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1. (a) Let γ: [a, b]→ C be a closed path in the complex plane, and let w
be a complex number that does not lie on γ. The winding number
of γ about w is defined to be the unique integer n(γ, w) with the
property that ϕ(b)− ϕ(a) = 2πin(γ, w) for all paths ϕ: [a, b]→ C
in the complex plane that satisfy exp(ϕ(t)) = γ(t) − w for all
t ∈ [a, b].

(b) Note that the inequality satisfied by the functions γ1 and γ2 en-
sures that w does not lie on the path γ2. Let γ̃1: [0, 1] → C be a
path in the complex plane such that exp(γ̃1(t)) = γ1(t)−w for all
t ∈ [a, b], and let

ρ(t) =
γ2(t)− w
γ1(t)− w

for all t ∈ [a, b] Then

|ρ(t)− 1| =
∣∣∣∣γ2(t)− γ1(t)γ1(t)− w

∣∣∣∣ < 1

for all t ∈ [a, b].

There exists a continuous function F : {z ∈ C : |z − 1| < 1} → C
with the property that exp(F (z)) = z for all complex numbers
z satisfying |z − 1| < 1. Let γ̃2: [0, 1] → C be the path in the
complex plane defined such that γ̃2(t) = F (ρ(t)) + γ̃1(t) for all
t ∈ [a, b]. Then

exp(γ̃2(t)) = exp(F (ρ(t))) exp(γ̃1(t)) = ρ(t)(γ1(t)− w)

= γ2(t)− w.

Now ρ(b) = ρ(a). It follows that

2πin(γ2, w) = γ̃2(b)− γ̃2(a)

= F (ρ(b)) + γ̃1(b)− F (ρ(a))− γ̃1(a)

= γ̃1(b)− γ̃1(a)

= 2πin(γ1, w),

as required.

(c) [Seen Similar.] Let γ: [0, 1]→ C be the closed curve in the complex
plane defined such that

γ(t) = (5+ecos 2πt) cos 10πt+sin 8πt sin 12πt+i(3 sin 10πt+cos 4πt sin 12πt).

for all t ∈ [0, 1], where i2 = −1. Let

γ1(t) = (5 + ecos 2πt) cos 10πt+ 3i sin 10πt
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for all t ∈ [0, 1]. Then |γ1(t)| ≥ 3 for all t ∈ [0, 1]. Also
| sin 8πt sin 12πt| ≤ 1 and | cos 4πt sin 12πt| ≤ 1 and and there-
fore

|γ(t)− γ1(t)| = |sin 8πt sin 12πt+ i cos 4πt sin 12πt| < |γ1(t)|

for all t ∈ [0, 1]. The Dog-Walking Lemma then ensures that
n(γ, 0) = n(γ1, 0). Another application of the Dog-Walking Lemma
then ensures that n(γ1, 0) = n(γ2, 0), where

γ2(t) = 3(cos 10πt+ i sin 10πt)

for all t ∈ [0, 1]. Moreover γ2 = exp ◦γ̃2 where γ̃2: [0, 1]→ C is the
path in C defined so that γ̃2(t) = log 3 + 10πt for all t ∈ [0, 1].
The definition of winding number ensures that

n(γ2, 0) = (2πi)−1(γ̃2(1)− γ̃2(0)) = 5.

Therefore n(γ, 0) = 5.
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2. (a) [Bookwork.] Let X and Y be topological spaces, and let A be
a subset of X. Let f :X → Y and g:X → Y be continuous
maps from X to some topological space Y , where f |A = g|A (i.e.,
f(a) = g(a) for all a ∈ A). We say that f and g are homotopic
relative to A (denoted by f ' g rel A) if and only if there exists
a (continuous) homotopy H:X × [0, 1] → Y such that H(x, 0) =
f(x) and H(x, 1) = g(x) for all x ∈ X and H(a, t) = f(a) = g(a)
for all a ∈ A.

(b) [Standard definition, but not stated exactly as below in lecture
notes.] Let X be a topological space, let x0 be some chosen point
of X, and let π1(X, x0) be the set of all based homotopy classes
of loops based at the point x0, where two loops γ1 and γ2 are in
the same based homotopy class if and only if γ1 ' γ2 rel {0, 1}.
Then π1(X, x0) is a group, the group multiplication on π1(X, x0)
being defined according to the rule [γ1][γ2] = [γ1.γ2] for all loops γ1
and γ2 based at x0, where γ1.γ2 denotes the concatenation of the
loops γ1 and γ2. This group is the fundamental group of X based
at the point x0. The identity element of the fundamental loop is
represented by the constant loop at the basepoint x0. The inverse
of a loop γ: [0, 1]→ X is represented by the loop γ−1: [0, 1]→ X,
where γ−1(t) = γ(1− t) for all t ∈ [0, 1].

