 − c3t3,4) s2

=
q4
t2,4

s2
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and thus
C ′ = C +

q4
t2,4

s2

for k = 1, 2, 3.
To complete the verification that the criterion row of the extended simplex

tableau transforms according to the same rule as the other rows we note that

pk =
3∑

i=1

cjiri,k = c1r1,k + c2r2,k + c3r3,k,

p′k =
3∑

i=1

cj′ir
′
i,k = c1r

′
1,k + c4r

′
2,k + c3r

′
3,k.

Therefore

p′k − pk = c1(r
′
1,k − r1,k) + c4r

′
2,k − c2r2,k + c3(r

′
3,k − r3,k)

=
1

t2,4
(−c1t1,4 + c4 − c2t2,4 − c3t3,4) r2,k

=
q4
t2,4

r2,k

and thus
p′k = pk +

q4
t2,4

r2,k

for k = 1, 2, 3.
This completes the discussion of the structure and properties of the ex-

tended simplex tableau associated with the optimization problem under dis-
cussion.

4.7 The Extended Simplex Tableau

We now consider the construction of a tableau for a linear programming
problem in Dantzig standard form. Such a problem is specified by an m× n
matrix A, an m-dimensional target vector b ∈ Rm and an n-dimensional
cost vector c ∈ Rn. We suppose moreover that the matrix A is of rank m.
We consider procedures for solving the following linear program in Danzig
standard form.

Determine x ∈ Rn so as to minimize cTx subject to the con-
straints Ax = b and x ≥ 0.
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We denote by Ai,j the component of the matrix A in the ith row and
jth column, we denote by bi the ith component of the target vector b for
i = 1, 2, . . . ,m, and we denote by cj the jth component of the cost vector c
for j = 1, 2, . . . , n.

We recall that a feasible solution to this problem consists of an n-dimen-
sional vector x that satisfies the constraints Ax = b and x ≥ 0 (see Sub-
section 4.2). A feasible solution of the linear programming problem then
consists of non-negative real numbers x1, x2, . . . , xn for which

n∑
j=1

xja
(j) = b.

A feasible solution determined by x1, x2, . . . , xn is optimal if it minimizes cost
n∑

j=1

cjxj amongst all feasible solutions to the linear programming problem.

Let j1, j2, . . . , jm be distinct integers between 1 and n that are the ele-
ments of a basis B for the linear programming problem. Then the vectors a(j)

for j ∈ B constitute a basis of the real vector space Rm. (see Subsection 4.4).
We denote by MB the invertible m×m matrix whose component (M)i,k in

the ith row and jth column satisfies (MB)i,k = (A)i,jk for i, k = 1, 2, . . . ,m.
Then the kth column of the matrix MB is specified by the column vector
a(jk) for k = 1, 2, . . . ,m, and thus the columns of the matrix MB coincide
with those columns of the matrix A that are determined by elements of the
basis B.

Proposition 4.3 Let A be an real m×n matrix of rank m with columns rep-
resented by the column vectors a(1), a(2), . . . , a(n), let b be an m-dimensional
column vector, and let B = {j1, j2, . . . , jm}, where j1, j2, . . . , jm are integers
between 1 and n for which the corresponding columns a(j1), a(j2), . . . , a(jm) of
the matrix A are linearly independent. Let MB be the invertible m×m matrix
defined so that (MB)i,k = Ai,jk for i, k = 1, 2, . . . ,m. Then there are uniquely
determined real numbers ti,j and si for i = 1, 2, . . . ,m and j = 1, 2, . . . , n for
which

a(j) =
m∑
i=1

ti,ja
(ji) and b =

m∑
i=1

sia
(ji).

Moreover

ti,j =
m∑
k=1

ri,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si =
m∑
k=1

ri,kbk
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for j = 1, 2, . . . , n, where ri,k = (M−1
B )i,k for i, k = 1, 2, . . . ,m.

Proof Every vector in Rm can be expressed as a linear combination of the
basis vectors a(j1), a(j2), . . . , a(jm). It follows that there exist uniquely deter-
mined real numbers ti,j and si for i = 1, 2, . . . ,m and j = 1, 2, . . . , n such
that

a(j) =
m∑
i=1

ti,ja
(ji) and b =

m∑
i=1

sia
(ji).

Then

Ai,j =
n∑

k=1

tk,jAi,jk =
n∑

k=1

(MB)i,ktk,j

and

bi =
m∑
k=1

skAi,jk =
n∑

k=1

(MB)i,ksk.

Thus a(j) = MBt(j) and b = MBs for j = 1, 2, . . . , n, where t(j) and s denote
the column vectors that satisfy (t(j))i = ti,j and (s)i = si for i = 1, 2, . . . ,m.
It follows that

t(j) = M−1
B a(j) and s = M−1

B b

for j = 1, 2, . . . , n. Thus

ti,j = (M−1
B a(j))i =

m∑
k=1

ri,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si = (M−1
B b)i =

m∑
k=1

ri,kbk

for i = 1, 2, . . . ,m, where ri,k = (M−1
B )i,k for i, k = 1, 2, . . . ,m. This com-

pletes the proof.

Let A be an m× n matrix with real coefficients that is of rank m whose
columns are represented by the column vectors a(1), a(2), . . . , a(n), and let
B = {j1, j2, . . . , jm}, where j1, j2, . . . , jm are integers between 1 and n for
which the corresponding columns a(j1), a(j2), . . . , a(jm) of the matrix A are
linearly independent. Let MB be the invertible m×m matrix defined so that
(MB)i,k = Ai,jk for i, k = 1, 2, . . . ,m.
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The standard basis e(1), e(2), . . . , e(m) of Rm is defined such that (e(k))i =
δi,k for i, k = 1, 2, . . . ,m, where δi,k is the Kronecker delta, defined such that

δi,k =

{
1 if k = i;
0 if k 6= i.

It follows from Proposition 4.3 (with the column vector b of that proposition
set equal to e(k)) that

e(k) =
m∑
i=1

m∑
h=1

ri,h(e(k))ha
(ji) =

m∑
i=1

ri,ka
(ji),

where ri,k is the coefficient (M−1
B )i,k in the ith row and kth column of the

inverse M−1
B of the matrix MB.

