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1 Mathematical Programming Problems

1.1 A Furniture Retailing Problem

A retail business is planning to devote a number of retail outlets to the sale
of armchairs and sofas.

The retail prices of armchairs and sofas are determined by fierce compe-
tition in the furniture retailing business. Armchairs sell for e700 and sofas
sell for e1000.

However

• the amount of floor space (and warehouse space) available for stocking
the sofas and armchairs is limited;

• the amount of capital available for purchasing the initial stock of sofas
and armchairs is limited;

• market research shows that the ratio of armchairs to sofas in stores
should neither be too low nor too high.

Specifically:

• there are 1000 square metres of floor space available for stocking the
initial purchase of sofas and armchairs;

• each armchair takes up 1 square metre;

• each sofa takes up 2 square metres;

• the amount of capital available for purchasing the initial stock of arm-
chairs and sofas is e351,000;

• the wholesale price of an armchair is e400;

• the wholesale price of a sofa is e600;

• market research shows that between 4 and 9 armchairs should be in
stock for each 3 sofas in stock.

We suppose that the retail outlets are stocked with x armchairs and y
sofas.

The armchairs (taking up 1 sq. metre each) and the sofas (taking up 2
sq. metres each) cannot altogether take up more than 1000 sq. metres of
floor space. Therefore

x+ 2y ≤ 1000 (Floor space constraint).
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The cost of stocking the retail outlets with armchairs (costing e400 each)
and sofas (costing e600 each) cannot exceed the available capital of e351000.
Therefore

4x+ 6y ≤ 3510 (Capital constraint).

Consumer research indicates that x and y should satisfy

4y ≤ 3x ≤ 9y (Armchair/Sofa ratio).

An ordered pair (x, y) of real numbers is said to specify a feasible solution to
the linear programming problem if this pair of values meets all the relevant
constraints.

An ordered pair (x, y) constitutes a feasible solution to the the Furniture
Retailing problem if and only if all the following constraints are satisfied:

x− 3y ≤ 0;

4y − 3x ≤ 0;

x+ 2y ≤ 1000;

4x+ 6y ≤ 3510;

x ≥ 0;

y ≥ 0;

The feasible region for the Furniture Retailing problem is depicted below:
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We identify the vertices (or corners) of the feasible region for the Furni-
ture Retailing problem. There are four of these:

• there is a vertex at (0, 0);

• there is a vertex at (400, 300) where the line 4y = 3x intersects the line
x+ 2y = 1000;
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• there is a vertex at (510, 245) where the line x + 2y = 1000 intersects
the line 4x+ 6y = 3510;

• there is a vertex at (585, 195) where the line 3y = x intersects the line
4x+ 6y = 3510.

These vertices are identified by inspection of the graph that depicts the
constraints that determine the feasible region.

The furniture retail business obviously wants to confirm that the business
will make a profit, and will wish to determine how many armchairs and sofas
to purchase from the wholesaler to maximize expected profit.

There are fixed costs for wages, rental etc., and we assume that these are
independent of the number of armchairs and sofas sold.

The gross margin on the sale of an armchair or sofa is the difference
between the wholesale and retail prices of that item of furniture.

Armchairs cost e400 wholesale and sell for e700, and thus provide a gross
margin of e300.

Sofas cost e600 wholesale and sell for e1000, and thus provide a gross
margin of e400.

In a typical linear programming problem, one wishes to determine not
merely feasible solutions to the problem. One wishes to determine an optimal
solution that maximizes some objective function amongst all feasible solutions
to the problem.

The objective function for the Furniture Retailing problem is the gross
profit that would accrue from selling the furniture in stock. This gross profit
is the difference between the cost of purchasing the furniture from the whole-
saler and the return from selling that furniture.

This objective function is thus f(x, y), where

f(x, y) = 300x+ 400y.

We should determine the maximum value of this function on the feasible
region.

Because the objective function f(x, y) = 300x + 400y is linear in x and
y, its maximum value on the feasable region must be achieved at one of the
vertices of the region.

Clearly this function is not maximized at the origin (0, 0)!
Now the remaining vertices of the feasible region are at (400, 300), (510, 245)

and (585, 195), and

f(400, 300) = 240, 000,

f(510, 245) = 251, 000,
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f(585, 195) = 253, 500.

It follows that the objective function is maximized at (585, 195).
The furniture retail business should therefore use up the available capital,

stocking 3 armchairs for every sofa, despite the fact that this will not utilize
the full amount of floor space available.

A linear programming problem may be presented as follows:

given real numbers ci, Ai,j and bj for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n,

find real numbers x1, x2, . . . , xn so as to

maximize c1x1 + c2x2 + · · ·+ cnxn

subject to constraints

xj ≥ 0 for j = 1, 2, . . . , n, and

Ai,1x1 + Ai,2x2 + · · ·+ Ai,nxn ≤ bi for i = 1, 2, . . . ,m.

The furniture retailing problem may be presented in this form with n = 2,
m = 4,

(c1, c2) = (300, 400),

A =


1 −3
−3 4
1 2
4 6

 ,


b1
b2
b3
b4

 =


0
0

1000
3510

 .

Here A represents the m × n whose coefficient in the ith row and jth
column is Ai,j.

Linear programming problems may be presented in matrix form. We
adopt the following notational conventions with regard to transposes, row
and column vectors and vector inequalities:—

• vectors in Rm and Rn are represented as column vectors;

• we denote by MT the n×m matrix that is the transpose of an m× n
matrix M ;

• in particular, given b ∈ Rm and c ∈ Rn, where b and c are represented as
column vectors, we denote by bT and cT the corresponding row vectors
obtained on transposing the column vectors representing b and c;
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• given vectors u and v in Rn for some positive integer n, we write u ≤ v
(and v ≥ u) if and only if uj ≤ vj for j = 1, 2, . . . , n.

Linear programming problems formulated as above may be presented in
matrix notation as follows:—

Given an m× n matrix A with real coefficients,

and given column vectors b ∈ Rm and c ∈ Rn,

find x ∈ Rn so as to

maximize cTx

subject to constraints Ax ≤ b and x ≥ 0.

1.2 A Transportation Problem concerning Dairy Pro-
duce

The Transportation Problem is a well-known problem and important example
of a linear programming problem.

Discussions of the general problem are to be found in textbooks in the
following places:—

• Chapter 8 of Linear Programming: 1 Introduction, by George B. Danzig
and Mukund N. Thapa (Springer, 1997);

• Section 18 of Chapter I of Methods of Mathematical Economics by Joel
N. Franklin (SIAM 2002).

We discuss an example of the Transportation Problem of Linear Program-
ming, as it might be applied to optimize transportation costs in the dairy
industry.

A food business has milk-processing plants located in various towns in a
small country. We shall refer to these plants as dairies. Raw milk is supplied
by numerous farmers with farms located throughout that country, and is
transported by milk tanker from the farms to the dairies. The problem is
to determine the catchment areas of the dairies so as to minimize transport
costs.

We suppose that there are m farms, labelled by integers from 1 to m that
supply milk to n dairies, labelled by integers from 1 to n. Suppose that, in
a given year, the ith farm has the capacity to produce and supply a si litres
of milk for i = 1, 2, . . . , n, and that the jth dairy needs to receive at least dj
litres of milk for j = 1, 2, . . . , n to satisfy the business obligations.
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The quantity
m∑
i=1

si then represents that total supply of milk, and the

quantity
n∑
j=1

dj represents the total demand for milk.

We suppose that xi,j litres of milk are to be transported from the ith farm
to the jth dairy, and that ci,j represents the cost per litre of transporting this
milk.

Then the total cost of transporting milk from the farms to the dairies is

m∑
i=1

n∑
j=1

ci,jxi,j.

The quantities xi,j of milk to be transported from the farms to the dairies
should then be determined for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as to
minimize the total cost of transporting milk.

However the ith farm can supply no more than si litres of milk in a given
year, and that jth dairy requires at least dj litres of milk in that year. It
follows that the quantities xi,j of milk to be transported between farms and
dairy are constrained by the requirements that

n∑
j=1

xi,j ≤ si for i = 1, 2, . . . ,m

and
m∑
i=1

xi,j ≥ dj for j = 1, 2, . . . , n.

Suppose that the requirements of supply and demand are satisfied. Then

n∑
j=1

dj ≤
m∑
i=1

n∑
j=1

xi,j ≤
m∑
i=1

si.

Thus the total supply must equal or exceed the total demand.

If it is the case that
n∑
j=1

xi,j < si for at least one value of i then
m∑
i=1

n∑
j=1

xi,j <∑m
i=1 si. Similarly if it is the case that

m∑
i=1

xi,j > dj for at least one value of

j then
m∑
i=1

n∑
j=1

xi,j >
∑n

j=1 dj.

It follows that if total supply equals total demand, so that

m∑
i=1

si =
n∑
j=1

dj,
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then
n∑
j=1

xi,j = si for i = 1, 2, . . . ,m

and
m∑
i=1

xi,j = dj for j = 1, 2, . . . , n.

The following report, published in 2006, describes a study of milk trans-
port costs in the Irish dairy industry:

Quinlan C., Enright P., Keane M., O’Connor D. 2006. The Milk
Transport Cost Implications of Alternative Dairy Factory Loca-
tion. Agribusiness Discussion Paper No. 47. Dept of Food Busi-
ness and Development. University College, Cork.

The report is available at the following URL

http://www.ucc.ie/en/media/academic/
foodbusinessanddevelopment/paper47.pdf

The problem was investigated using commercial software that implements
standard linear programming algorithms for the solution of forms of the
Transportation Problem.

The description of the methodology used in the study begins as follows:

A transportation model based on linear programming was de-
veloped and applied the Irish dairy industry to meet the study
objectives. In such transportation models, transportation costs
are treated as a direct linear function of the number of units
shipped. The major assumptions are:

1. The items to be shipped are homogenous (i.e., they are the
same regardless of their source or destination.

2. The shipping cost per unit is the same regardless of the
number of units shipped.

3. There is only one route or mode of transportation being
used between each source and each destination, Stevenson,
(1993).

Sources and Destinations
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In 2004 there were about 25,000 dairy farmers in the Irish Re-
public. Hence identifying the location and size of each individual
dairy farm as sources for the transportation model was beyond
available resources. An alternative approach based on rural dis-
tricts was adopted. There are 156 rural districts in the state and
data for dairy cow numbers by rural district from the most recent
livestock census was available from the Central Statistics Office
(CSO). These data were converted to milk equivalent terms using
average milk yield estimates.

Typical seasonal milk supply patterns were also assumed. In this
way an estimate of milk availability throughout the year by rural
district was derived and this could then be further converted to
milk tanker loads, depending on milk tanker size.

The following is quoted from the conclusions of that report:—

A major report on the strategic development of the Irish
dairy-processing sector proposed processing plant rationalization,
‘Strategic Development Plan for the Irish Dairy Processing Sec-
tor’ Prospectus, (2003). It was recommended that in the long
term the number of plants processing butter, milk powder, casein
and whey products in Ireland should be reduced to create four
major sites for these products, with a limited number of addi-
tional sites for cheese and other products. It was estimated that
savings from processing plant economies of scale would amount
to e20m per annum, Prospectus (2003).

However, there is an inverse relationship between milk transport
costs and plant size. Thus the optimum organisation of the indus-
try involves a balancing of decreasing average plant costs against
the increasing transport costs. In this analysis, the assumed cur-
rent industry structure of 23 plants was reduced in a transporta-
tion modelling exercise firstly to 12 plants, then 9 plants and
finally 6 plants and the increase in total annual milk transport
costs for each alternative was calculated. Both a ‘good’ location
and a ‘poor location’ 6 plant option were considered. The es-
timated milk transport costs for the different alternatives were;
4.60 cent per gallon for 23 plants; 4.85 cent per gallon for 12
plants; 5.04 cent per gallon for 9 plants; 5.24 cent per gallon for 6
plants (‘good’ location) and 5.75 cent per gallon (‘poor’ location)
respectively.
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In aggregate terms the results showed that milk transport
costs would increase by e3, e5, e7 and e13 million per annum
if processing plants were reduced from 23 to 12 to 9 to 6 (good
location) and 6 (poor location) respectively. As the study of
processing plant rationalization did not consider cheese plant ra-
tionalization in detail, it was inferred that the estimated saving
from economies of scale of e20 million per annum was associ-
ated with between 6 and 12 processing sites. Excluding the 6
plant (poor location) option, the additional milk transport cost
of moving to this reduced number of sites was estimated to be
of the order of 5 million per annum. This represents about 25
per cent of the estimated benefits from economies of scale arising
from processing plant rationalization.

The transportation model also facilitated a comparison of
current milk catchment areas of processing plants with optimal
catchment areas, assuming no change in number of processing
plants. It was estimated that if dairies were to collect milk on an
optimal basis, there would be an 11% reduction from the current
(2005) milk transport costs.