(c) [Not bookwork. There are several reasonably obvious approaches
to the details. Probably the class will have seen similar problems
by the end of teaching.]

Let f :Z → W be a continuous map from a topological space Z to
a topological space W , and let z0 be a point of Z. Suppose there
exists a continuous map g:W → Z such that g ◦ f ' identity
rel {x0} and f ◦ g ' identity rel {f(x0)}. Then π1(Z, x0) ∼=
π1(W, f(x0)).

We can apply this result where f :X → S1 is defined such that

f(x, y, z) =

(
x√

x2 + y2
,

y√
x2 + y2

)
,

taking g:S1 → X to be the inclusion map, and noting that, for all
(x, y, z) ∈ X, the points (x, y, z) and f(x, y, z) are the endpoints
of a line segment lying wholly in X. It follows that

π(X, (1, 0, 0)) ∼= π1(S
1, (1, 0)) ∼= Z.

For Y , note that radial projection maps Y onto the unit sphere
S2 in R2. Moreover S2 is simply-connected. It follows that Y
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is simply-connected, and therefore has trivial fundamental group
(for any basepoint).
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3. (a) [Bookwork.] Let Z0 = {z ∈ Z : g(z) = h(z)}. Note that Z0 is
non-empty, by hypothesis. We show that Z0 is both open and
closed in Z.

Let z be a point of Z. There exists an open set U in X containing
the point p(g(z)) which is evenly covered by the covering map p.
Then p−1(U) is a disjoint union of open sets, each of which is
mapped homeomorphically onto U by the covering map p. One of
these open sets contains g(z); let this set be denoted by Ũ . Also
one of these open sets contains h(z); let this open set be denoted
by Ṽ . Let Nz = g−1(Ũ) ∩ h−1(Ṽ ). Then Nz is an open set in Z
containing z.

Consider the case when z ∈ Z0. Then g(z) = h(z), and therefore
Ṽ = Ũ . It follows from this that both g and h map the open set Nz

into Ũ . But p ◦ g = p ◦ h, and p|Ũ : Ũ → U is a homeomorphism.
Therefore g|Nz = h|Nz, and thus Nz ⊂ Z0. We have thus shown
that, for each z ∈ Z0, there exists an open set Nz such that z ∈ Nz

and Nz ⊂ Z0. We conclude that Z0 is open.

Next consider the case when z ∈ Z \ Z0. In this case Ũ ∩ Ṽ = ∅,
since g(z) 6= h(z). But g(Nz) ⊂ Ũ and h(Nz) ⊂ Ṽ . Therefore
g(z′) 6= h(z′) for all z′ ∈ Nz, and thus Nz ⊂ Z \Z0. We have thus
shown that, for each z ∈ Z \ Z0, there exists an open set Nz such
that z ∈ Nz and Nz ⊂ Z \ Z0. We conclude that Z \ Z0 is open.

The subset Z0 of Z is therefore both open and closed. Also Z0

is non-empty by hypothesis. We deduce that Z0 = Z, since Z is
connected. Thus g = h, as required.

(b) [Bookwork.]

Let S be the subset of [a, b] defined as follows: an element c of
[a, b] belongs to S if and only if there exists a continuous map
ηc: [a, c] → X̃ such that ηc(a) = w and p(ηc(t)) = γ(t) for all
t ∈ [a, c]. Note that S is non-empty, since a belongs to S. Let
s = supS.

There exists an open neighbourhood U of γ(s) which is evenly
covered by the map p, since p: X̃ → X is a covering map. It then
follows from the continuity of the path γ that there exists some
δ > 0 such that γ(J(s, δ)) ⊂ U , where

J(s, δ) = {t ∈ [a, b] : |t− s| < δ}.

Now S ∩ J(s, δ) is non-empty, because s is the supremum of the
set S. Choose some element c of S ∩ J(s, δ). Then there exists a
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continuous map ηc: [a, c]→ X̃ such that ηc(a) = w and p(ηc(t)) =
γ(t) for all t ∈ [a, c]. Now the open set U is evenly covered by the
map p. Therefore p−1(U) is a disjoint union of open sets in X̃,
each of which is mapped homeomorphically onto U by the covering
map p. One of these open sets contains the point ηc(c); let this
open set be denoted by Ũ . There then exists a unique continuous
map σ:U → Ũ defined such that, for all x ∈ U , σ(x) is the unique
element of Ũ for which p(σ(x)) = x. Then σ(γ(c)) = ηc(c).