Let A be an m× n matrix of rank m with real coefficients, and let b be
an m-dimensional vector, and let {j1, j2, . . . , jm} be a subset of {1, 2, . . . , n}
for which the corresponding columns a(j1), a(j2), . . . , a(jm) of the matrix A
are linearly independent. We can then record the coefficients of the m-
dimensional vectors

a(1), a(2), . . . , a(n), b, e(1), e(2), . . . , e(m)

with respect to the basis a(j1), a(j2), . . . , a(jm), of Rm in a tableau of the fol-
lowing form:—

a(1) a(2) · · · a(n) b e(1) e(2) · · · e(m)

a(j1) t1,1 t1,2 · · · t1,n s1 r1,1 r1,2 · · · r1,m
a(j2) t2,1 t2,2 · · · t2,n s2 r2,1 r2,2 · · · r2,m

...
...

...
. . .

...
...

...
...

. . .
...

a(jm) tm,1 tm,2 · · · tm,n sm rm,1 rm,2 · · · rm,m

· · · · · · · · · · · · ·

The definition of the quantities ti,j ensures that ti,jk = δi,k for i =
1, 2, . . . ,m, where

δi,k =

{
1 if i = k;
0 if i 6= k.

Also it follows from Proposition 4.3 that

ti,j =
m∑
k=1

ri,kAi,j
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for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and

si =
m∑
k=1

ri,kbk

for i = 1, 2, . . . ,m.
If the quantities s1, s2, . . . , sm are all non-negative then they determine a

basic feasible solution x of the linear programming problem associated with
the basis B with components x1, x2, . . . , xn, where xji = si for i = 1, 2, . . . ,m
and xj = 0 for all integers j between 1 and n that do not belong to the
basis B. Indeed

n∑
j=1

xja
(j) =

m∑
i=1

xjia
(ji) =

m∑
i=1

sia
(ji).

The cost C of the basic feasible solution x is defined to be the value cTx of
the objective function. The definition of the quantities s1, s2, . . . , sm ensures
that

C =
n∑

j=1

cjxj =
m∑
i=1

cjisi.

If the quantities s1, s2, . . . , sn are not all non-negative then there is no
basic feasible solution associated with the basis B.

The criterion row at the bottom of the tableau has cells to record quan-
tities p1, p2, . . . , pm associated with the vectors that constitute the standard
basis e(1), e(2), . . . , e(m) of Rm. These quantities are defined so that

pk =
m∑
i=1

cjiri,k

for k = 1, 2, . . . ,m, where cji is the cost associated with the basis vector a(ji)

for i = 1, 2, . . . , k, Now the quantities ri,k are the components of the inverse
of the matrix MB, and therefore

m∑
k=1

rh,kAk,ji = δh,i

for h, i = 1, 2, . . . ,m, where

δh,i =

{
1 if h = i;
0 if h 6= i.
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It follows that

m∑
k=1

pkAk,ji =
m∑
k=1

m∑
h=1

cjhrh,kAk,ji =
m∑

h=1

cjh

(
m∑
k=1

rh,kAk,ji

)
= cji

On combining the identities

si =
m∑
k=1

ri,kbk, pk =
m∑
i=1

cjiri,k and C =
m∑
i=1

cjisi

derived above, we find that

C =
m∑
i=1

cjisi =
m∑
i=1

m∑
k=1

cjiri,kbk =
m∑
k=1

pkbk.

The tableau also has cells in the criterion row to record quantities

−q1,−q2, . . . ,−qn,

where q1, q2, . . . , qn are the components of the unique n-dimensional vector q
characterized by the following properties:

• qji = 0 for i = 1, 2, . . . ,m;

• cTx = C + qTx for all x ∈ Rm satisfying the matrix equation Ax = b.

First we show that if q ∈ Rn is defined such that qT = cT − pTA then
the vector q has the required properties.

The definition of p1, p2, . . . , pk ensures (as noted above) that

m∑
k=1

pkAk,ji = cji

for i = 1, 2, . . . , k. It follows that

qji = cji − (pTA)ji = cji −
m∑
k=1

pkAk,ji = 0

for i = 1, 2, . . . , n.
Also pTb = C. It follows that if x ∈ Rn satisfies Ax = b then

cTx = pTAx + qTx = pTb + qTx = C + qTx.
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Thus if qT = cT − pTA then the vector q satisfies the properties specified
above.

We next show that

(pTA)j =
m∑
i=1

cjiti,j

for j = 1, 2, . . . , n.
Now

ti,j =
m∑
k=1

ri,kAk,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (see Proposition 4.3). Also the
definition of pk ensures that

pk =
m∑
i=1

cjiri,k

for k = 1, 2, . . . ,m. These results ensure that

m∑
i=1

cjiti,j =
m∑
i=1

m∑
k=1

cjiri,kAk,j =
m∑
k=1

pkAk,j = (pTA)j.

It follows that

−qj =
m∑
k=1

pkAk,j − cj =
m∑
i=1

cjiti,j − cj

for j = 1, 2, . . . , n.
The extended simplex tableau associated with the basis B is obtained

by entering the values of the quantities −qj (for j = 1, 2, . . . , n), C and pk
(for k = 1, 2, . . . ,m) into the bottom row to complete the tableau described
previously. The extended simplex tableau has the following structure:—

a(1) a(2) · · · a(n) b e(1) e(2) · · · e(m)

a(j1) t1,1 t1,2 · · · t1,n s1 r1,1 r1,2 · · · r1,m
a(j2) t2,1 t2,2 · · · t2,n s2 r2,1 r2,2 · · · r2,m

...
...

...
. . .

...
...

...
...