In the “benchmark” model 23 plants were required to stay
open at peak to accommodate milk supply and it was initially
assumed that all 23 remained open throughout the year with
the same catchment areas. However, due to seasonality in milk
supply, it is not essential that all 23 plants remain open outside
the peak.

Two options were analysed. The first involved allowing the model
to determine the least cost transport pattern outside the peak i.e.
a relaxation of the constraint of fixed catchment areas throughout
the year, with all plants available for milk intake. Further modest
reductions in milk transport costs were realisable in this case.
The second option involved keeping only the bigger plants open
outside the peak period. A modest increase in milk transport
costs was estimated for this option due to tankers having to travel
longer distances outside the peak period.

The analysis of milk transport costs in the Irish Dairy Industry is a sig-
nificant topic in the Ph.D. thesis of the first author of the 2006 report from
which the preceding quotation was taken:

Quinlan, Carrie, Brigid, 2013. Optimisation of the food dairy
coop supply chain. PhD Thesis, University College Cork.
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which is available at the following URL:

http://cora.ucc.ie/bitstream/handle/
10468/1197/QuinlanCB PhD2013.pdf

The Transportation Problem, with equality of total supply and total demand,
can be expressed generally in the following form. Some commodity is supplied
by m suppliers and is transported from those suppliers to n recipients. The
ith supplier can supply at most si units of the commodity, and the jth
recipient requires at least dj units of the commodity. The cost of transporting
a unit of the commodity from the ith supplier to the jth recipient is ci,j.

The total transport cost is then

m∑
i=1

n∑
j=1

ci,jxi,j.

where xi,j denote the number of units of the commodity transported from
the ith supplier to the jth recipient.

The Transportation Problem can then be presented as follows:

determine xi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

so as minimize
∑
i,j

ci,jxi,j

subject to the constraints

xi,j ≥ 0 for all i and j,
n∑
j=1

xi,j ≤ si and
m∑
i=1

xi,j ≥ dj, where

m∑
i=1

si ≥
n∑
j=1

dj.
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2 Finite-Dimensional Vector Spaces

2.1 Real Vector Spaces

Definition A real vector space consists of a set V on which there is defined
an operation of vector addition, yielding an element v +w of V for each pair
v,w of elements of V , and an operation of multiplication-by-scalars that
yields an element λv of V for each v ∈ V and for each real number λ. The
operation of vector addition is required to be commutative and associative.
There must exist a zero element 0V of V that satisfies v + 0V = v for all
v ∈ V , and, for each v ∈ V there must exist an element −v of V for which
v+(−v) = 0V . The following identities must also be satisfied for all v,w ∈ V
and for all real numbers λ and µ:

(λ+ µ)v = λv + µv, λ(v + w) = λv + λw,

λ(µv) = (λµ)v, 1v = v.

Let n be a positive integer. The set Rn consisting of all n-tuples of real
numbers is then a real vector space, with addition and multiplication-by-
scalars defined such that

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . xn + yn)

and
λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)

for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ R and for all real numbers λ.
The set Mm,n(R) of all m×n matrices is a real vector space with respect

to the usual operations of matrix addition and multiplication of matrices by
real numbers.

2.2 Linear Dependence and Bases

Elements u1,u2, . . . ,um of a real vector space V are said to be linearly de-
pendent if there exist real numbers λ1, λ2, . . . , λm, not all zero, such that

λ1u1 + λ2u2 + · · ·+ λmum = 0V .

If elements u1,u2, . . . ,um of real vector space V are not linearly dependent,
then they are said to be linearly independent.

Elements u1,u2, . . . ,un of a real vector space V are said to span V if,
given any element v of V , there exist real numbers λ1, λ2, . . . , λn such that
v = λ1u1 + λ2u2 + · · ·+ λnun.
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A vector space is said to be finite-dimensional if there exists a finite
subset of V whose members span V .

Elements u1,u2, . . . ,un of a finite-dimensional real vector space V are
said to constitute a basis of V if they are linearly independent and span V .

Lemma 2.1 Elements u1,u2, . . . ,un of a real vector space V constitute a
basis of V if and only if, given any element v of V , there exist uniquely-
determined real numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

Proof Suppose that u1,u2, . . . ,un is a basis of V . Let v be an element V .
The requirement that u1,u2, . . . ,un span V ensures that there exist real
numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

If µ1, µ2, . . . , µn are real numbers for which

v = µ1u1 + µ2u2 + · · ·+ µnun,

then
(µ1 − λ1)u1 + (µ2 − λ2)u2 + · · ·+ (µn − λn)un = 0V .

It then follows from the linear independence of u1,u2, . . . ,un that µi−λi = 0
for i = 1, 2, . . . , n, and thus µi = λi for i = 1, 2, . . . , n. This proves that the
coefficients λ1, λ2, . . . , λn are uniquely-determined.

Conversely suppose that u1,u2, . . . ,un is a list of elements of V with the
property that, given any element v of V , there exist uniquely-determined
real numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

Then u1,u2, . . . ,un span V . Moreover we can apply this criterion when
v = 0. The uniqueness of the coefficients λ1, λ2, . . . , λn then ensures that if

λ1u1 + λ2u2 + · · ·+ λnun = 0V

then λi = 0 for i = 1, 2, . . . , n. Thus u1,u2, . . . ,un are linearly independent.
This proves that u1,u2, . . . ,un is a basis of V , as required.

Proposition 2.2 Let V be a finite-dimensional real vector space, let

u1,u2, . . . ,un

be elements of V that span V , and let K be a subset of {1, 2, . . . , n}. Suppose
either that K = ∅ or else that those elements ui for which i ∈ K are linearly
independent. Then there exists a basis of V whose members belong to the list
u1,u2, . . . ,un which includes all the vectors ui for which i ∈ K.
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Proof We prove the result by induction on the number of elements in the
list u1,u2, . . . ,un of vectors that span V . The result is clearly true when
n = 1. Thus suppose, as the induction hypothesis, that the result is true for
all lists of elements of V that span V and that have fewer than n members.

If the elements u1,u2, . . . ,un are linearly independent, then they consti-
tute the required basis. If not, then there exist real numbers λ1, λ2, . . . , λn,
not all zero, such that

λ1u1 + λ2u2 + · · ·+ λnun = 0V .

Now there cannot exist real numbers λ1, λ2, . . . , λn, not all zero, such

that both
n∑
i=1

λiui = 0V and also λi = 0 whenever i 6= K. Indeed, in the

case where K = ∅, this conclusion follows from the requirement that the real
numbers λi cannot all be zero, and, in the case where K 6= ∅, the conclusion
follows from the linear independence of those ui for which i ∈ K. Therefore
there must exist some integer i satisfying 1 ≤ i ≤ n for which λi 6= 0 and
i 6∈ K.

Without loss of generality, we may suppose that u1,u2, . . . ,un are ordered
so that n 6∈ K and λn 6= 0. Then

un = −
n−1∑
i=1

λi
λn

ui.

Let v be an element of V . Then there exist real numbers µ1, µ2, . . . , µn

such that v =
n∑
i=1

µiui, because u1,u2, . . . ,un span V . But then

v =
n−1∑
i=1

(
µi −

µnλi
λn

)
ui.

We conclude that u1,u2, . . . ,un−1 span the vector space V . The induction
hypothesis then ensures that there exists a basis of V consisting of members
of this list that includes the linearly independent elements u1,u2, . . . ,um, as
required.

Corollary 2.3 Let V be a finite-dimensional real vector space, and let

u1,u2, . . . ,un

be elements of V that span the vector space V . Then there exists a basis of
V whose elements are members of the list u1,u2, . . . ,un.

Proof This result is a restatement of Proposition 2.2 in the special case
where the set K in the statement of that proposition is the empty set.
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2.3 Dual Spaces

Definition Let V be a real vector space. A linear functional ϕ:V → R on
V is a linear transformation from the vector space V to the field R of real
numbers.

Given linear functionals ϕ:V → R and ψ:V → R on a real vector space V ,
and given any real number λ, we define ϕ + ψ and λϕ to be the linear
functionals on V defined such that (ϕ+ψ)(v) = ϕ(v) +ψ(v) and (λϕ)(v) =
λϕ(v) for all v ∈ V .

The set V ∗ of linear functionals on a real vector space V is itself a
real vector space with respect to the algebraic operations of addition and
multiplication-by-scalars defined above.

Definition Let V be a real vector space. The dual space V ∗ of V is the
vector space whose elements are the linear functionals on the vector space V .

Now suppose that the real vector space V is finite-dimensional. Let
u1,u2, . . . ,un be a basis of V , where n = dimV . Given any v ∈ V there

exist uniquely-determined real numbers λ1, λ2, . . . , λn such that v =
n∑
j=1

λjuj.

It follows that there are well-defined functions ε1, ε2, . . . , εn from V to the
field R defined such that

εi

(
n∑
j=1

λjuj

)
= λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. These functions are
linear transformations, and are thus linear functionals on V .

Lemma 2.4 Let V be a finite-dimensional real vector space, let

u1,u2, . . . ,un

be a basis of V , and let ε1, ε2, . . . , εn be the linear functionals on V defined
such that

εi

(
n∑
j=1

λjuj

)
= λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. Then ε1, ε2, . . . , εn

constitute a basis of the dual space V ∗ of V . Moreover ϕ =
n∑
i=1

ϕ(ui)εi for all

ϕ ∈ V ∗.
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Proof Let µ1, µ2, . . . , µn be real numbers with the property that
n∑
i=1

µiεi =

0V ∗ . Then

0 =

(
n∑
i=1

µiεi

)
(uj) =

n∑
i=1

µiεi(uj) = µj

for j = 1, 2, . . . , n. Thus the linear functionals ε1, ε2, . . . , εn on V are linearly
independent elements of the dual space V ∗.

Now let ϕ:V → R be a linear functional on V , and let µi = ϕ(ui) for
i = 1, 2, . . . , n. Now

εi(uj) =

{
1 if i = j;
0 if i 6= j.

It follows that(
n∑
i=1

µiεi

)(
n∑
j=1

λjuj

)
=

n∑
i=1

n∑
j=1

µiλjεi(uj) =
n∑
j=1

µjλj

=
n∑
j=1

λjϕ(uj) = ϕ

(
n∑
j=1

λjuj

)

for all real numbers λ1, λ2, . . . , λn.
It follows that

ϕ =
n∑
i=1

µiεi =
n∑
i=1

ϕ(ui)εi.

We conclude from this that every linear functional on V can be expressed as
a linear combination of ε1, ε2, . . . , εn. Thus these linear functionals span V ∗.
We have previously shown that they are linearly independent. It follows that

they constitute a basis of V ∗. Moreover we have verified that ϕ =
n∑
i=1

ϕ(ui)εi

for all ϕ ∈ V ∗, as required.

Definition Let V be a finite-dimensional real vector space, let u1,u2, . . . ,un
be a basis of V . The corresponding dual basis of the dual space V ∗ of V
consists of the linear functionals ε1, ε2, . . . , εn on V , where

εi

(
n∑
j=1

λjuj

)
= λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn.

Corollary 2.5 Let V be a finite-dimensional real vector space, and let V ∗

be the dual space of V . Then dimV ∗ = dimV .
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Proof We have shown that any basis of V gives rise to a dual basis of V ∗,
where the dual basis of V has the same number of elements as the basis
of V to which it corresponds. The result follows immediately from the fact
that the dimension of a finite-dimensional real vector space is the number of
elements in any basis of that vector space.

Let V be a real-vector space, and let V ∗ be the dual space of V . Then
V ∗ is itself a real vector space, and therefore has a dual space V ∗∗. Now each
element v of V determines a corresponding linear functional Ev:V ∗ → R on
V ∗, where Ev(ϕ) = ϕ(v) for all ϕ ∈ V ∗. It follows that there exists a function
ι:V → V ∗∗ defined so that ι(v) = Ev for all v ∈ V . Then ι(v)(ϕ) = ϕ(v)
for all v ∈ V and ϕ ∈ V ∗.

Now

ι(v + w)(ϕ) = ϕ(v + w) = ϕ(v) + ϕ(w) = (ι(v) + ι(w))(ϕ)

and
ι(λv)(ϕ) = ϕ(λv) = λϕ(v) = (λι(v))(ϕ)

for all v,w ∈ V and ϕ ∈ V ∗ and for all real numbers λ. It follows that
ι(v + w) = ι(v) + ι(w) and ι(λv) = λι(v) for all v,w ∈ V and for all real
numbers λ. Thus ι:V → V ∗∗ is a linear transformation.

Proposition 2.6 Let V be a finite-dimensional real vector space, and let
ι:V → V ∗∗ be the linear transformation defined such that ι(v)(ϕ) = ϕ(v) for
all v ∈ V and ϕ ∈ V ∗. Then ι:V → V ∗∗ is an isomorphism of real vector
spaces.