Then, given any d ∈ J(s, δ), let ηd: [a, d] → X̃ be the function
from [a, d] to X̃ defined so that

ηd(t) =

{
ηc(t) if a ≤ t ≤ c;
σ(γ(t)) if c ≤ t ≤ d.

Then ηd(a) = w and p(ηd(t)) = γ(t) for all t ∈ [a, d]. The re-
strictions of the function ηd: [a, d] → X̃ to the intervals [a, c] and
[c, d] are continuous. It follows from the Pasting Lemma that ηd
is continuous on [a, d]. Thus d ∈ S. We conclude from this that
J(s, δ) ⊂ S. However s is defined to be the supremum of the
set S. Therefore s = b, and b belongs to S. It follows that that
there exists a continuous map γ̃: [a, b] → X̃ for which γ̃(a) = w
and p ◦ γ̃ = γ, as required.
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4. (a) [Definition] Let X and Y be topological spaces and let q:X → Y
be a function from X to Y . The function q is said to be an iden-
tification map if and only if the following conditions are satisfied:

• the function q:X → Y is surjective,

• a subset U of Y is open in Y if and only if q−1(U) is open
in X.

(b) [Definition.] Let G be a group with identity element e, and let
X be a topological space. The group G is said to act freely and
properly discontinuously on X if each element g of G determines
a corresponding continuous map θg:X → X, where the following
conditions are satisfied:

(i) θgh = θg ◦ θh for all g, h ∈ G;

(ii) the continuous map θe determined by the identity element e
of G is the identity map of X;

(iii) given any point x of X, there exists an open set U in X such
that x ∈ U and θg(U) ∩ U = ∅ for all g ∈ G satisfying g 6= e.

(c) [Bookwork.] The quotient map q:X → X/G is surjective. Let V
be an open set in X. Then q−1(q(V )) is the union

⋃
g∈G θg(V ) of

the open sets θg(V ) as g ranges over the group G, since q−1(q(V ))
is the subset of X consisting of all elements of X that belong to
the orbit of some element of V . But any union of open sets in a
topological space is an open set. We conclude therefore that if V
is an open set in X then q(V ) is an open set in X/G.

Let x be a point of X. Then there exists an open set U in X
such that x ∈ U and θg(U) ∩ U = ∅ for all g ∈ G satisfying
g 6= e. Now q−1(q(U)) =

⋃
g∈G θg(U). We claim that the sets

θg(U) are disjoint. Let g and h be elements of G. Suppose that
θg(U)∩ θh(U) 6= ∅. Then θh−1(θg(U)∩ θh(U)) 6= ∅. But θh−1 :X →
X is a bijection, and therefore

θh−1(θg(U) ∩ θh(U)) = θh−1(θg(U)) ∩ θh−1(θh(U)) = θh−1g(U) ∩ U,

and therefore θh−1g(U) ∩ U 6= ∅. It follows that h−1g = e, where
e denotes the identity element of G, and therefore g = h. Thus if
g and h are elements of g, and if g 6= h, then θg(U) ∩ θh(U) = ∅.
We conclude therefore that the preimage q−1(q(U)) of q(U) is the
disjoint union of the sets θg(U) as g ranges over the group G.
Moreover each these sets θg(U) is an open set in X.

Now U ∩ [u]G = {u} for all u ∈ U , since [u]G = {θg(u) : g ∈ G}
and U ∩θg(U) = ∅ when g 6= e. Thus if u and v are elements of U ,
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and if q(u) = q(v) then [u]G = [v]G and therefore u = v. It follows
that the restriction q|U :U → X/G of the quotient map q to U
is injective, and therefore q maps U bijectively onto q(U). But
q maps open sets onto open sets, and any continuous bijection
that maps open sets onto open sets is a homeomorphism. We
conclude therefore that the restriction of q:X → X/G to the open
set U maps U homeomorphically onto q(U). Moreover, given any
element g of G, the quotient map q satisfies q = q ◦ θg−1 , and
the homeomorphism θg−1 maps θg(U) homeomorphically onto U .
It follows that the quotient map q maps θg(U) homeomorphically
onto q(U) for all g ∈ U . We conclude therefore that q(U) is an
evenly covered open set in X/G whose preimage q−1(q(U)) is the
disjoint union of the open sets θg(U) as g ranges over the group G.
It follows that the quotient map q:X → X/G is a covering map,
as required.
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