. . .
...

a(jm) tm,1 tm,2 · · · tm,n sm rm,1 rm,2 · · · rm,m

−q1 −q2 · · · −qn C p1 p2 · · · pm

The extended simplex tableau can be presented in block form as follows:—
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a(1) · · · a(n) b e(1) · · · e(m)

a(j1)

... M−1
B A M−1

B b M−1
B

a(jm)

pTA− cT pTb pT

Let cB denote the m-dimensional vector defined so that

cT
B =

(
cj1 cj2 · · · cjm

)
.

The identities we have verified ensure that the extended simplex tableau can
therefore also be represented in block form as follows:—

a(1) · · · a(n) b e(1) · · · e(m)

a(j1)

... M−1
B A M−1

B b M−1
B

a(jm)

cT
BM

−1
B A− cT cT

BM
−1
B b cT

BM
−1
B

Given an m× n matrix A of rank m, an m-dimensional target vector b,
and an n-dimensional cost vector c, there exists an extended simplex tableau
associated with any basis B for the linear programming problem, irrespective
of whether or not there exists a basic feasible solution associated with the
given basis B.

The crucial requirement that enables the construction of the tableau is
that the basis B should consist of m distinct integers j1, j2, . . . , jm between
1 and m for which the corresponding columns of the matrix A constitute a
basis of the vector space Rm.

A basis B is associated with a basic feasible solution of the linear pro-
gramming problem if and only if the values in the column labelled by the
target vector b and the rows labelled by a(j1), a(j2), . . . , a(jm) should be non-
negative. If so, those values will include the non-zero components of the basic
feasible solution associated with the basis.

If there exists a basic feasible solution associated with the basis B then
that solution is optimal if and only if all the values in the criterion row in
the columns labelled by a(1), a(2), . . . , a(n) are all non-positive.

Versions of the Simplex Tableau Algorithm for determining a basic op-
timal solution to the linear programmming problem, given an initial basic
feasible solution, rely on the transformation rules that determine how the
values in the body of the extended simplex tableau are transformed on pass-
ing from an old basis B to an new basis B′, where the new basis B′ contains
all but one of the members of the old basis B.
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Let us refer to the rows of the extended simplex tableau labelled by the
basis vectors a(1), a(2), . . . , a(n) as the basis rows of the tableau. The following
lemma determines how elements of the basis rows of the tableau transform
under changes of column bases that replace a single column of an initial basis
by another column that is linearly independent of the remaining columns of
that initial basis.

Lemma 4.4 Let A be an m × n matrix of rank m with real coefficients,
let j1, j2, . . . , jm be distinct integers between 1 and n, let h be an integer
between 1 and m, and let j′1, j

′
2, . . . , j

′
m be distinct integers between 1 and

n, where j′h 6= jh and ji = j′i for i 6= h. Suppose that the column vec-
tors a(j1), a(j2), . . . , a(jm) are linearly independent, and that the column vec-
tors a(j′1), a(j′2), . . . , a(j′m) are also linearly independent, where a(j) denotes the
jth column of the matrix A. Let v be an element of Rm, let z1, z2, . . . , zm,
z′1, z

′
2, . . . , z

′
m, t1,j′h , t2,j′h , . . . , tm,j′h

denote the uniquely-determined real num-
bers for which

v =
m∑
i=1

zia
(ji) =

m∑
i=1

z′ia
(j′i)

and

a(j′h) =
m∑
i=1

ti,j′ha
(ji).

Then

z′h =
1

th,j′h
zh

and

z′i = zi −
ti,j′h
th,j′h

zh (i 6= h).

Proof Expressing the vector v as a linear combination of a(j′h) and the vec-
tors a(ji) for i 6= j, and then substituting in the representation of a(j′h) as a
linear combination of a(j1), a(j2), a(jm), and using the requirement that j′i = ji
when i 6= h, we find that

v =
m∑
i=1

z′ia
(j′i)

= z′ha
(j′h) +

∑
1≤i≤m

i 6=h

z′ia
(ji)
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= z′hth,j′ha
(jh) +

∑
1≤i≤m

i 6=h

(z′i + z′hti,j′h)a(ji).

Equating coefficients of a(j1), a(j2), . . . a(jm), we deduce that

zh = z′hth,j′h

and
zi = z′i + z′hti,j′h (1 ≤ i ≤ m and i 6= h).

It follows that

z′h =
1

th,j′h
zh

and

z′i = zi −
ti,j′h
th,j′h

zh (i 6= h),

as required.

We now apply Lemma 4.4 in order to determine how entries in the basis
rows of the extended simplex tableau transform which one element of the
basis is replaced by an element not belonging to the basis.

Thus we consider the manner in which the basis rows of the extended
simplex tableau transform under such a change of basis. Let A be be m× n
matrix of rank m and let b be the m-dimensional target vector that are
employed in the specification of the linear programming problem. Let the
old basis B consist of distinct integers j1, j2, . . . , jm between 1 and n, and
let the new basis B′ also consist of distinct integers j′1, j

′
2, . . . , j

′
m between 1

and n. We suppose that the new basis B′ is obtained from the old basis by
replacing an element jh of the old basis B by some integer j′h between 1 and
n that does not belong to the old basis. We suppose therefore that ji = j′i
when i 6= h, and that j′h is some integer between 1 and n that does not belong
to the basis B.

Let the coefficients ti,j, t
′
i,j, si, s

′
i, ri,k and r′i,k be determined for i =

1, 2, . . . ,m, j = 1, 2, . . . , n and k = 1, 2, . . . ,m so that

a(j) =
m∑
i=1

ti,ja
(ji) =

m∑
i=1

t′i,ja
(j′i)

for j = 1, 2, . . . , n,

b =
m∑
i=1

sia
(ji) =

m∑
i=1

s′ia
(j′i)
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and

e(k) =
m∑
i=1

ri,ka
(ji) =

m∑
i=1

r′i,ka
(j′i)

for k = 1, 2, . . . ,m.
It then follows from direct applications of Lemma 4.4 that

t′h,j =
1

th,j′h
th,j,

t′i,j = ti,j −
ti,j′h
th,j′h

th,j (i 6= h).

s′h =
1

th,j′h
sh,

s′i = si −
ti,j′h
th,j′h

sh (i 6= h),

r′h,k =
1

th,j′h
rh,k,

r′i,k = ri,k −
ti,j′h
th,j′h

rh,k (i 6= h).