Proof Let u1,u2, . . . ,un be a basis of V , let ε1, ε2, . . . , εn be the dual basis
of V ∗, where

εi(uj) =

{
1 if i = j,
0 if i 6= j,

and let v ∈ V . Then there exist real numbers λ1, λ2, . . . , λn such that v =
n∑
i=1

λiui.

Suppose that ι(v) = 0V ∗∗ . Then ϕ(v) = Ev(ϕ) = 0 for all ϕ ∈ V ∗. In
particular λi = εi(v) = 0 for i = 1, 2, . . . , n, and therefore v = 0V . We
conclude that ι:V → V ∗∗ is injective.

Now let F :V ∗ → R be a linear functional on V ∗, let λi = F (εi) for

i = 1, 2, . . . , n, let v =
n∑
i=1

λiui, and let ϕ ∈ V ∗. Then ϕ =
n∑
i=1

ϕ(ui)εi (see
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Lemma 2.4), and therefore

ι(v)(ϕ) = ϕ(v) =
n∑
i=1

λiϕ(ui) =
n∑
i=1

F (εi)ϕ(ui)

= F

(
n∑
i=1

ϕ(ui)εi

)
= F (ϕ).

Thus ι(v) = F . We conclude that the linear transformation ι:V → V ∗∗

is surjective. We have previously shown that this linear transformation is
injective. There ι:V → V ∗∗ is an isomorphism between the real vector spaces
V and V ∗∗ as required.

The following corollary is an immediate consequence of Proposition 2.6.

Corollary 2.7 Let V be a finite-dimensional real vector space, and let V ∗

be the dual space of V . Then, given any linear functional F :V ∗ → R, there
exists some v ∈ V such that F (ϕ) = ϕ(v) for all ϕ ∈ V ∗.
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3 The Transportation Problem

3.1 The General Transportation Problem

The Transportation Problem can be expressed in the following form. Some
commodity is supplied by m suppliers and is transported from those sup-
pliers to n recipients. The ith supplier can supply at most si units of the
commodity, and the jth recipient requires at least dj units of the commodity.
The cost of transporting a unit of the commodity from the ith supplier to
the jth recipient is ci,j.

The total transport cost is then

m∑
i=1

n∑
j=1

ci,jxi,j.

where xi,j denote the number of units of the commodity transported from
the ith supplier to the jth recipient.

The Transportation Problem can then be presented as follows:

determine xi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as
minimize

∑
i,j

ci,jxi,j subject to the constraints xi,j ≥ 0 for all i

and j,
n∑
j=1

xi,j ≤ si and
m∑
i=1

xi,j ≥ dj, where si ≥ 0 for all i,

dj ≥ 0 for all i, and
m∑
i=1

si ≥
n∑
j=1

dj.

The quantities s1, s2, . . . , sm representing the quantities of the transported
commodity supplied by the suppliers are the components of anm-dimensional
vector (s1, s2, . . . , sm). We refer to this vector as the supply vector for the
transportation problem.

The quantities d1, d2, . . . , dn representing the quantities of the transported
commodity demanded by the recipients are the components of an n-dimensional
vector (d1, d2, . . . , dn). We refer to this vector as the demand vector for the
transportation problem.

The quantities ci,j that represent the cost of transporting the commodity
from the ith supplier to the jth recipient are the components of an m × n
matrix. We refer to this matrix as the cost matrix for the transportation
problem.
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3.2 Transportation Problems where Supply equals De-
mand

Consider a transportation problem with m suppliers and n recipients. The
following proposition shows that a solution to the transportation problem can
only exist if total supply of the relevant commodity exceeds total demand
for that commodity.

Proposition 3.1 Let s1, s2, . . . , sm and d1, d2, . . . , dn be non-negative real
numbers. Suppose that there exist non-negative real numbers xi,j for i =
1, 2, . . . ,m and j = 1, 2, . . . , n that satisfy the inequalities

n∑
j=1

xi,j ≤ si and
m∑
i=1

xi,j ≥ dj.

Then
n∑
j=1

dj ≤
m∑
i=1

si.

Moreover if it is the case that

n∑
j=1

dj =
m∑
i=1

si.

then
n∑
j=1

xi,j = si for i = 1, 2, . . . ,m

and
m∑
i=1

xi,j = dj for j = 1, 2, . . . , n.

Proof The inequalities satisfied by the non-negative real numbers xi,j ensure
that

n∑
j=1

dj ≤
m∑
i=1

n∑
j=1

xi,j ≤
m∑
i=1

si.

Thus the total supply must equal or exceed the total demand.

Now si −
n∑
j=1

xi,j ≥ 0 for i = 1, 2, . . . ,m. It follows that if si >
∑n

j=1 xi,j

for at least one value of i then
m∑
i=1

si >
m∑
i=1

n∑
j=1

xi,j. Similarly
m∑
i=1

xi,j − dj ≥ 0

19



for j = 1, 2, . . . , n. It follows that if it is the case that
m∑
i=1

xi,j > dj for at

least one value of j then
m∑
i=1

n∑
j=1

xi,j >
n∑
j=1

dj.

It follows that if total supply equals total demand, so that

m∑
i=1

si =
n∑
j=1

dj,

then
n∑
j=1

xi,j = si for i = 1, 2, . . . ,m

and
m∑
i=1

xi,j = dj for j = 1, 2, . . . , n,

as required.

We analyse the Transportation Problem in the case where total supply
equals total demand. The optimization problem in this case can then be
stated as follows:—

determine xi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n so as
minimize

∑
i,j

ci,jxi,j subject to the constraints xi,j ≥ 0 for all i

and j,
n∑
j=1

xi,j = si and
m∑
i=1

xi,j = dj, where si ≥ 0 and dj ≥ 0 for

all i and j, and
m∑
i=1

si =
n∑
j=1

dj.

Definition A feasible solution to a transportation problem (with equality
of total supply and total demand) is represented by real numbers xi,j, where

• xi,j ≥ 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n;

•
n∑
j=1

xi,j = si for = 1, 2, . . . ,m;

•
m∑
i=1

xi,j = dj for j = 1, 2, . . . , n.

Definition A feasible solution (xi,j) of a transportation problem is said to
be optimal if it minimizes cost amongst all feasible solutions of that trans-
portation problem.
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3.3 Bases for the Transportation Problem

Definition Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and n
are positive integers. Then a subset B of I × J is said to be a basis for
the transportation problem with m suppliers and n recipients if, given any

vectors y ∈ Rm and z ∈ Rn satisfying
m∑
i=1

(y)i =
n∑
j=1

(z)j, there exists a unique

m× n matrix X with real coefficients satisfying the following properties:—

(i)
n∑
j=1

(X)i,j = (y)i for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X)i,j = (z)j for j = 1, 2, . . . , n;

(iii) (X)i,j = 0 unless (i, j) ∈ B.

Lemma 3.2 Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and n
are positive integers. and let

B = {(i, j) ∈ I × J : i = m or j = n}.

Then B is a basis for a transportation problem with m suppliers and n recip-
ients.

Proof The result can readily be verified when m = 1 or n = 1. We therefore
restrict attention to cases where m > 1 and n > 1.

Let
B = {(i, j) ∈ I × J : i = m or j = n},

where m > 1 and n > 1. Then, given any vectors y ∈ Rm and z ∈ Rn

that satisfy
m∑
i=1

yi =
n∑
j=1

zj, there exists a unique m × n matrix X with real

coefficients with all the following properties:

(i)
n∑
j=1

(X)i,j = yi for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X)i,j = zj for j = 1, 2, . . . , n;

(iii) (X)i,j = 0 unless (i, j) ∈ B.
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This matrix X has coefficients as follows: Xi,j = 0 if i < m and j < n;
Xi,n = yi for i < m; Xm,j = zj for j < n; Xm,n = w, where

w = ym −
n−1∑
j=1

zj = zn −
m−1∑
i=1

yi.

This matrix X is thus of the form

X =


0 0 . . . 0 y1
0 0 . . . 0 y2
...

...
. . .

...
...

0 0 . . . 0 ym−1
z1 z2 . . . zn−1 w

 ,

where

w = ym −
n−1∑
j=1

zj = zn −
m−1∑
i=1

yi.

It follows from the definition of bases for transportation problems that the
subset B of I × J is a basis for a transportation problem with m suppliers
and n recipients. This completes the proof.

We now introduce some notation for use in discussion of the theory of
transportation problems.

For each integer i between 1 and m, let e(i) denote the m-dimensional
vector whose ith component is equal to 1 and whose other components are
zero. For each integer j between 1 and n, let ê(j) denote the n-dimensional
vector whose jth component is equal to 1 and whose other components are
zero. Thus

(e(i))k =

{
1 if i = k,
0 if i 6= k,

and (ê(j))` =

{
1 if j = `;
0 if j 6= `.

Moreover y =
m∑
i=1

(y)ie
(i) for all y ∈ Rm and z =

n∑
j=1

(z)j ê
(j) for all z ∈ Rn.

Also, for each ordered pair (i, j) of integers with 1 ≤ i ≤ m and 1 ≤ j ≤ n,
let E(i,j) denote the m×n matrix that has a single non-zero coefficient equal
to 1 located in the ith row and jth column of the matrix. Thus

(E(i,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.
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Moreover

X =
m∑
i=1

n∑
j=1

(X)i,jE
(i,j)

for all m× n matrices X with real coefficients.
We let ρ:Mm,n(R)→ Rm and σ:Mm,n(R)→ Rn be the linear transforma-

tions defined such that (ρ(X))i =
n∑
j=1

(X)i,j for i = 1, 2, . . . ,m and (σ(X))j =

m∑
i=1

(X)i,j for j = 1, 2, . . . , n. Then ρ(E(i,j)) = e(i) for i = 1, 2, . . . ,m and

σ(E(i,j)) = ê(j) for j = 1, 2, . . . , n.
A feasible solution of the transportation problem with given supply vec-

tor s, demand vector d and cost matrix C is represented by anm×nmatrixX
satisfying the following three conditions:—

• The coefficients of X are all non-negative;

• ρ(X) = s;

• σ(X) = d.

The cost functional f :Mm,n(R)→ R is defined so that

f(X) =
m∑
i=0

n∑
j=0

ci,j(X)i,j = trace(CTX)

for all X ∈ Mm,n(R), where C is the cost matrix and ci,j = (C)i,j for i =
1, 2, . . . ,m and j = 1, 2, . . . , n.

A feasible solution X̂ of the Transportation problem is optimal if and
only if f(X̂) ≤ f(X) for all feasible solutions X of that problem.

Lemma 3.3 Let X be an m × n matrix, let ρ(X) ∈ Rm and σ(X) ∈ Rn

be defined so that (ρ(X))i =
n∑
j=1

(X)i,j for i = 1, 2, . . . ,m and (σ(X))j =

m∑
i=1

(X)i,j for j = 1, 2, . . . , n, and let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
.

Then (ρ(X), σ(X)) ∈ W .
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Proof Summing the components of the vectors ρ(X) and σ(X), we find that

m∑
i=1

(ρ(X))i =
m∑
i=1

n∑
j=1

(X)i,j =
n∑
j=1

(σ(X))j.

Thus (ρ(X), σ(X)) ∈ W , as required.

Given a subset K of I×J , where I = {1, 2, . . . ,m} and J = {1, 2, . . . , n},
we denote by MK the vector subspace of the space Mm,n(R) of m×n matrices
with real coefficients defined such that

MK = {X ∈Mm,n(R) : (X)i,j = 0 unless (i, j) ∈ K}.

The definition of bases for transportation problems then ensures that a
subset B of I × J is a basis for a transportation problem with m suppliers
and n recipients if and only if the linear transformation θB:MB → W is an
isomorphism of vector spaces, where

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
,

and θB(X) = (ρ(X), σ(X)) for all X ∈ MB, where (ρ(X))i =
n∑
j=1

(X)i,j for

i = 1, 2, . . . ,m and (σ(X))j =
m∑
i=1

(X)i,j for j = 1, 2, . . . , n.

Proposition 3.4 A basis for a transportation problem with m suppliers and
n recipients has m+ n− 1 elements.

Proof Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n} and, for all (i, j) ∈ I ×J ,
let E(i,j) denote the m× n matrix defined so that

(E(i,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.

Let B be a basis for the transportation problem with m suppliers and n
recipients. Then the m × n matrices E(i,j) for which (i, j) ∈ B constitute a
basis of the vector space MB where

MB = {X ∈Mm,n(R) : (X)i,j = 0 unless (i, j) ∈ B}.

It follows that the dimension of the vector space MB is equal to the number
of elements in the basis B.
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Let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
,

and let θB:MB → W be defined so that θB(X) = (ρ(X), σ(X)) for all X ∈
MB, where ρ(X)i =

n∑
j=1

(X)i,j for i = 1, 2, . . . ,m, and σ(X)j =
m∑
i=1

(X)i,j

for j = 1, 2, . . . , n. Now the definition of bases for transportation problems
ensures that θ:MB → W is an isomorphism of vector spaces. Therefore
dimMB = dimW . It follows that any two bases for a transportation problem
with m suppliers and n recipients have the same number of elements.

