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1. (a) Let v:]a,b] — C be a closed path in the complex plane, and let w
be a complex number that does not lie on . The winding number
of v about w is defined to be the unique integer n(v,w) with the
property that ¢(b) — ¢(a) = 2min(y,w) for all paths ¢: [a,b] — C
in the complex plane that satisfy exp(p(t)) = v(t) — w for all
t € la,bl.

(b) Note that the inequality satisfied by the functions 7; and 7 en-
sures that w does not lie on the path 5. Let 41:[0,1] — C be a
path in the complex plane such that exp(31(t)) = 71 (t) — w for all
t € [a,b], and let

() —w
p(t) - ’)/1<t) —w
for all ¢ € [a,b] Then
_e() = (@)
Ip(t) — 1] = %(t)——w' <1

for all t € [a, b].
There exists a continuous function F:{z € C: |z - 1| <1} - C

with the property that exp(F(z)) = z for all complex numbers
z satisfying |z — 1] < 1. Let 42:[0,1] — C be the path in the
complex plane defined such that 39(t) = F(p(t)) + 31(t) for all
t € [a,b]. Then
exp(T2(t)) = exp(F(p(t))) exp(F1(t)) = p(t)(n(t) — w)
= v(t) —w.
Now p(b) = p(a). It follows that
2min(y2, w) = F2(b) — F2(a)

= F(p(b)) +71(b) = F(p(a)) —H(a)

= %(b) —N(a)

= 2min(y,w),
as required.

(c) [Seen Similar.] Let v: [0, 1] — C be the closed curve in the complex
plane defined such that

Y(t) = (54+e°*™) cos 10t +sin 87t sin 127¢+4(3 sin 107t +cos 47t sin 127t).
for all t € [0, 1], where > = —1. Let

71(t) = (5 + e2™) cos 107t + 3i sin 107t
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for all t € [0,1]. Then |y:(¢t)] > 3 for all ¢ € [0,1]. Also
| sin 87t sin 127t| < 1 and |cos4nt sin127t] < 1 and and there-
fore

|7(t) — 71(t)| = |sin8nt sin 127t + i cos 4t sin 127t| < |1 (1)

for all t € [0,1]. The Dog-Walking Lemma then ensures that
n(~,0) = n(y1,0). Another application of the Dog-Walking Lemma
then ensures that n(v;,0) = n(ye,0), where

Y2(t) = 3(cos 107t + i sin 107t)

for all t € [0, 1]. Moreover vo = exp oy where 45: [0, 1] — C is the
path in C defined so that 42(t) = log3 + 10xt for all ¢ € [0, 1].
The definition of winding number ensures that

n(72,0) = (2mi) 7 (52(1) — 72(0)) = 5.

Therefore n(y,0) = 5.



2. (a) [Bookwork.] Let X and Y be topological spaces, and let A be
a subset of X. Let f: X — Y and ¢: X — Y be continuous
maps from X to some topological space Y, where f|A = g|A (i.e.,
fla) = g(a) for all a € A). We say that f and g are homotopic
relative to A (denoted by f ~ g rel A) if and only if there exists
a (continuous) homotopy H: X X [0,1] — Y such that H(x,0) =
f(z) and H(z,1) = g(x) for all x € X and H(a,t) = f(a) = g(a)
for all a € A.

(b) [Standard definition, but not stated exactly as below in lecture
notes.] Let X be a topological space, let 2y be some chosen point
of X, and let m;(X, x¢) be the set of all based homotopy classes
of loops based at the point x(, where two loops v; and v, are in
the same based homotopy class if and only if v ~ 7 rel {0,1}.
Then 71 (X, zg) is a group, the group multiplication on (X, )
being defined according to the rule [y;][y2] = [71.72] for all loops ¥,
and v, based at z(, where ;.75 denotes the concatenation of the
loops 7, and 5. This group is the fundamental group of X based
at the point xy. The identity element of the fundamental loop is
represented by the constant loop at the basepoint xy. The inverse
of a loop 7:[0,1] — X is represented by the loop yv~*:[0,1] — X,
where y71(t) = v(1 — t) for all ¢ € [0, 1].