The pivot row of the extended simplex tableau for this change of basis
from B to B′ is the row labelled by the basis vector a(jh) that is to be removed
from the current basis. The pivot column of the extended simplex tableau
for this change of basis is the column labelled by the vector a(j′h) that is to
be added to the current basis. The pivot element for this change of basis is
the element th,j′h of the tableau located in the pivot row and pivot column of
the tableau.

The identities relating the components of a(j), b and e(k) with respect
to the old basis to the components of those vectors with respect to the new
basis ensure that the rules for transforming the rows of the tableau other
than the criterion row can be stated as follows:—

• a value recorded in the pivot row is transformed by dividing it by the
pivot element;

• an value recorded in a basis row other than the pivot row is transformed
by substracting from it a constant multiple of the value in the same
column that is located in the pivot row, where this constant multiple
is the ratio of the values in the basis row and pivot row located in the
pivot column.
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In order to complete the discussion of the rules for transforming the val-
ues recorded in the extended simplex tableau under a change of basis that
replaces an element of the old basis by an element not in that basis, it re-
mains to analyse the rule that determines how the elements of the criterion
row are transformed under this change of basis.

First we consider the transformation of the elements of the criterion row
in the columns labelled by a(j) for j = 1, 2, . . . , n. Now the coefficients ti,j
and t′i,j are defined for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so that

a(j) =
m∑
i=1

ti,ja
(ji) =

m∑
i=1

t′i,ja
(j′i)

for j = 1, 2, . . . , n. Moreover

t′h,j =
1

th,j′h
th,j

and

t′i,j = ti,j −
ti,j′h
th,j′h

th,j

for all integers i between 1 and m for which i 6= h.
Now

−qj =
m∑
i=1

cjiti,j − cj and − q′j =
m∑
i=1

cj′it
′
i,j − cj.

Therefore

qj − q′j =
∑

1≤i≤m

i 6=h

cji(t
′
i,j − ti,j) + cj′ht

′
h,j − cjhth,j

=
1

th,j′h

(
−

m∑
i=1

cjiti,j′h + cj′h

)
th,j

=
qj′h
th,j′h

th,j

and thus

−q′j = −qj +
qj′h
th,j′h

th,j

for j = 1, 2, . . . , n.
Next we note that

C =
m∑
i=1

cjisi and C ′ =
m∑
i=1

cj′is
′
i.
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Therefore

C ′ − C =
∑

1≤i≤m

i 6=h

cji(s
′
i − si) + cj′hs

′
h − cjhsh

=
1

th,j′h

(
−

m∑
i=1

cjiti,j′h + cj′h

)
sh

=
qj′h
th,j′h

sh

and thus

C ′ = C +
qj′h
th,j′h

sh

for k = 1, 2, . . . ,m.
To complete the verification that the criterion row of the extended simplex

tableau transforms according to the same rule as the other rows we note that

pk =
m∑
i=1

cjiri,k and p′k =
m∑
i=1

cj′ir
′
i,k.

Therefore

p′k − pk =
∑

1≤i≤m

i 6=h

cji(r
′
i,k − ri,k) + cj′hr

′
h,k − cjhrh,k

=
1

th,j′h

(
−

m∑
i=1

cjiti,j′h + cj′h

)
rh,k =

qj′h
th,j′h

rh,k

and thus

p′k = pk +
qj′h
th,j′h

rh,k

for k = 1, 2, . . . ,m.
We conclude that the criterion row of the extended simplex tableau trans-

forms under changes of basis that replace one element of the basis according
to a rule analogous to that which applies to the basis rows. Indeed an ele-
ment of the criterion row is transformed by subtracting from it a constant
multiple of the element in the pivot row that belongs to the same column,
where the multiplying factor is the ratio of the elements in the criterion row
and pivot row of the pivot column.
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We have now discussed how the extended simplex tableau associated with
a given basis B is constructed from the constraint matrix A, target vector b
and cost vector c that characterizes the linear programming problem. We
have also discussed how the tableau transforms when one element of the given
basis is replaced.

It remains how to replace an element of a basis associated with a non-
optimal feasible solution so as to obtain a basic feasible solution of lower cost
where this is possible.

We use the notation previously established. Let j1, j2, . . . , jm be the
elements of a basis B that is associated with some basic feasible solution
of the linear programming problem. Then there are non-negative numbers
s1, s2, . . . , sm such that

b =
m∑
i=1

sia
(ji),

where a(ji) is the m-dimensional vector determined by column ji of the con-
straint matrix A.

Let j0 be an integer between 1 and n that does not belong to the basis B.
Then

a(j0) −
m∑
i=1

ti,j0a
(ji) = 0.

and therefore

λa(j0) +
m∑
i=1

(si − λti,j0)a(ji) = b.

This expression representing b as a linear combination of the basis vectors
a(j0), a(j1), a(j2), . . . , a(jm) determines an n-dimensional vector x(λ) satisfying
the matrix equation Ax(λ) = b. Let xj(λ) denote the jth component of the
vector x(λ) for j = 1, 2, . . . , n. Then

• xj0(λ) = λ;

• xji(λ) = si − λti,j0 for i = 1, 2, . . . ,m;

• xj = 0 when j 6∈ {j0, j1, j2, . . . , jm}.

The n-dimensional vector x(λ) represents a feasible solution of the linear
programming problem if and only if all its coefficients are non-negative. The
cost is then C + qj0λ, where C is the cost of the basic feasible solution
determined by the basis B.

Suppose that qj0 < 0 and that ti,j0 ≤ 0 for i = 1, 2, . . . ,m. Then x(λ) is
a feasible solution with cost C + qj0λ for all non-negative real numbers λ. In
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this situation there is no optimal solution to the linear programming problem,
because, given any real number K, it is possible to choose λ so that C+qj0λ <
K, thereby obtaining a feasible solution whose cost is less than K.