Lemma 3.2 showed that

{(i, j) ∈ I × J : i = m or j = n}

is a basis for a transportation problem with m suppliers and n recipients.
This basis has m+ n− 1 elements. It follows that dimW = m+ n− 1, and
therefore every basis for a transportation problem with m suppliers and n
recipients has m+ n− 1 elements, as required.

Proposition 3.5 Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, where m and
n are positive integers, and let K be a subset of I × J . Suppose that, given

any vectors y ∈ Rm and z ∈ Rn satisfying
m∑
i=1

(y)i =
n∑
j=1

(z)j, there exists an

m × n matrix X with real coefficients belonging to MK with the following
properties:

(i)
n∑
j=1

(X)i,j = yi for i = 1, 2, . . . ,m;

(ii)
m∑
i=1

(X)i,j = zj for j = 1, 2, . . . , n;

(iii) (X)i,j = 0 unless (i, j) ∈ K.

Then there exists a basis B for the transportation problem satisfying B ⊂ K.

Proof First we define bases for the vector spaces involved in the proof. For
each integer i between 1 and m, let e(i) ∈ Rm be defined such that

(e(i))k =

{
1 if i = k;
0 if i 6= k.
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For each integer j between 1 and n, let ê(j) ∈ Rn be defined such that

(ê(j))` =

{
1 if j = `;
0 if j 6= `.

For each ordered pair (i, j) of integers with 1 ≤ i ≤ m and 1 ≤ j ≤ n, let
E(i,j) ∈Mn(R) be defined such that

(E(i,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.

LetMK denote the vector subspace of the spaceMm,n(R) ofm×nmatrices
with real coefficients defined such that

MK = {X ∈Mm.n(R) : (X)i,j = 0 unless (i, j) ∈ K},

let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
,

and let θK :MK → W be the linear transformation defined so that θK(X) =

(ρ(X), σ(X)) for allX ∈Mm,n(R), where ρ(X)i =
n∑
j=1

(X)i,j for i = 1, 2, . . . ,m

and σ(X)j =
m∑
i=1

(X)i,j for j = 1, 2, . . . , n. Then

X =
∑

(i,j)∈K

(X)i,jE
(i,j)

for all X ∈MK , and therefore

θK(X) =
∑

(i,j)∈K

(X)i,jθ(E
(i,j)) =

∑
(i,j)∈K

(X)i,j(e
(i), ê(j))

for all X ∈ MK . The conditions of the proposition ensure that that the
ordered pairs (e(i), ê(j)) of basis vectors for which (i, j) belongs to K span
the vector space W . It then follows from standard linear algebra that there
exists a subset B of K such that those ordered pairs (e(i), ê(j)) for which (i, j)
belongs to B constitute a basis for the vector space W (see Corollary 2.3).

Thus, given any ordered pair (y, z) of vectors belonging to W , there exist
uniquely determined real numbers xi,j for all (i, j) ∈ B such that

(y, z) =
∑

(i,j)∈B

xi,j(e
(i), ê(j)).
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Let X ∈ MB be the m × n matrix defined such that (X)i,j = xi,j for all
(i, j) ∈ B and (X)i,j = 0 for all (i, j) ∈ (I × J) \ B. Then X is the unique
m × n matrix with the properties that ρ(X) = y, σ(X) = z and X(i,j) = 0
unless (i, j) ∈ B. It follows that the subset B of K is the required basis for
the transportation problem.

Proposition 3.6 Let m and n be positive integers, let I = {1, 2, . . . ,m} and
J = {1, 2, . . . , n}, and let K be a subset of I × J . Suppose that there is no
basis B of the transportation problem for which K ⊂ B. Then there exists a
non-zero m × n matrix Y with real coefficients which satisfies the following
conditions:

•
n∑
j=1

(Y )i,j = 0 for i = 1, 2, . . . ,m;

•
m∑
i=1

(Y )i,j = 0 for j = 1, 2, . . . , n;

• (Y )i,j = 0 when (i, j) 6∈ K.

Proof For each integer i between 1 and m, let e(i) ∈ Rm be defined such
that

(e(i))k =

{
1 if i = k;
0 if i 6= k.

For each integer j between 1 and n, let ê(j) ∈ Rn be defined such that

(ê(j))` =

{
1 if j = `;
0 if j 6= `.

,

and let

W =

{
(y, z) ∈ Rm × Rn :

m∑
i=1

(y)i =
n∑
j=1

(z)j

}
.

Now follows from Proposition 2.2 that if the elements (e(i), ê(j)) for which
(i, j) ∈ K were linearly independent then there would exist a subset B of
I×J satisfying K ⊂ B such that the elements (e(i), ê(j)) for which (i, j) ∈ B
would constitute a basis of W . It would then follow that, given any ordered
pair (y, z) of vectors belonging to W , there would exist a unique m × n
matrix X with real coefficients with the properties that

∑m
j=1(X)i,j = (y)i

for i = 1, 2, . . . ,m,
∑n

i=1(X)i,j = (z)i for j = 1, 2, . . . , n, and (X)i,j = 0
unless (i, j) ∈ B. The subset B of I × J would thus be a basis for the
transportation problem. But the subset K is not contained in any basis for
the Transportation Problem. It follows that the elements (e(i), ê(j)) for which
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(i, j) ∈ K must be linearly dependent. Therefore there exists a non-zerom×n
matrix Y with real coefficients such that (Y )i,j = 0 when (i, j) 6∈ K and

m∑
i=1

n∑
j=1

(Y )i,j(e
(i), ê(j)) = (0,0).

But then

m∑
i=1

n∑
j=1

(Y )i,je
(i) = 0 and

m∑
i=1

n∑
j=1

(Y )i,j ê
(j) = 0,

and therefore
n∑
j=1

(Y )i,j = 0 for i = 1, 2, . . . ,m

and
m∑
i=1

(Y )i,j = 0 for j = 1, 2, . . . , n.

Also (Y )i,j = 0 unless (i, j) ∈ K. The result follows.

3.4 Basic Feasible Solutions of Transportation Prob-
lems

Consider the transportation problem withm suppliers and n recipients, where
the ith supplier can provide at most si units of some given commodity, where
si ≥ 0, and the jth recipient requires at least dj units of that commodity,
where dj ≥ 0. We suppose also that total supply equals total demand, so
that

m∑
i=1

si =
n∑
j=1

dj,

The cost of transporting the commodity from the ith supplier to the jth
recipient is ci,j.

Definition A feasible solution (xi,j) of a transportation problem is said to
be basic if there exists a basis B for that transportation problem such that
xi,j = 0 whenever (i, j) 6∈ B.

Example Consider a transportation problem where m = n = 2, s1 = 8,
s2 = 3, d1 = 2, d2 = 9, c1,1 = 2, c1,2 = 3, c2,1 = 4 and c2,2 = 1.
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A feasible solution takes the form of a 2× 2 matrix(
x1,1 x1,2
x2,1 x2,2

)
with non-negative components which satisfies the two matrix equations(

x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
and (

1 1
)( x1,1 x1,2

x2,1 x2,2

)
=
(

2 9
)
.

A basic feasible solution will have at least one component equal to zero.
There are four matrices with at least one zero component which satisfy the
required equations. They are the following:—(

0 8
2 1

)
,

(
8 0
−6 9

)
,

(
2 6
0 3

)
,

(
−1 9
3 0

)
.

The first and third of these matrices have non-negative components.
These two matrices represent basic feasible solutions to the problem, and
moreover they are the only basic feasible solutions.

The costs associated with the components of the matrices are c1,1 = 2,
c1,2 = 3, c2,1 = 4 and c2,2 = 1.

The cost of the basic feasible solution

(
0 8
2 1

)
is

8c1,2 + 2c2,1 + c2,2 = 24 + 8 + 1 = 33.

The cost of the basic feasible solution

(
2 6
0 3

)
is

2c1,1 + 6c1,2 + 3c2,2 = 4 + 18 + 3 = 25.

Now any 2× 2 matrix

(
x1,1 x1,2
x2,1 x2,2

)
satisfying the two matrix equations

(
x1,1 x1,2
x2,1 x2,2

)(
1
1

)
=

(
8
3

)
,

(
1 1

)( x1,1 x1,2
x2,1 x2,2

)
=
(

2 9
)
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must be of the form(
x1,1 x1,2
x2,1 x2,2

)
=

(
λ 8− λ

2− λ 1 + λ

)
for some real number λ.

But the matrix

(
λ 8− λ

2− λ 1 + λ

)
has non-negative components if and

only if 0 ≤ λ ≤ 2. It follows that the set of feasible solutions of this instance
of the transportation problem is{(

λ 8− λ
2− λ 1 + λ

)
: λ ∈ R and 0 ≤ λ ≤ 2

}
.

The costs associated with the components of the matrices are c1,1 = 2,
c1,2 = 3, c2,1 = 4 and c2,2 = 1. Therefore, for each real number λ satisfying

0 ≤ λ ≤ 2, the cost f(λ) of the feasible solution

(
λ 8− λ

2− λ 1 + λ

)
is given

by
f(λ) = 2λ+ 3(8− λ) + 4(2− λ) + (1 + λ) = 33− 4λ.

Cost is minimized when λ = 2, and thus

(
2 6
0 3

)
is the optimal solution of

this transportation problem. The cost of this optimal solution is 25.

Proposition 3.7 Given any feasible solution of a transportation problem,
there exists a basic feasible solution with whose cost does not exceed that of
the given solution.

Proof Let m and n be positive integers, and let let the m × n matrix X
represent a feasible solution of a transportation problem with supply vector s,
demand vector d and cost matrix C, where C is an m× n matrix with real
coefficients. Then si ≥ 0 for i = 1, 2, . . . ,m and dj ≥ 0 for j = 1, 2, . . . , n,
where

s = (s1, s2, . . . , sm), d = (d1, d2, . . . , dn).

Also xi,j ≥ 0 for all i and j,
n∑
j=1

xi,j = si for i = 1, 2, . . . ,m and
m∑
i=1

xi,j = dj

for j = 1, 2, . . . , n. The cost of the feasible solution X is then
m∑
i=1

n∑
j=1

ci,jxi,j,

where ci,j is the coefficient in the ith row and jth column of the cost matrix C.
If the feasible solution X is itself basic then there is nothing to prove.

Suppose therefore that X is not a basic solution. We show that there then
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exists a feasible solution X with fewer non-zero components than the given
feasible solution.

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, and let

K = {(i, j) ∈ I × J : xi,j > 0}.

Because X is not a basic solution to the Transportation Problem, there does
not exist any basis B for the transportation problem satisfying K ⊂ B. It
therefore follows from Proposition 3.6 that there exists a non-zero m × n
matrix Y whose coefficients yi,j satisfy the following conditions:—

•
n∑
j=1

yi,j = 0 for i = 1, 2, . . . ,m;

•
m∑
i=1

yi,j = 0 for j = 1, 2, . . . , n;

• yi,j = 0 when (i, j) 6∈ K.

We can assume without loss of generality that
m∑
i=1

n∑
j=1

ci,jyi,j ≥ 0, where

the quantities ci,j are the coefficients of the cost matrix C, because otherwise
we can replace Y with −Y .

Let Zλ = X − λY for all real numbers λ, and let zi,j(λ) denote the
coefficient (Zλ)i,j in the ith row and jth column of the matrix Zλ. Then
zi,j(λ) = xi,j − λyi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Moreover

•
n∑
j=1

zi,j(λ) = si;

•
m∑
i=1

zi,j(λ) = dj;

• zi,j(λ) = 0 whenever (i, j) 6∈ K;

•
m∑
i=1

n∑
j=1

ci,jzi,j(λ) ≤
m∑
i=1

n∑
j=1

ci,jxi,j whenever λ ≥ 0.

Now the matrix Y is a non-zero matrix whose rows and columns all sum
to zero. It follows that at least one of its coefficients must be strictly positive.
Thus there exists at least one ordered pair (i, j) belonging to the set K for
which yi,j > 0. Let

λ0 = minimum

{
xi,j
yi,j

: (i, j) ∈ K and yi,j > 0

}
.
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Then λ0 > 0. Moreover if 0 ≤ λ < λ0 then xi,j − λyi,j > 0 for all (i, j) ∈ K,
and if λ > λ0 then there exists at least one element (i0, j0) of K for which
xi0,j0 − λyi0,j0 < 0. It follows that xi,j − λ0yi,j ≥ 0 for all (i, j) ∈ K, and
xi0,j0 − λ0yi0,j0 = 0.