If there does exist an optimal solution to the linear programming problem
then there must exist at least one integer i between 1 and m for which
ti,j0 > 0. We suppose that this is the case. Then x(λ) is a feasible solution
if and only if λ satisfies 0 ≤ λ ≤ λ0, where

λ0 = minimum

(
si
ti,j0

: ti,j0 > 0

)
.

We can then choose some integer h between 1 and n for which
sh
th,j0

= λ0.

Let j′i = ji for i 6= h, and let j′h = j0, and letB′ = {j′1, j′2, . . . , j′m}. Then x(λ0)
is a basic feasible solution of the linear programming problem associated with
the basis B′. The cost of this basic feasible solution is

C +
shqj0
th,j0

.

It makes sense to select the replacement column so as to obtain the
greatest cost reduction. The procedure for finding this information from
the tableau can be described as follows.

We suppose that the simplex tableau for a basic feasible solution has
been prepared. Examine the values in the criterion row in the columns
labelled by a(1), a(2), . . . , a(n). If all those are non-positive then the basic
feasible solution is optimal. If not, then consider in turn those columns a(j0)

for which the value −qj0 in the criterion row is positive. For each of these
columns, examine the coefficients recorded in the column in the basis rows.
If these coefficients are all non-positive then there is no optimal solution to
the linear programming problem. Otherwise choose h to be the value of i

that minimizes the ratio
si
ti,j0

amongst those values of i for which ti,j0 > 0.

The row labelled by a(jh) would then be the pivot row if the column a(j0)

were used as the pivot column.

Calculate the value of the cost reduction
sh(−qj0)
th,j0

that would result if

the column labelled by a(j0) were used as the pivot column. Then choose the
pivot column to maximize the cost reduction amongst all columns a(j0) for
which −qj0 > 0. Choose the row labelled by a(jh), where h is determined
as described above. Then apply the procedures for transforming the simplex
tableau to that determined by the new basis B′, where B′ includes j0 together
with ji for all integers i between 1 and m satisfying i 6= h.
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4.8 Further Analysis of the Criterion Row Transfor-
mation Rule

We investigate further the reasons why, in a linear programming problem
expressed in Dantzig standard form, the criterion row of the extended simplex
tableau transforms in the same fashion under change of basis as the other rows
of the tableau. Thus let A be an m×n matrix of rank m with real coefficients,
where m ≤ n, and let b ∈ Rm and c ∈ Rn be vectors of dimensions m and n
respectively. We consider the following linear programming problem:—

Determine an n-dimensional vector x so as to minimize cTx sub-
ject to the constraints Ax = b and x ≥ 0.

Let ρ:Rm → Rm+1 and σ:Rn → Rn+1 be the embeddings of Rm and Rn

in Rm+1 and Rn+1 respectively defined such that

ρ(w1, w2, . . . , wm) = (w1, w2, . . . , wm, 0)

σ(x1, x2, . . . , xn) = (x1, x2, . . . , xn, 0)

for all (w1, w2, . . . , wm) ∈ Rm. and (x1, x2, . . . , xn) ∈ Rn. Also let f ∈ Rm+1

and g ∈ Rn+1 be defined so that

f = (0, 0, . . . , 0, 1) and g = (0, 0, . . . , 0, 1).

Every element of Rm+1 can then be expressed, uniquely, in the form ρ(w)+zf
for some w ∈ Rn and z ∈ R. Similarly every element of Rn+1 can then be
expressed, uniquely, in the form σ(x) + yg for some x ∈ Rn and y ∈ R. The
linear transformation A:Rn → Rm determined by the constraint matrix of
the linear programming problem and the cost vector c ∈ Rm then together
determine a linear transformation Â:Rn+1 → Rm+1 from Rn+1 to Rm+1,
where

Â(σ(x) + yg) = ρ(Ax) + (y − cTx)f

for all x ∈ Rn and y ∈ R.
This linear transformation Â is specified in matrix form as follows:

Â =


A1,1 A1,2 . . . A1,n 0
A2,1 A2,2 . . . A2,n 0

...
...

. . .
...

...
Am,1 Am,2 . . . Am,n 0
−c1 −c2 . . . −cn 1

 .

Let
b̂ = ρ(b) = (b1, b2, . . . , bm, 0)T ,
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where b denotes that target vector of the linear programming problem, and
let

x̂ = σ(x) + yg = (x1, x2, . . . , xn, y)T

for some x ∈ Rn and y ∈ R. Then Âx̂ = b̂ if and only if Ax = b and
y = cTx.

Indeed the equation Âx̂ = b̂, expressed in matrix notation, takes the
following form:

A1,1 A1,2 . . . A1,n 0
A2,1 A2,2 . . . A2,n 0

...
...

. . .
...

...
Am,1 Am,2 . . . Am,n 0
−c1 −c2 . . . −cn 1




x1
x2
...
xn
y

 =


b1
b2
...
bn
0


and this matrix equation is clearly equivalent to the two simultaneous equa-
tions Ax = b and cTx = y. The problem of minimizing cTx subject to the
constraints Ax = b and x ≥ 0 is thus equivalent to the problem of minimiz-
ing y subject to the constraints Âx̂ = b̂ and x ≥ 0, where b̂ = ρ(b) and
x̂ = σ(x) + yg.

Now let â(1), â(2), . . . â(n) denote the first n columns of the (m+1)×(n+1)
matrix Â. Then

â(j) = ρ(a(j))− cjf

for j = 1, 2, . . . , n, where a(j) denotes the jth column of the constraint ma-
trix A.

Let j1, j2, . . . , jm be a basis for the linear programming problem. Then
the m-dimensional vectors a(j1), a(j2), . . . , a(jm) are linearly independent. It
then follows that the (m+ 1)-dimensional vectors

ρ(a(j1)), ρ(a(j2)), . . . , ρ(a(jm)), f

are linearly independent, and therefore the (m+ 1)-dimensional vectors

â(j1), â(j2), . . . , â(jm), f

are linearly independent, and therefore constitute a basis of Rm+1.
The standard basis of Rm+1 consists of the vectors ê(1), ê(2), . . . , ê(m), f ,

where e(1), e(2), . . . , e(m) is the standard basis of Rm and ê(k) = ρ(e(k)) for
k = 1, 2, . . . ,m. Let coefficients ri,k be determined for i, k = 1, 2, . . . ,m so
that

e(k) =
m∑
i=1

ri,ka
(ji)
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for k = 1, 2, . . . ,m. Then

ê(k) = ρ(e(k)) =
m∑
i=1

ri,kρ(a(ji)) =
m∑
i=1

ri,kâ
(ji) +

m∑
i=1

cjiri,kf

=
m∑
i=1

ri,kâ
(ji) + pkf ,

where pk =
m∑
i=1

cjiri,k for k = 1, 2, . . . ,m.

Also let s1, s2, . . . , sk be the components of the target vector b with re-
spect to the basis a(j1), a(j2), . . . , a(jm) of Rm, so that

b =
m∑
i=1

sia
(ji),

Then

b̂ = ρ(b) =
m∑
i=1

siρ(a(ji)) =
m∑
i=1

siâ
(ji) +

m∑
i=1

cjisif

=
m∑
i=1

siâ
(ji) + Cf ,

where C =
m∑
i=1

cjisi.

Next let coefficients ti,j be determined so that

a(j) =
m∑
i=1

ti,ja
(ji)

for j = 1, 2, . . . , n. Then

â(j) = ρ(a(j))− cjf =
m∑
i=1

ti,jρ(a(ji))− cjf

=
m∑
i=1

ti,jâ
(ji) +

(
m∑
i=1

cjiti,j − cj

)
f

=
m∑
i=1

ri,kâ
(ji) − qjf ,

where qj = cj −
m∑
i=1

cjiti,j for j = 1, 2, . . . , n.
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These identities show that the coefficients ti,j and −qj in the column of
the extended simplex tableau labelled by the vector a(j) are the coefficients
of â(j) with respect to the basis

â(j1), â(j2), . . . , â(jm), f

of Rm+1 for j = 1, 2, . . . , n. Similarly the coefficients si and C in the column
of the extended simplex tableau labelled by the target vector b are the coef-
ficients of b̂ with respect to the same basis of Rm+1. Also the coefficients ri,k
and pk in the column of the extended simplex tableau labelled by the stan-
dard basis vector e(k) are the coefficients of ê(k) with respect to the above
basis of Rm+1.

The results just described ensure that the criterion row of the extended
simplex tableau transforms according to the same rules as the rows above it
under change of basis.

4.9 The Simplex Tableau Algorithm

In describing the Simplex Tableau Algorithm, we adopt notation previously
introduced. Thus we are concerned with the solution of a linear programming
problem in Dantzig standard form, specified by positive integers m and n,
an m× n constraint matrix A of rank m, a target vector b ∈ Rm and a cost
vector c ∈ Rn. The optimization problem requires us to find a vector x ∈ Rn

that minimizes cTx amongst all vectors x ∈ Rn that satisfy the constraints
Ax = b and x ≥ 0.

We denote by Ai,j the coefficient in the ith row and jth column of the
matrix A, we denote the ith component of the target vector b by bi and we
denote the jth component of the cost vector c by cj for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n.

As usual, we define vectors a(j) ∈ Rm for j = 1, 2, . . . , n such that (a(j))i =
Ai,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Distinct integers j1, j2, . . . , jm between 1 and n determine a basis B, where

B = {j1, j2, . . . , jm},

if and only if the corresponding vectors a(j1), a(j2), . . . , a(jm) constitute a basis
of Rm. Given such a basis B we let MB denote the invertible m×m matrix
defined such that (MB)i,k = Ai,jk for all integers i and k between 1 and m.

We let ti,j = (M−1
B A)i,j and si = (M−1

B b)i for i = 1, 2, . . . ,m and j =
1, 2, . . . , n. Then

a(j) =
m∑
i=1

ti,ja
(ji)
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for j = 1, 2, . . . , n, and

b =
m∑
i=1

sia
(ji).

A basis B determines an associated basic feasible solution if and only if
si ≥ 0 for i = 1, 2, . . . ,m. We suppose in what follows that the basis B
determines a basic feasible solution.

Let

C =
m∑
i=1

cjisi.

Then C is the cost of the basic feasible solution associated with the basis B.
Let

−qj =
m∑
i=1

cjiti,j − cj.

Then qj = 0 for all j ∈ {j1, j2, . . . , jm}. Also the cost of any feasible solution
(x1, x2, . . . , xn) of the linear programming problem is

C +
n∑

j=1

qjxj.

The simplex tableau associated with the basis B is that portion of the ex-
tended simplex tableau that omits the columns labelled by e(1), e(2), . . . , e(m).
The simplex table has the following structure:

a(1) a(2) · · · a(n) b

a(j1) t1,1 t1,2 · · · t1,n s1
a(j2) t2,1 t2,2 · · · t2,n s2

...
...

...
. . .

...
...

a(jm) tm,1 tm,2 · · · tm,n sm
−q1 −q2 · · · −qn C

Let cB denote the m-dimensional vector defined such that

cT
B =

(
cj1 cj2 · · · cjm

)
.

Then the simplex tableau can be presented in block form as follows:—

a(1) · · · a(n) b

a(j1)

... M−1
B A M−1

B b
a(jm)

cT
BM

−1
B A− cT cT

BM
−1
B b
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Example We consider again the following linear programming problem:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

We are given the following initial basic feasible solution (1, 2, 0, 0, 0). We
need to determine whether this initial basic feasible solution is optimal and,
if not, how to improve it till we obtain an optimal solution.

The constraints require that x1, x2, x3, x4, x5 be non-negative real numbers
satisfying the matrix equation

(
5 3 4 7 3
4 1 3 8 4

)
x1
x2
x3
x4
x5

 =

(
11
6

)
.

Thus we are required to find a (column) vector x with components x1,
x2, x3, x4 and x5 that maximizes cTx subject to the constraints Ax = b and
x ≥ 0, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
,

and
cT =

(
3 4 2 9 5

)
.