Thus Zλ0 is a feasible solution of the given transportation problem whose
cost does not exceed that of the given feasible solution X. Moreover Zλ0 has
fewer non-zero components than the given feasible solution X.

If Zλ0 is itself a basic feasible solution, then we have found the required
basic feasible solution whose cost does not exceed that of the given feasible
solution. Otherwise we can iterate the process until we arrive at the required
basic feasible solution whose cost does not exceed that of the given feasible
solution.

A transportation problem has only finitely many basic feasible solutions.
Indeed there are only finitely many bases for the problem, and any basis is
associated with at most one basic feasible solution. Therefore there exists a
basic feasible solution whose cost does not exceed the cost of any other basic
feasible solution. It then follows from Proposition 3.7 that the cost of this
basic feasible solution cannot exceed the cost of any other feasible solution
of the given transportation problem. This basic feasible solution is thus a
basic optimal solution of the Transportation Problem.

The transportation problem determined by the supply vector, demand
vector and cost matrix has only finitely many basic feasible solutions, be-
cause there are only finitely many bases for the problem, and each basis can
determine at most one basic feasible solution. Nevertheless the number of
basic feasible solutions may be quite large.

But it can be shown that a transportation problem always has a basic
optimal solution. It can be found using an algorithm that implements the
Simplex Method devised by George B. Dantzig in the 1940s. This algorithm
involves passing from one basis to another, lowering the cost at each stage,
until one eventually finds a basis that can be shown to determine a basic
optimal solution of the transportation problem.

3.5 The Northwest Corner Method

Example We discuss in detail how to find an initial basic feasible solution of
a transportation problem with 4 suppliers and 5 recipients, using a method
known as the Northwest Corner Method. This method does not make use of
cost information.

The course of the calculation is determined by the supply vector s and

32



the demand vector d, where

s = (9, 11, 4, 5), d = (6, 7, 5, 3, 8).

We need to fill in the entries in a tableau of the form

xi,j 1 2 3 4 5 si
1 · · · · · 9
2 · · · · · 11
3 · · · · · 4
4 · · · · · 5
dj 6 7 5 3 8 29

In the tableau just presented the labels on the left hand side identify
the suppliers, the labels at the top identify the recipients, the numbers on
the right hand side list the number of units that the relevant supplier must
provide, and the numbers at the bottom identify the number of units that
the relevant recipient must obtain. Number in the bottom right hand corner
gives the common value of the total supply and the total demand.

The values in the individual cells must be non-zero, the rows must sum
to the value on the left, and the columns must sum to the value on the
bottom. The Northwest Corner Method is applied recursively. At each stage
the undetermined cell in at the top left (the northwest corner) is given the
maximum possible value allowable with the constraints. The remainder of
either the first row or the first column must then be completed with zeros.
This leads to a reduced tableau to be determined with either one fewer row
or else one fewer column. One continues in this fashion, as exemplified in
the solution of this particular problem, until the entire tableau has been
completed.

The method will also determine a basis associated with the basic feasible
solution determined by the Northwest Corner Method. This basis lists the
cells that play the role of northwest corner at each stage of the method.
At the first stage, the northwest corner cell is associated with supplier 1
and recipient 1. This cell is assigned a value equal to the mimimum of the
corresponding column and row sums. Thus, this example, the northwest
corner cell, is given the value 6, which is the desired column sum. The
remaining cells in that row are given the value 0.

The tableau then takes the following form:—
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xi,j 1 2 3 4 5 si
1 6 · · · · 9
2 0 · · · · 11
3 0 · · · · 4
4 0 · · · · 5
dj 6 7 5 3 8 29

The ordered pair (1, 1) commences the list of elements making up the
associated basis.

At the second stage, one applies the Northwest Corner Method to the
following reduced tableau:—

xi,j 2 3 4 5 si
1 · · · · 3
2 · · · · 11
3 · · · · 4
4 · · · · 5
dj 7 5 3 8 23

The required value for the first row sum of the reduced tableau has been
reduced to reflect the fact that the values in the remaining undetermined
cells of the first row must sum to the value 3.

The value 3 is then assigned to the northwest corner cell of the reduced
tableau (as 3 is the maximum possible value for this cell subject to the
constraints on row and column sums). The reduced tableau therefore takes
the following form after the second stage:—

xi,j 2 3 4 5 si
1 3 0 0 0 3
2 · · · · 11
3 · · · · 4
4 · · · · 5
dj 7 5 3 8 23

The main tableau at the completion of the second stage then stands as
follows:—
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xi,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 · · · · 11
3 0 · · · · 4
4 0 · · · · 5
dj 6 7 5 3 8 29

The list of ordered pairs representing the basis elements determined at
the second stage then stands as follows:—

Basis: (1, 1), (2, 1), . . ..

The reduced tableau for the third stage then stands as follows:—

xi,j 2 3 4 5 si
2 · · · · 11
3 · · · · 4
4 · · · · 5
dj 4 5 3 8 20

Accordingly the northwest corner of the reduced tableau should be as-
signed the value 4, and the remaining elements of the first column should be
assigned the value 0.

The reduced tableau at the completion of the third stage stands as follows:—

xi,j 2 3 4 5 si
2 4 · · · 11
3 0 · · · 4
4 0 · · · 5
dj 4 5 3 8 20

The main tableau and list of basis elements at the completion of the third
stage then stand as follows:—

xi,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 · · · 11
3 0 0 · · · 4
4 0 0 · · · 5
dj 6 7 5 3 8 29
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Basis: (1, 1), (2, 1), (2, 2), . . ..

The reduced tableau at the completion of the fourth stage is as follows:—

xi,j 3 4 5 si
2 5 · · 7
3 0 · · 4
4 0 · · 5
dj 5 3 8 16

The main tableau and list of basis elements at the completion of the
fourth stage then stand as follows:—

xi,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 5 · · 11
3 0 0 0 · · 4
4 0 0 0 · · 5
dj 6 7 5 3 8 29

Basis: (1, 1), (2, 1), (2, 2), (2, 3), . . ..

At the fifth stage the sum of the undetermined cells for the 2nd supplier
must sum to 2. Therefore the main tableau and list of basis elements at the
completion of the fifth stage then stand as follows:—

xi,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 5 2 0 11
3 0 0 0 · · 4
4 0 0 0 · · 5
dj 6 7 5 3 8 29

Basis: (1, 1), (2, 1), (2, 2), (2, 3), (2, 4), . . ..

At the sixth stage the sum of the undetermined cells for the 4th recipient
must sum to 1. Therefore the main tableau and list of basis elements at the
completion of the sixth stage then stand as follows:—
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xi,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 5 2 0 11
3 0 0 0 1 · 4
4 0 0 0 0 · 5
dj 6 7 5 3 8 29

Basis: (1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), . . ..

Two further stages suffice to complete the tableau. Moreover, at the
completion of the eighth and final stage the main tableau and list of basis
elements stand as follows:—

xi,j 1 2 3 4 5 si
1 6 3 0 0 0 9
2 0 4 5 2 0 11
3 0 0 0 1 3 4
4 0 0 0 0 5 5
dj 6 7 5 3 8 29

Basis: (1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5).

We now check that we have indeed obtained a basis B, where

B = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}.

If B is indeed a basis, then arbitrary values s1, s2, s3, s4 and d1, d2, d3, d4, d5
should determine corresponding values of xi,j for (i, j) ∈ B, as indicated in
the following tableau:—

xi,j 1 2 3 4 5
1 x1,1 x1,2 s1
2 x2,2 x2,3 x2,4 s2
3 x3,4 x3,5 s3
4 x4,5 s4

d1 d2 d3 d4 d5
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Now analysis of the Northwest Corner Method shows that, when suc-
cessive elements of the set B are ordered by the stage of the method at
which they are determined. Then the value of xi′,j′ for a given ordered pair
(i′, j′) ∈ B is determined by the values of the row sums si, the column sums
dj, together with the values xi,j for the ordered pairs (i, j) in the set B
determined at earlier stages of the method.

In the specific numerical example that we have just considered, we find
that the values of xi,j for ordered pairs (i, j) in the set B, where

B = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)},

are determined by solving, successively, the following equations:—

x1,1 = d1, x1,2 = s1 − x1,1, x2,2 = d2 − x1,2,

x2,3 = d3, x2,4 = s2 − x2,3 − x2,2, x3,4 = d4 − x2,4,

x3,5 = s3 − x3,4, x4,5 = d5 − x3,5,

It follows that the values of xi,j for (i, j) ∈ B are indeed determined by
s1, s2, s3, s4 and d1, d2, d3, d4, d5.

Indeed we find that

x1,1 = d1,

x1,2 = s1 − d1,
x2,2 = d2 − s1 + d1,

x2,3 = d3,

x2,4 = s2 − d3 − d2 + s1 − d1,
x3,4 = d4 − s2 + d3 + d2 − s1 + d1,

x3,5 = s3 − d4 + s2 − d3 − d2 + s1 − d1,
x4,5 = d5 − s3 + d4 − s2 + d3 + d2 − s1 + d1.

Note that, in this specific example, the values of xi,j for ordered pairs
(i, j) in the basis B are expressed as sums of terms of the form ±si and ±dj.
Moreover the summands si all have the same sign, the summands dj all have
the same sign, and the sign of the terms si is opposite to the sign of the
terms dj. Thus, for example

x4,5 = (d1 + d2 + d3 + d4 + d5)− (s1 + s2 + s3).

This pattern is in fact a manifestation of a general result applicable to all
instances of the Transportation Problem.
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Remark The basic feasible solution produced by applying the Northwest
Corner Method is just one amongst many basic feasible solutions. There
are many others. Some of these may be obtained on applying the Northwest
Corner Method after reordering the rows and columns (thus renumbering the
suppliers and recipients).

It would take significant work to calculate all basic feasible solutions and
then calculate the cost associated with each one.

3.6 The Minimum Cost Method for finding Basic Fea-
sible Solutions

We discuss another method for finding an initial basic feasible solution of
a transportation problem. This method is similar to the Northwest Corner
Method, but takes account of the transport costs encoded in the cost ma-
trix. The method is known as the Minimum Cost Method, on account of the
method of selecting the cell of the tableau to be filled in at each stage in the
application of the algorithm. The initial basic feasible solution obtained by
this method is not necessarily optimal.

Example Let ci,j be the coefficient in the ith row and jth column of the
cost matrix C, where

C =


8 4 16
3 7 2
13 8 6
5 7 8

 .

and let
s1 = 13, s2 = 8, s3 = 11, s4 = 13,

d1 = 19, d2 = 12, d3 = 14.

We seek to find non-negative real numbers xi,j for i = 1, 2, 3, 4 and j =

1, 2, 3 that minimize
4∑
i=1

3∑
j=1

ci,jxi,j subject to the following constraints:

3∑
j=1

xi,j = si for i = 1, 2, 3, 4,

4∑
i=1

xi,j = dj for j = 1, 2, 3,

and xi,j ≥ 0 for all i and j.
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For this problem the supply vector is (13, 8, 11, 13) and the demand vector
is (19, 12, 14). The components of both the supply vector and the demand
vector add up to 45.