Our initial basis B satisfies B = {j1, j2}, where j1 = 1 and j2 = 2. The
first two columns of the matrix A provide the corresponding invertible 2× 2
matrix MB. Thus

MB =

(
5 3
4 1

)
.

Inverting this matrix, we find that

M−1
B = −1

7

(
1 −3
−4 5

)
.

For each integer j between 1 and 5, let a(j) denote the m-dimensional
vector whose ith component is Ai,j for i = 1, 2. Then

a(j) =
2∑

i=1

ti,ja
(ji) and b =

2∑
i=1

sia
(ji),
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where ti,j = (M−1
B A)i,j and si = (M−1

B b)i for j = 1, 2, 3, 4, 5 and i = 1, 2.
Calculating M−1

B A we find that

M−1
B A =

(
1 0 5

7
17
7

9
7

0 1 1
7
−12

7
−8

7

)
.

Also

M−1
B b =

(
1
2

)
.

The coefficients of these matrices determine the values of ti,j and si to be
entered into the appropriate cells of the simplex tableau.

The basis rows of the simplex tableau corresponding to the basis {1, 2}
are thus as follows:—

a(1) a(2) a(3) a(4) a(5) b

a(1) 1 0 5
7

17
7

9
7

1

a(2) 0 1 1
7
−12

7
−8

7
2

· · · · · ·

Now the cost C of the current feasible solution satisfies the equation

C =
2∑

i=1

cjisi = c1s1 + c2s2,

where c1 = 3, c2 = 4, s1 = 1 and s2 = 2. It follows that C = 11.
To complete the simplex tableau, we need to compute −qj for j =

1, 2, 3, 4, 5, where

−qj =
2∑

i=1

cjiti,j − cj.

Let cB denote the 2-dimensional vector whose ith component is (cji). Then
cB = (3, 4). Let q denote the 5-dimensional vector whose jth component is
qj for j = 1, 2, 3, 4, 5. Then

−qT = cT
BM

−1
B A− cT .

It follows that

−qT =
(

3 4
)( 1 0 5

7
17
7

9
7

0 1 1
7
−12

7
−8

7

)
−
(

3 4 2 9 5
)

=
(

0 0 5
7
−60

7
−40

7

)
.

The simplex tableau corresponding to basis {1, 2} is therefore completed
as follows:—
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a(1) a(2) a(3) a(4) a(5) b

a(1) 1 0 5
7

17
7

9
7

1

a(2) 0 1 1
7
−12

7
−8

7
2

0 0 5
7
−60

7
−40

7
11

The values of −qj for j = 1, 2, 3, 4, 5 are not all non-positive ensures that
the initial basic feasible solution is not optimal. Indeed the cost of a feasible
solution (x1, x2, x3, x4, x5) is

11− 5
7
x3 + 60

7
x4 + 40

7
x5.

Thus a feasible solution with x3 > 0 and x4 = x5 = 0 will have lower cost
than the initial feasible basic solution. We therefore implement a change of
basis whose pivot column is that labelled by the vector a(3).

We must determine which row to use as the pivot row. We need to deter-

mine the value of i that minimizes the ratio
si
ti,3

, subject to the requirement

that ti,3 > 0. This ratio has the value 7
5

when i = 1 and 14 when i = 2.
Therefore the pivot row is the row labelled by a(1). The pivot element t1,3
then has the value 5

7
.

The simplex tableau corresponding to basis {2, 3} is then obtained by
subtracting the pivot row multiplied by 1

5
from the row labelled by a(2),

subtracting the pivot row from the criterion row, and finally dividing all
values in the pivot row by the pivot element 5

7
.

The simplex tableau for the basis {2, 3} is thus the following:—

a(1) a(2) a(3) a(4) a(5) b

a(3) 7
5

0 1 17
5

9
5

7
5

a(2) −1
5

1 0 −11
5
−7

5
9
5

−1 0 0 −11 −7 10

All the values in the criterion row to the left of the new cost are non-
positive. It follows that we have found a basic optimal solution to the linear
programming problem. The values recorded in the column labelled by b
show that this basic optimal solution is

(0, 9
5
, 7
5
, 0, 0).

4.10 The Revised Simplex Algorithm

The Simplex Tableau Algorithm restricts attention to the columns to the left
of the extended simplex tableau. The Revised Simplex Algorithm proceeds
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by maintaining the columns to the right of the extended simplex tableau,
calculating values in the columns to the left of that tableau only as required.

We show how the Revised Simplex Algorithm is implemented by applying
it to the example used to demonstrate the implementation of the Simplex
Algorithm.

Example We apply the Revised Simplex Algorithm to determine a basic
optimal solution to the the following linear programming problem:—

minimize
3x1 + 4x2 + 2x3 + 9x4 + 5x5

subject to the following constraints:
5x1 + 3x2 + 4x3 + 7x4 + 3x5 = 11;
4x1 + x2 + 3x3 + 8x4 + 4x5 = 6;
xj ≥ 0 for j = 1, 2, 3, 4, 5.

We are given the following initial basic feasible solution (1, 2, 0, 0, 0). We
need to determine whether this initial basic feasible solution is optimal and,
if not, how to improve it till we obtain an optimal solution.

The constraints require that x1, x2, x3, x4, x5 be non-negative real numbers
satisfying the matrix equation

(
5 3 4 7 3
4 1 3 8 4

)
x1
x2
x3
x4
x5

 =

(
11
6

)
.

Thus we are required to find a (column) vector x with components x1,
x2, x3, x4 and x5 that maximizes cTx subject to the constraints Ax = b and
x ≥ 0, where

A =

(
5 3 4 7 3
4 1 3 8 4

)
, b =

(
11
6

)
,

and
cT =

(
3 4 2 9 5

)
.

Our initial basis B satisfies B = {j1, j2}, where j1 = 1 and j2 = 2. The
first two columns of the matrix A provide the corresponding invertible 2× 2
matrix MB. Thus

MB =

(
5 3
4 1

)
.
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Inverting this matrix, we find that

M−1
B = −1

7

(
1 −3
−4 5

)
.