In order to start the process of finding an initial basic solution for this
problems, we set up a tableau that records the row sums (or supplies), the
column sums (or demands) and the costs ci,j for the given problem, whilst
leaving cells to be filled in with the values of the non-negative real numbers
xi,j that will specify the initial basic feasible solution. The resultant tableau
is structured as follows:—

ci,j ↘ xi,j 1 2 3 si

1 8 4 16
? ? ? 13

2 3 7 2
? ? ? 8

3 13 8 6
? ? ? 11

4 5 7 8
? ? ? 13

dj 19 12 14 45

We apply the minimum cost method to find an initial basic solution.
The cell with lowest cost is the cell (2, 3). We assign to this cell the

maximum value possible, which is the minimum of s2, which is 8, and d3,
which is 14. Thus we set x2,3 = 8. This forces x2,1 = 0 and x2,2 = 0. The
pair (2, 3) is added to the current basis. At the completion of the first stage
the tableau is structured as follows:—

ci,j ↘ xi,j 1 2 3 si

1 8 4 16
? ? ? 13

2 3 7 2 •
0 0 8 8

3 13 8 6
? ? ? 11

4 5 7 8
? ? ? 13

dj 19 12 14 45

We enter a • symbol into the tableau in the relevant cell to indicate that
(1, 2) will be belong to the basis constructed by this method.
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The next undetermined cell of lowest cost is (1, 2). We assign to this cell
the minimum of s1, which is 13, and d2 − x2,2, which is 12. Thus we set
x1,2 = 12. This forces x3,2 = 0 and x4,2 = 0. The pair (1, 2) is added to the
current basis. At the completion of this stage the tableau is structured as
follows:—

ci,j ↘ xi,j 1 2 3 si

1 8 4 • 16
? 12 ? 13

2 3 7 2 •
0 0 8 8

3 13 8 6
? 0 ? 11

4 5 7 8
? 0 ? 13

dj 19 12 14 45

The next undetermined cell of lowest cost is (4, 1). We assign to this cell
the minimum of s4 − x4,2, which is 13, and d1 − x2,1, which is 19. Thus we
set x4,1 = 13. This forces x4,3 = 0. The pair (4, 1) is added to the current
basis. At the completion of this stage the tableau is structured as follows:—

ci,j ↘ xi,j 1 2 3 si

1 8 4 • 16
? 12 ? 13

2 3 7 2 •
0 0 8 8

3 13 8 6
? 0 ? 11

4 5 • 7 8
13 0 0 13

dj 19 12 14 45

The next undetermined cell of lowest cost is (3, 3). We assign to this
cell the minimum of s3 − x3,2, which is 11, and d3 − x2,3 − x4,3, which is 6
(= 14 − 8). Thus we set x3,3 = 6. This forces x1,3 = 0. The pair (3, 3) is
added to the current basis. At the completion of this stage the tableau is
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structured as follows:—

ci,j ↘ xi,j 1 2 3 si

1 8 4 • 16
? 12 0 13

2 3 7 2 •
0 0 8 8

3 13 8 6 •
? 0 6 11

4 5 • 7 8
13 0 0 13

dj 19 12 14 45

The next undetermined cell of lowest cost is (1, 1). We assign to this cell
the minimum of s1 − x1,2 − x1,3, which is 1, and d1 − x2,1 − x4,1, which is 6.
Thus we set x1,1 = 1. The pair (1, 1) is added to the current basis. At the
completion of this stage the tableau is structured as follows:—

ci,j ↘ xi,j 1 2 3 si

1 8 • 4 • 16
1 12 0 13

2 3 7 2 •
0 0 8 8

3 13 8 6 •
? 0 6 11

4 5 • 7 8
13 0 0 13

dj 19 12 14 45

The final undetermined cell is (3, 1). We assign to this cell the common
value of s3 − x3,2 − x3,3 and d1 − x1,1 − x2,1 − x4,1, which is 5. Thus we set
x3,1 = 5. The pair (3, 1) is added to the current basis. At the completion of
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this final stage the tableau is structured as follows:—

ci,j ↘ xi,j 1 2 3 si

1 8 • 4 • 16
1 12 0 13

2 3 7 2 •
0 0 8 8

3 13 • 8 6 •
5 0 6 11

4 5 • 7 8
13 0 0 13

dj 19 12 14 45

The initial basis is thus B where

B = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 3), (4, 1)}.

The basic feasible solution is represented by the 6× 5 matrix X, where

X =


1 12 0
0 0 8
5 0 6
13 0 0

 .

The cost of this initial feasible basic solution is

8× 1 + 4× 12 + 2× 8 + 13× 5 + 6× 6

+ 5× 13

= 8 + 48 + 16 + 65 + 36 + 65

= 238.

3.7 Effectiveness of the Minimum Cost Method

We now discuss the reasons why the Minimum Cost Method yields a feasible
solution to a transportation problem that is a basic feasible solution.

Consider a transportation problem with m suppliers and n recipients,
determined by a supply vector s, a demand vector d and a cost matrix C,
where

s = (s1, s2, . . . , sm), d = (d1, d2, . . . , dn).

and where d ∈ Rn and cost matrix C, We denote by ci,j the coefficient in the
ith row and jth column of the matrix C.
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The Minimum Cost Method determines a feasible solution to this trans-
portation problem. A feasible solution is represented by an m × n ma-
trix X whose coefficients xi,j satisfy the following conditions: xi,j ≥ 0

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n;
n∑
j=1

xi,j = si for i = 1, 2, . . . ,m;

m∑
i=1

xi,j = dj for j = 1, 2, . . . , n. We must show that there exists a basis B

such that the feasible solution determined by the Minimum Cost Method
satisfies xi,j = 0 when (i, j) 6 ∈ B.

In applying the Minimum Cost Method, we begin by locating a coefficient
of the cost matrix which does not exceed the other coefficients of this matrix.
Renumbering the suppliers and recipients, if necessary, we may assume, with-
out loss of generality, that ci,j ≥ cm,n for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
The feasible solution with coefficients xi,j that results from application of the
Minimum Cost Method then conforms to a structure specified in at least one
of the two cases that are described immediately below:—

• in Case I, the following conditions are satisfied: dn ≤ sm; xm,n = dn;

xi,n = 0 when 1 ≤ i < n;
n−1∑
j=1

xi,j = si for 1 ≤ i < m;
n−1∑
j=1

xm,j = sm−dn;

m∑
i=1

xi,j = dj for 1 ≤ j < n; and the coefficients xi,j with 1 ≤ i ≤ m and

1 ≤ j < n constitute a solution of the relevant transportation problem
arising from application of the Minimum Cost Method.

• in Case II, the following conditions are satisfied: sm ≤ dn; xm,n = sm;

xm,j = 0 when 1 ≤ j < n;
m−1∑
i=1

xi,j = dj for 1 ≤ j < n;
m−1∑
i=1

xi,n = dn −

sm;
n∑
j=1

xi,j = si for 1 ≤ i < m; and the coefficients xi,j with 1 ≤ i < m

and 1 ≤ j ≤ n constitute a solution of the relevant transportation
problem arising from application of the Minimum Cost Method.

The recursive nature of the Minimum Cost Method therefore enables us
to prove that the Minimum Cost Method yields a basic feasible solution by
induction on m+n, where m is the number of suppliers and n is the number of
recipients. The Minimum Cost Method clearly yields a basic feasible solution
in the trivial case where m = n = 1. We suppose therefore as our inductive
hypothesis that the feasible solution determined by application of the Min-
imum Cost Method is a basic feasible solution in those cases where adding
the number of suppliers to the number of recipients results in a number less
than m+ n.
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In particular, we may assume that, in applying the Minimum Cost Method
to the given problem with m suppliers and n recipients the matrices X ′ and
X ′′ that result from application of the Minimum Cost Method to a smaller
transportation problem as specified in the descriptions of Case I and Case
II above.

Let us now restrict attention to Case I. In this case the reduced trans-
portation is a transportation problem with m suppliers and n− 1 recipients.
The inductive hypothesis guarantees that the feasible solution that results
from application of the Minimum Cost Method is a basic solution. Therefore
there exists a basis B′ for this reduced problem with n + m − 2 elements,
Moreover if 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1 and if xi,j 6= 0 then (i, j) ∈ B′. The
elements of the basis B′ take the form of ordered pairs (i, j), where i is some
integer between 1 and m and j is some integer between 1 and n− 1. Let

B = B′ ∪ {(m,n)}.

We claim that B is a basis for a transportation problem with m suppliers
and n recipients.

Let a1, a2, . . . , am and b1, b2, . . . , bn be real numbers, where
m∑
i=1

ai =
n∑
j=1

bj.

We must show that there exist unique real numbers zi,j for i = 1, 2, . . . ,m

and j = 1, 2, . . . , n such that
n∑
j=1

zi,j = ai for i = 1, 2, . . . ,m,
m∑
i=1

zi,j = bj for

j = 1, 2, . . . , n, and zi,j = 0 unless (i, j) ∈ B.

In particular these equations require that
m∑
i=1

zi,n = bn. But m is the only

value of i for which (i, n) ∈ B. It follows that the coefficients zi,j of any
basic solution determined by the basis B must satisfy zi,n = 0 for i < m and
zm,n = bn.

It then follows that, in Case I, if the coefficients zi,j satisfy the equations
n∑
j=1

zi,j = ai for 1 ≤ i ≤ m and
m∑
i=1

zi,j = bj for 1 ≤ j ≤ n, and if zi,j = 0 unless

(i, j) ∈ B, then these coefficients must satisfy the following conditions:—

(i) zm,n = bn;

(ii) zi,n = 0 when 1 ≤ i < m;

(iii)
n−1∑
j=1

zm,j = am − bn

(iv)
n−1∑
j=1

zi,j = ai when 1 ≤ i < m;
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(v)
m∑
i=1

zi,j = bj when 1 ≤ j < n.

(vi) if j < n and zi,j 6= 0 then (i, j) ∈ B′.

Now B′ is a basis for a transportation problem with m suppliers and n−1
recipients. It follows that there exist unique real numbers zi,j for 1 ≤ i ≤ m
and 1 ≤ j < n that satisfy conditions (iii), (iv), (v) and (vi) above. It
follows from this that if the numbers zi,n are determined in accordance with
conditions (i) and (ii) above then the numbers zi,j are the unique real numbers

that solve the equations
n∑
j=1

zi,j = ai for 1 ≤ i ≤ m and
m∑
i=1

zi,j = bj for

1 ≤ j ≤ n, and that also satisfy zi,j = 0 whenever (i, j) 6∈ B.
We conclude that, when the Minimum Cost Method proceeds so as to

produce a feasible solution to a transportation problem with m suppliers
and n recipients that conforms to the conditions specified in Case I above,
then that feasible solution is a basic feasible solution with associated ba-
sis B. A similar argument applies when the feasible solution conforms to
the conditions specified in Case II above. The feasible solution produced by
the Minimum Cost Method conforms to conditions specified in one or other
of these two cases. We conclude therefore that the Minimum Cost Method
always determines a basic feasible solution to a transportation problem.

3.8 Formal Description of the Minimum Cost Method

We describe the Minimum Cost Method for finding an initial basic feasible
solution to a transportation problem.

Consider a transportation problem specified by positive integers m and n

and non-negative real numbers s1, s2, . . . , sm and d1, d2, . . . , dn, where
m∑
i=1

si =

n∑
j=1

dj. Let I = {1, 2, . . . ,m} and let J = {1, 2, . . . , n}. A feasible solution

consists of an array of non-negative real numbers xi,j for i ∈ I and j ∈ J with
the property that

∑
j∈J

xi,j = si for all i ∈ I and
∑
i∈I
xi,j = dj for all j ∈ J . The

objective of the problem is to find a feasible solution that minimizes cost,
where the cost of a feasible solution (xi,j : i ∈ I andj ∈ J) is

∑
i∈I

∑
j∈J

ci,jxi,j.

In applying the Minimum Cost Method to find an initial basic solution
to the Transportation we apply an algorithm that corresponds to the de-
termination of elements (i1, j1), (i2, j2), . . . , (im+n−1, jm+n−1) of I × J and of
subsets I0, I1, . . . , Im+n−1 of I and J0, J1, . . . , Jm+n−1 of J such that I0 = I,

46



J0 = J , and such that, for each integer k between 1 and m + n− 1, exactly
one of the following two conditions is satisfied:—

(i) ik 6∈ Ik, jk ∈ Jk, Ik−1 = Ik ∪ {ik} and Jk−1 = Jk;

(ii) ik ∈ Ik, jk 6∈ Jk, Ik−1 = Ik and Jk−1 = Jk ∪ {jk};

Indeed let I0 = I, J0 = J and B0 = {0}. The Minimum Cost Method
algorithm is accomplished in m+ n− 1 stages.

Let k be an integer satisfying 1 ≤ k ≤ m+n− 1 and that subsets Ik−1 of
I, Jk−1 of J and Bk−1 of I × J have been determined in accordance with the
rules that apply at previous stages of the Minimum Cost algorithm. Suppose
also that non-negative real numbers xi,j have been determined for all ordered
pairs (i, j) in I × J that satisfy either i 6∈ Ik−1 or j 6∈ Jk−1 so as to satisfy
the following conditions:—

•
∑

j∈J\Jk−1

xi,j ≤ si whenever i ∈ Ik−1;

•
∑
j∈J

xi,j = si whenever i 6∈ Ik−1;

•
∑

i∈I\Ik−1

xi,j ≤ dj whenever j ∈ Jk−1;

•
∑
i∈I
xi,j = dj whenever j 6∈ Jk−1.

The Minimum Cost Method specifies that one should choose (ik, jk) ∈
Ik−1 × Jk−1 so that

cik,jk ≤ ci,j for all (i, j) ∈ Ik−1 × Jk−1,

and set Bk = Bk−1 ∪ {(ik, jk)}. Having chosen (ik, jk), the non-negative real
number xik,jk is then determined so that

xik,jk = min

sik − ∑
j∈J\Jk−1

xik,j, djk −
∑

i∈I\Ik−1

xi,jk

 .

The subsets Ik and Jk of I and J respectively are then determined, along
with appropriate values of xi,j, according to the following rules:—

(i) if

sik −
∑

j∈J\Jk−1

xik,j < djk −
∑

i∈I\Ik−1

xi,jk

then we set Ik = Ik−1 \ {ik} and Jk = Jk−1, and we also let xik,j = 0
for all j ∈ Jk−1 \ {jk};
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(ii) if

sik −
∑

j∈J\Jk−1

xik,j > djk −
∑

i∈I\Ik−1

xi,jk

then we set Jk = Jk−1 \ {jk} and Ik = Ik−1, and we also let xi,jk = 0
for all i ∈ Ik−1 \ {ik};

(iii) if

sik −
∑

j∈J\Jk−1

xik,j = djk −
∑

i∈I\Ik−1

xi,jk

then we determine Ik and Jk and the corresponding values of xi,j ei-
ther in accordance with the specification in rule (i) above or else in
accordance with the specification in rule (ii) above.

These rules ensure that the real numbers xi,j determined at this stage
are all non-negative, and that the following conditions are satisfied at the
conclusion of the kth stage of the Minimum Cost Method algorithm:—

•
∑

j∈J\Jk
xi,j ≤ si whenever i ∈ Ik;

•
∑
j∈J

xi,j = si whenever i 6∈ Ik;

•
∑

i∈I\Ik
xi,j ≤ dj whenever j ∈ Jk;

•
∑
i∈I
xi,j = dj whenever j 6∈ Jk.

At the completion of the final stage (for which k = m + n − 1) we have
determined a subset B of I × J , where B = Bm+n−1, together with non-
negative real numbers xi,j for i ∈ I and j ∈ I that constitute a feasible
solution to the given transportation problem.

3.9 Formal Description of the Northwest Corner Method

The Northwest Corner Method for finding a basic feasible solution proceeds
according to the stages of the Minimum Cost Method above, differing only
from that method in the choice of the ordered pair (ik, jk) at the kth stage
of the method. In the Minimum Cost Method, the ordered pair (ik, jk) is
chosen such that (ik, jk) ∈ Ik−1 × Jk−1 and

cik,jk ≤ ci,j for all (i, j) ∈ Ik−1 × Jk−1
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(where the sets Ik−1, Jk−1 are determined as in the specification of the Mini-
mum Cost Method). In applying the Northwest Corner Method, costs asso-
ciated with ordered pairs (i, j) in I × J are not taken into account. Instead
(ik, jk) is chosen so that ik is the minimum of the integers in Ik−1 and jk is the
minimum of the integers in Jk−1. Otherwise the specification of the North-
west Corner Method corresponds to that of the Minimum Cost Method, and
results in a basic feasible solution of the given transportation problem.

3.10 A Method for finding Basic Optimal Solutions

We continue with the study of the optimization problem introduced in the
discussion of the minimum cost method.

Example We seek to determine non-negative real numbers xi,j for i =

1, 2, 3, 4 and j = 1, 2, 3 that minimize
4∑
i=1

3∑
j=1

ci,jxi,j, where ci,j is the coef-

ficient in the ith row and jth column of the cost matrix C, where

C =


8 4 16
3 7 2
13 8 6
5 7 8

 .

subject to the constraints

3∑
j=1

xi,j = si (i = 1, 2, 3, 4)

and
4∑
i=1

xi,j = dj (j = 1, 2, 3),

where
s1 = 13, s2 = 8, s3 = 11, s4 = 13,

d1 = 19, d2 = 12, d3 = 14.

We have found an initial basic feasible solution by the Minimum Cost
Method. This solution satisfies xi,j = (X)i,j for all i and j, where

X =


1 12 0
0 0 8
5 0 6
13 0 0

 .
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We next determine whether this initial basic feasible solution is an optimal
solution, and, if not, how to adjust the basis to obtain a solution of lower
cost.

We determine u1, u2, u3, u4 and v1, v2, v3 such that ci,j = vj − ui for all
(i, j) ∈ B, where B is the initial basis.

We seek a solution with u1 = 0. We then determine qi,j so that ci,j =
vj − ui + qi,j for all i and j.

We therefore complete the following tableau:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • ?
? ? 0

3 13 • 8 6 • ?
0 ? 0

4 5 • 7 8 ?
0 ? ?

vj ? ? ?

Now u1 = 0, (1, 1) ∈ B and (1, 2) ∈ B force v1 = 8 and v2 = 4. After
entering these values the tableau stands as follows:

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • ?
? ? 0

3 13 • 8 6 • ?
0 ? 0

4 5 • 7 8 ?
0 ? ?

vj 8 4 ?

Then v1 = 8, (3, 1) ∈ B and (4, 1) ∈ B force u3 = −5 and u4 = 3. After
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entering these values the tableau stands as follows:

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • ?
? ? 0

3 13 • 8 6 • −5
0 ? 0

4 5 • 7 8 3
0 ? ?

vj 8 4 ?

Then u3 = −5 and (3, 3) ∈ B force v3 = 1. After entering this value the
tableau stands as follows:

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • ?
? ? 0

3 13 • 8 6 • −5
0 ? 0

4 5 • 7 8 3
0 ? ?

vj 8 4 1

Then v3 = 1 and (2, 3) ∈ B force u2 = −1.
After entering the numbers ui and vj, the tableau is as follows:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 7 2 • −1
? ? 0

3 13 • 8 6 • −5
0 ? 0

4 5 • 7 8 3
0 ? ?

vj 8 4 1

Computing the numbers qi,j such that ci,j + ui = vj + qi,j, we find that
q1,3 = 15, q2,1 = −6, q2,2 = 2, q3,2 = −1, q4,2 = 6 and q4,3 = 10.
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The completed tableau is as follows:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 15

2 3 7 2 • −1
−6 2 0

3 13 • 8 6 • −5
0 −1 0

4 5 • 7 8 3
0 6 10

vj 8 4 1

The initial basic feasible solution is not optimal because some of the
quantities qi,j are negative. To see this, suppose that the numbers xi,j for
i = 1, 2, 3, 4 and j = 1, 2, 3 constitute a feasible solution to the given problem.

Then
3∑
j=1

xi,j = si for i = 1, 2, 3 and
4∑
i=1

xi,j = dj for j = 1, 2, 3, 4. It follows

that

4∑
i=1

3∑
j=1

ci,jxi,j =
4∑
i=1

3∑
j=1

(vj − ui + qi,j)xi,j

=
3∑
j=1

vjdj −
4∑
i=1

uisi +
4∑
i=1

3∑
j=1

qi,jxi,j.

Applying this identity to the initial basic feasible solution, we find that∑3
j=1 vjdj −

∑4
i=1 uisi = 238, given that 238 is the cost of the initial basic

feasible solution. Thus the cost C of any feasible solution (xi,j) satisfies

C = 238 + 15x1,3 − 6x2,1 + 2x2,2 − x3,2 + 6x4,2 + 10x4,3.

One could construct feasible solutions with x2,1 < 0 and xi,j = 0 for
(i, j) 6∈ B ∪ {(2, 1)}, and the cost of such feasible solutions would be lower
than that of the initial basic solution. We therefore seek to bring (2, 1) into
the basis, removing some other element of the basis to ensure that the new
basis corresponds to a feasible basic solution.

The procedure for achieving this requires us to determine a 4×3 matrix Y
satisfying the following conditions:—

• y2,1 = 1;

• yi,j = 0 when (i, j) 6∈ B ∪ {(2, 1)};
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• all rows and columns of the matrix Y sum to zero.

Accordingly we fill in the following tableau with those coefficients yi,j of
the matrix Y that correspond to cells in the current basis (marked with the
• symbol), so that all rows sum to zero and all columns sum to zero:—

yi,j 1 2 3

1 ? • ? • 0
2 1 ◦ ? • 0
3 ? • ? • 0
4 ? • 0

0 0 0 0

The constraints that y2,1 = 1, yi,j = 0 when (i, j) 6∈ B and the constraints
requiring the rows and columns to sum to zero determine the values of yi,j
for all yi,j ∈ B. These values are recorded in the following tableau:—

yi,j 1 2 3

1 0 • 0 • 0
2 1 ◦ −1 • 0
3 −1 • 1 • 0
4 0 • 0

0 0 0 0

We now determine those values of λ for whichX+λY is a feasible solution,
where

X + λY =


1 12 0
λ 0 8− λ

5− λ 0 6 + λ
13 0 0

 .

In order to drive down the cost as far as possible, we should make λ as
large as possible, subject to the requirement that all the coefficients of the
above matrix should be non-negative numbers.

Accordingly we take λ = 5. Our new basic feasible solution X is then as
follows:—

X =


1 12 0
5 0 3
0 0 11
13 0 0

 .
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We regard X as the current feasible basic solution.
The cost of the current feasible basic solution X is

8× 1 + 4× 12 + 3× 5 + 2× 3 + 6× 11

+ 5× 13

= 8 + 48 + 15 + 6 + 66 + 65

= 208.

The cost has gone down by 30, as one would expect (the reduction in the
cost being −λq2,1 where λ = 5 and q2,1 = −6).

The current basic feasible solution X is associated with the basis B where

B = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 3), (4, 1)}.

We now determine, for the current basisB values u1, u2, u3, u4 and v1, v2, v3
such that ci,j = vj − ui for all (i, j) ∈ B. the initial basis.

We seek a solution with u1 = 0. We then determine qi,j so that ci,j =
vj − ui + qi,j for all i and j.

We therefore complete the following tableau:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 ?

2 3 • 7 2 • ?
0 ? 0

3 13 8 6 • ?
? ? 0

4 5 • 7 8 ?
0 ? ?

vj ? ? ?

Now u1 = 0, (1, 1) ∈ B and (1, 2) ∈ B force v1 = 8 and v2 = 4.
Then v1 = 8, (2, 1) ∈ B and (4, 1) ∈ B force u2 = 5 and u4 = 3.
Then u2 = 5 and (3, 3) ∈ B force v3 = 7.
Then v3 = 7 and (3, 3) ∈ B force u3 = 1.
Computing the numbers qi,j such that ci,j + ui = vj + qi,j, we find that

q1,3 = 9, q2,2 = 8, q3,1 = 6, q3,2 = 5, q4,2 = 6 and q4,3 = 4.

54



The completed tableau is as follows:—

ci,j ↘ qi,j 1 2 3 ui

1 8 • 4 • 16 0
0 0 9

2 3 • 7 2 • 5
0 8 0

3 13 8 6 • 1
6 5 0

4 5 • 7 8 3
0 6 4

vj 8 4 7

All numbers qi,j are non-negative for the current feasible basic solution.
This solution is therefore optimal. Indeed, arguing as before we find that the
cost C of any feasible solution (xi,j) satisfies

C = 208 + 9x1,3 + 8x2,2 + 6x3,1 + 5x3,2 + 6x4,2 + 4x4,3.

We conclude that X is an basic optimal solution, where

X =


1 12 0
5 0 3
0 0 11
13 0 0

 .

3.11 Formal Analysis of the Solution of the Trans-
portation Problem

We now describe in general terms the method for solving a transportation
problem in which total supply equals total demand.

We suppose that an initial basic feasible solution has been obtained. We
apply an iterative method (based on the general Simplex Method for the
solution of linear programming problems) that will test a basic feasible solu-
tion for optimality and, in the event that the feasible solution is shown not
to be optimal, establishes information that (with the exception of certain
‘degenerate’ cases of the transportation problem) enables one to find a basic
feasible solution with lower cost. Iterating this procedure a finite number of
times, one should arrive at a basic feasible solution that is optimal for the
given transportation problem.

We suppose that the given instance of the Transportation Problem in-
volves m suppliers and n recipients. The required supplies are specified
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by non-negative real numbers s1, s2, . . . , sm, and the required demands are
specified by non-negative real numbers d1, d2, . . . , dn. We further suppose

that
m∑
i=1

si =
n∑
j=1

dj. A feasible solution is represented by non-negative real

numbers xi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where
n∑
j=1

xi,j = si for

i = 1, 2, . . . ,m and
m∑
i=1

xi,j = dj for j = 1, 2, . . . , n.

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}. A subset B of I × J is a
basis for the transportation problem if and only if, given any real numbers

y1, y2, . . . , ym and z1, z2, . . . , zn, where
m∑
i=1

yi =
n∑
j=1

zj, there exist uniquely

determined real numbers xi,j for i ∈ I and j ∈ J such that
n∑
j=1

xi,j = yi for

i ∈ I,
m∑
i=1

xi,j = zj for j ∈ J , where xi,j = 0 whenever (i, j) 6∈ B.

A feasible solution (xi,j) is said to be a basic feasible solution associated
with the basis B if and only if xi,j = 0 for all i ∈ I and j ∈ J for which
(i, j) 6∈ B.

Let xi,j be a non-negative real number for each i ∈ I and j ∈ J . Suppose
that (xi,j) is a basic feasible solution to the transportation problem associated
with basis B, where B ⊂ I × J .

The cost associated with a feasible solution (xi,j is given by
m∑
i=1

n∑
j=1

ci,jxi,j,

where the constants ci,j are real numbers for all i ∈ I and j ∈ J . A feasible
solution for a transportation problem is an optimal solution if and only if it
minimizes cost amongst all feasible solutions to the problem.