For each integer j between 1 and 5, let a((j) denote the m-dimensional
vector whose ith component is Ai,j for i = 1, 2. Then

a(j) =
2∑

i=1

ti,ja
(ji) and b =

2∑
i=1

sia
(ji),

where ti,j = (M−1
B A)i,j and si = (M−1

B b)i for j = 1, 2, 3, 4, 5 and i = 1, 2.
Let ri,k = (M−1

B )i,k for i = 1, 2 and k = 1, 2, and let

C = cj1s1 + cj2s2 = c1s1 + c2s2 = 11

p1 = cj1r1,1 + cj2r2,1 = c1r1,1 + c2r2,1 = 13
7

p2 = cj1r1,2 + cj2r2,2 = c1r1,2 + c2r2,2 = −11
7

The values of si, ri,k, C and pk are inserted into the following tableau,
which consists of the columns to the right of the extended simplex tableau:—

b e(1) e(2)

a(1) 1 −1
7

3
7

a(2) 2 4
7

−5
7

11 13
7
−11

7

To proceed with the algorithm, one computes values −qj for j 6∈ B using
the formula

−qj = p1A1,j + p2A2,j − cj,
seeking a value of j for which −qj > 0. Were all the values −qj are non-
positive (i.e., if all the qj are non-negative), then the initial solution would
be optimal. Computing −qj for j = 5, 4, 3, we find that

−q5 = 13
7
× 3− 11

7
× 4− 5 = −40

7

−q4 = = 13
7
× 7− 11

7
× 8− 9 = −60

7

−q3 = = 13
7
× 4− 11

7
× 3− 2 = 5

7

The inequality q3 > 0 shows that the initial basic feasible solution is not
optimal, and we should seek to change basis so as to include the vector a(3).
Let

t1,3 = r1,1A1,3 + r1,2A2,3 = −1
7
× 4 + 3

7
× 3 = 5

7

t2,3 = r2,1A1,3 + r2,2A2,3 = 4
7
× 4− 5

7
× 3 = 1

7
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Then
a(3) = t1,3a

(j1) + t2,3a
(j2) = 5

7
a(1) + 1

7
a(2).

We introduce a column representing the vector a(3) into the tableau to
serve as a pivot column. The resultant tableau is as follows:—

a(3) b e(1) e(2)

a(1) 5
7

1 −1
7

3
7

a(2) 1
7

2 4
7

−5
7

5
7

11 13
7
−11

7

To determine a pivot row we must pick the row index i so as to minimize

the ratio
si
ti,3

, subject to the requirement that ti,3 > 0. In the context of this

example, we should pick i = 1. Accordingly the row labelled by the vector a(1)

is the pivot row. To implement the change of basis we must subtract from
the second row the values above them in the pivot row, multiplied by 1

5
; we

must subtract the values in the pivot row from the values below them in the
criterion row, and we must divide the values in the pivot row itself by the
pivot element 5

7
.

The resultant tableau corresponding to the basis 2, 3 is then as follows:—

a(3) b e(1) e(2)

a(3) 1 7
5
−1

5
3
5

a(2) 0 9
5

3
5
−4

7

0 10 2 −2

A straightforward computation then shows that if

pT =
(

2 −2
)

then
pTA− cT =

(
−1 0 0 −11 −7

)
.

The components of this row vector are all non-positive. It follows that the
basis {2, 3} determines a basic optimal solution

(0, 9
5
, 7
5
, 0, 0).

4.11 Finding Initial Basic Solutions

Suppose that we are given a linear programming problem in Dantzig standard
form, specified by positive integers m and n, an m× n matrix A of rank m,
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an m-dimensional target vector b ∈ Rm and an n-dimensional cost vector
c ∈ Rn. The problem requires us to find an n-dimensional vector x that
minimizes the objective function cTx subject to the constraints Ax = b and
x ≥ 0.

Now, in the event that the column vector b has negative coefficients,
the relevant rows of the constraint matrix A and target vector b can be
multiplied by −1 to yield an equivalent problem in which the coefficients of
the target vector are all non-negative. Therefore we may assume, without
loss of generality, that b ≥ 0.

The Simplex Tableau Algorithm and the Revised Simplex Algorithm pro-
vided methods for passing from an initial basic feasible solution to a basic
optimal solution, provided that such a basic optimal solution exists. How-
ever, we need first to find an initial basic feasible solution for this linear
programming problem.

One can find such an initial basic feasible solution by solving an auxiliary
linear programming problem. This auxiliary problem requires us to find n-

dimensional vectors x and z that minimize the objective function
n∑

j=1

(z)j

subject to the constraints Ax + z = b, x ≥ 0 and z ≥ 0.
This auxiliary linear programming problem is itself in Dantzig standard

form. Moreover it has an initial basic feasible solution specified by the si-
multaneous equations x = 0 and z = b. The objective function of a feasible
solution is always non-negative. Applications of algorithms based on the
Simplex Method should identify a basic optimal solution (x, z) for this prob-

lem. If the cost
n∑

j=1

(z)j of this basic optimal solution is equal to zero then

Ax = b and x ≥ 0. If the cost of the basic optimal solution is positive then
the problem does not have any basic feasible solutions.

The process of solving a linear programming problem in Dantzig standard
form thus typically consists of two phases. The Phase I calculation aims to
solve the auxiliary linear programming problem of seeking n-dimensional

vectors x and z that minimize
n∑

i=1

(z)j subject to the constraints Ax + z = b,

x ≥ 0 and z ≥ 0. If the optimal solution (x, z) of the auxiliary problem
satisfies z 6= 0 then there is no initial basic solution of the original linear
programming problem. But if z = 0 then Ax = b and x ≥ 0, and thus
the Phase I calculation has identified an initial basic feasible solution of
the original linear programmming problem. The Phase II calculation is the
process of successively changing bases to lower the cost of the corresponding
basic feasible solutions until either a basic optimal solution has been found
or else it has been demonstated that no such basic optimal solution exists.
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