In order to test for optimality of a basic feasible solution (xi,j) associated
with a basis B, we determine real numbers u1, u2, . . . , um and v1, v2, . . . , vn
with the property that ci,j = vj − ui for all (i, j) ∈ B. (Proposition 3.10
below guarantees that, given any basis B, it is always possible to find the
required quantities ui and vj.) Having calculated these quantities ui and vj
we determine the values of qi,j, where qi,j = ci,j − vj + ui for all i ∈ I and
j ∈ J . Then qi,j = 0 whenever (i, j) ∈ B.

We claim that a basic feasible solution (xi,j) associated with the basis B
is optimal if and only if qi,j ≥ 0 for all i ∈ I and j ∈ J . This is a consequence
of the identity established in the following proposition.

Proposition 3.8 Let xi,j, ci,j and qi,j be real numbers defined for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, and let u1, u2, . . . , um and v1, v2, . . . , vn be real numbers.
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Suppose that
ci,j = vj − ui + qi,j

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Then

m∑
i=1

n∑
j=1

ci,jxi,j =
n∑
j=1

vjdj −
m∑
i=1

uisi +
m∑
i=1

n∑
j=1

qi,jxi,j,

where si =
n∑
j=1

xi,j for i = 1, 2, . . . ,m and dj =
m∑
i=1

xi,j for j = 1, 2, . . . , n.

Proof The definitions of the relevant quantities ensure that

m∑
i=1

n∑
j=1

ci,jxi,j =
m∑
i=1

n∑
j=1

(vj − ui + qi,j)xi,j

=
n∑
j=1

(
vj

m∑
i=1

xi,j

)
−

m∑
i=1

(
ui

n∑
j=1

xi,j

)

+
m∑
i=1

n∑
j=1

qi,jxi,j

=
n∑
j=1

vjdj −
m∑
i=1

uisi +
m∑
i=1

n∑
j=1

qi,jxi,j,

as required.

Corollary 3.9 Let m and n be integers, and let I = {1, 2, . . . ,m} and J =
{1, 2, . . . , n}. Let xi,j and ci,j be real numbers defined for all i ∈ I and
j ∈ I, and let u1, u2, . . . , um and v1, v2, . . . , vn be real numbers. Suppose that
ci,j = vj − ui for all (i, j) ∈ I × J for which xi,j 6= 0. Then

m∑
i=1

n∑
j=1

ci,jxi,j =
m∑
i=1

djvj −
n∑
j=1

siui,

where si =
n∑
j=1

xi,j for i = 1, 2, . . . ,m and dj =
m∑
i=1

xi,j for j = 1, 2, . . . , n.

Proof Let qi,j = ci,j +ui−vj for all i ∈ I and j ∈ J . Then qi,j = 0 whenever
xi,j 6= 0. It follows from this that

m∑
i=1

n∑
j=1

qi,jxi,j = 0.
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It then follows from Proposition 3.8 that

m∑
i=1

n∑
j=1

ci,jxi,j =
m∑
i=1

n∑
j=1

(vj − ui + qi,j)xi,j =
m∑
i=1

djvj −
n∑
j=1

siui,

as required.

Letm and n be positive integers, let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n},
and let the subset B of I × J be a basis for a transportation problem with
m suppliers and n recipients. Let the cost of a feasible solution (xi,j) be
m∑
i=1

n∑
j=1

ci,jxi,j. Now
n∑
j=1

xi,j = si and
m∑
i=1

xi,j = dj, where the quantities si

and dj are determined by the specification of the problem and are the same
for all feasible solutions of the problem. Let quantities ui for i ∈ I and vj
for j ∈ J be determined such that ci,j = vj − ui for all (i, j) ∈ B, and let
qi,j = ci,j + ui − vj for all i ∈ I and j ∈ J . Then qi,j = 0 for all (i, j) ∈ B.

It follows from Proposition 3.8 that

m∑
i=1

n∑
j=1

ci,jxi,j =
n∑
j=1

vjdj −
m∑
i=1

uisi +
m∑
i=1

n∑
j=1

qi,jxi,j.

Now if the quantities xi,j for i ∈ I and j ∈ J constitute a basic feasible
solution associated with the basis B then xi,j = 0 whenever (i, j) 6∈ B. It

follows that
m∑
i=1

n∑
j=1

qi,jxi,j = 0, and therefore

n∑
j=1

vjdj −
m∑
i=1

uisi = C,

where

C =
m∑
i=1

n∑
j=1

ci,jxi,j.

The cost C of the feasible solution (xi,j) then satisfies the equation

C =
m∑
i=1

n∑
j=1

ci,jxi,j = C +
m∑
i=1

n∑
j=1

qi,jxi,j.

If qi,j ≥ 0 for all i ∈ I and j ∈ J , then the cost C of any feasible solution
(xi,j) is bounded below by the cost of the basic feasible solution (xi,j). It
follows that, in this case, the basic feasible solution (xi,j) is optimal.
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Suppose that (i0, j0) is an element of I × J for which qi0,j0 < 0. Then
(i0, j0) 6∈ B. There is no basis for the transportation problem that includes
the set B∪{(i0, j0)}. A straightforward application of Proposition 3.6 estab-
lishes the existence of quantities yi,j for i ∈ I and j ∈ J such that yi0,j0 = 1
and yi,j = 0 for all i ∈ I and j ∈ J for which (i, j) 6∈ B ∪ {(i0, j0)}.

Let the m × n matrices X and Y be defined so that (X)i,j = xi,j and
(Y )i,j = yi,j for all i ∈ I and j ∈ J . Suppose that xi,j > 0 for all (i, j) ∈ B.
Then the components of X in the basis positions are strictly positive. It
follows that, if λ is positive but sufficiently small, then the components of the
matrix X + λY in the basis positions are also strictly positive, and therefore
the components of the matrix X + λY are non-negative for all sufficiently
small non-negative values of λ. There will then exist a maximum value λ0
that is an upper bound on the values of λ for which all components of the
matrix X+λY are non-negative. It is then a straightforward exercise in linear
algebra to verify that X + λ0Y is another basic feasible solution associated
with a basis that includes (i0, j0) together with all but one of the elements
of the basis B.

Moreover the cost of this new basic feasible solution is C+λ0qi0,j0 , where
C is the cost of the basic feasible solution represented by the matrix X. Thus
if qi0,j0 < 0 then the cost of the new basic feasible solution is lower than that
of the basic feasible solution X from which it was derived.

Suppose that, for all basic feasible solutions of the given Transportation
problem, the coefficients of the matrix specifying the basic feasible solution
are strictly positive at the basis positions. Then a finite number of iterations
of the procedure discussed above with result in an basic optimal solution
of the given transportation problem. Such problems are said to be non-
degenerate.

However if it turns out that a basic feasible solution (xi,j) associated with
a basis B satisfies xi,j = 0 for some (i, j) ∈ B, then we are in a degenerate
case of the transportation problem. The theory of degenerate cases of linear
programming problems is discussed in detail in textbooks that discuss the
details of linear programming algorithms.

We now establish the proposition that guarantees that, given any basis B,
there exist quantities u1, u2, . . . , um and v1, v2, . . . , vn such that the costs ci,j
associated with the given transportation problem satisfy ci,j = vj − ui for all
(i, j) ∈ B. This result is an essential component of the method described
here for testing basic feasible solutions to determine whether or not they are
optimal.

Proposition 3.10 Let m and n be integers, let I = {1, 2, . . . ,m} and J =
{1, 2, . . . , n}, and let B be a subset of I×J that is a basis for the transporta-
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tion problem with m suppliers and n recipients. For each (i, j) ∈ B let ci,j be
a corresponding real number. Then there exist real numbers ui for i ∈ I and
vj for j ∈ J such that ci,j = vj − ui for all (i, j) ∈ B. Moreover if ui and vj
are real numbers for i ∈ I and j ∈ J that satisfy the equations ci,j = vj − ui
for all (i, j) ∈ B, then there exists some real number k such that ui = ui + k
for all i ∈ I and vj = vj + k for all j ∈ J .

Proof Let

MB = {X ∈Mm,n(R) : (X)i,j = 0 unless (i, j) ∈ B}.

It follows from the definition of bases for transportation problems that there
exist unique m×n matrices S1, S2, . . . , Sm belonging to MB, where S1 is the
zero matrix, and where, for each integer i satisfying 1 < i ≤ m, the matrix
Sk has the properties that

n∑
`=1

(Si)k,` =


1 if k = 1,
−1 if k = i,
0 if k ∈ I \ {1, i},

and
m∑
k=1

(Si)k,` = 0 for all ` ∈ J .

Also there exist unique m×n matrices T1, T2, . . . , Tm belonging to MB where,
for each integer j satisfying 1 ≤ j ≤ n, the matrix Tj has the properties that

n∑
j=1

(Tj)k,l =

{
1 if k = 1,
0 if k ∈ I \ {1},

and
m∑
i=1

(Tj)k,` =

{
1 if ` = j,
0 if ` ∈ J \ {j},

Let

ui =
n∑
k=1

n∑
`=1

ck,`(Si)k,`

for i = 1, 2, . . . ,m and

vj =
m∑
k=1

n∑
`=1

ck,`(Tj)k,`.
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for j = 1, 2, . . . , n. We claim the that numbers u1, u2, . . . , um and v1, v2, . . . , vn
have the required properties.

Let X be an m× n matrix belonging to MB, and let

yi =
n∑
j=1

(X)i,j for all i ∈ I

and

zj =
m∑
i=1

(X)i,j for all j ∈ J,

and let

X =
n∑
`=1

z`T` −
m∑
k=1

ykSk.

Then
m∑
i=1

(X)i,j = zj for all j ∈ J .

and
n∑
j=1

(X)i,j = yi for all i ∈ I \ {1},

Moreover
n∑
j=1

(X)1,j =
n∑
`=1

z` −
m∑
k=2

yk = y1,

because
m∑
i=1

yi =
n∑
j=1

zj.

But the definition of bases for transportation problems ensures that X is

the unique m×n matrix belonging to MB with the properties that
n∑
j=1

(X)i,j =

yi for all i ∈ I and
m∑
i=1

(X)i,j = zj for all j ∈ J . It follows that

X = X =
n∑
j=1

zjTj −
m∑
i=1

yiSi,

and therefore
m∑
k=1

n∑
`=1

ck,`(X)k,` =
n∑
j=1

zjvj −
m∑
i=1

yiui.
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Let (i, j) ∈ B. Then E(i,j) ∈MB, where

(E(i,j))k,` =

{
1 if k = i and j = `;
0 if k 6= i or j 6= `.

It follows from the result just obtained that

ci,j =
m∑
k=1

n∑
`=1

ck,`(E
(i,j))k,` = vj − ui.

We have thus shown that, given any basis B for the transportation problem
with m suppliers and n recipients, there exist real numbers u1, u2, . . . , um
and v1, v2, . . . , vn with the required property that

ci,j = vj − ui for all (i, j) ∈ B..

Now let u1, u2, . . . , um and u1, u2, . . . , un be real numbers with the prop-
erty that

ci,j = vj − ui for all (i, j) ∈ B..

Then bj − ai = 0 for all (i, j) ∈ B, where ai = ui − ui for i = 1, 2, . . . ,m and
bj = vj − vj for j = 1, 2, . . . , n, and therefore

m∑
k=1

n∑
`=1

(b` − ak)(Ei,j)k,` = 0

for all (i, j) ∈ B. Now the m×n matrices E(i,j) for which (i, j) ∈ B constitute
a basis of the vector space MB. It follows that

m∑
k=1

n∑
`=1

(b` − ak)(X)k,` = 0

for all X ∈MB.
In particular

m∑
k=1

n∑
`=1

(b` − ak)(Si)k,` = 0

for i = 2, 3, . . . ,m, and

m∑
k=1

n∑
`=1

(b` − ak)(Tj)k,` = 0

for j = 1, 2, . . . , n.
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But it follows from the definitions of the matrices S1, S2, . . . , Sm and
T1, T2, . . . , Tn that

m∑
k=1

n∑
`=1

b`(Si)k,` =
n∑
`=1

(
b`

m∑
k=1

(Si)k,`

)
= 0,

m∑
k=1

n∑
`=1

ak(Si)k,` =
m∑
k=1

(
ak

n∑
`=1

(Si)k,`

)
= a1 − ai

for i = 2, 3, . . . ,m, and

m∑
k=1

n∑
`=1

b`(Tj)k,` =
n∑
`=1

(
b`

m∑
k=1

(Tj)k,`

)
= bj,

m∑
k=1

n∑
`=1

ak(Si)k,` =
m∑
k=1

(
ak

n∑
`=1

(Si)k,`

)
= a1

for j = 1, 2, . . . , n.
It follows that ai − a1 = 0 for i = 2, . . . , n and bj − a1 = 0 for j =

1, 2, . . . , n. Thus if k = a1 then ui = ui + ai = ui + k for i = 1, 2, . . . ,m and
vj = vj + bj = vj + k for j = 1, 2, . . . , n, as required.
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