(c) [Not bookwork. There are several reasonably obvious approaches
to the details. Probably the class will have seen similar problems
by the end of teaching,.|
Let f: Z — W be a continuous map from a topological space Z to
a topological space W, and let zy be a point of Z. Suppose there
exists a continuous map g:W — Z such that g o f ~ identity
rel {zo} and f o g ~ identity rel {f(x¢)}. Then m(Z,x¢) =
T (W, f(20))-

We can apply this result where f: X — S! is defined such that

_ L Yy

taking g: S' — X to be the inclusion map, and noting that, for all
(x,y,z) € X, the points (z,y,2) and f(z,y,z) are the endpoints
of a line segment lying wholly in X. It follows that

X, (1,0,0)) 2 m (S, (1,0)) ¢ Z.

For Y, note that radial projection maps Y onto the unit sphere
S? in R%. Moreover S? is simply-connected. It follows that Y
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is simply-connected, and therefore has trivial fundamental group
(for any basepoint).



3. (a) [Bookwork.] Let Zy = {z € Z : g(2) = h(z)}. Note that Zj is
non-empty, by hypothesis. We show that Z; is both open and
closed in Z.

Let z be a point of Z. There exists an open set U in X containing
the point p(g(z)) which is evenly covered by the covering map p.
Then p~'(U) is a disjoint union of open sets, each of which is
mapped homeomorphically onto U by the covering map p. One of
these open sets contains g(z); let this set be denoted by U. Also
one of these open sets contains h(z); let this open set be denoted

by V. Let N, = g-*(U) N h~* (V). Then N, is an open set in Z
containing z.

Consider the case when z € Z;. Then g(z) = h(z), and therefore
V = U. It follows from this that both g and A map the open set N,
into U. But pog=poh, and p|U:U — U is a homeomorphism.
Therefore g|N, = h|N,, and thus N, C Z;. We have thus shown
that, for each z € Zj, there exists an open set IV, such that z € N,
and N, C Zy. We conclude that Z; is open.

Next consider the case when z € Z \ Z. In this case Uunv =9,
since g(z) # h(z). But g(N.) € U and h(N,) C V. Therefore
g(2") # h(2') for all 2/ € N,, and thus N, C Z\ Z,. We have thus
shown that, for each z € Z'\ Zj, there exists an open set N, such
that z € N, and N, C Z \ Z,. We conclude that Z \ Zj is open.
The subset Z, of Z is therefore both open and closed. Also Z
is non-empty by hypothesis. We deduce that Zy = Z, since 7 is
connected. Thus g = h, as required.

(b) [Bookwork.]

Let S be the subset of [a,b] defined as follows: an element ¢ of
la,b] belongs to S if and only if there exists a continuous map
ne:[a,¢] — X such that n.(a) = w and p(n.(t)) = ~(t) for all
t € [a,c]. Note that S is non-empty, since a belongs to S. Let
s=supS.

There exists an open neighbourhood U of ~(s) which is evenly
covered by the map p, since p: X — X is a covering map. It then
follows from the continuity of the path ~ that there exists some
d > 0 such that v(J(s,0)) C U, where

J(s,0) ={t € [a,b] : |t — s| < }.

Now S N J(s,d) is non-empty, because s is the supremum of the
set S. Choose some element ¢ of S N J(s,d). Then there exists a
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continuous map 7.: [a, ] — X such that n.(a) = w and p(n.(t)) =
v(t) for all t € [a, c]. Now the open set U is evenly covered by the
map p. Therefore p~!(U) is a disjoint union of open sets in X,
each of which is mapped homeomorphically onto U by the covering
map p. One of these open sets contains the point 7.(c); let this
open set be denoted by U. There then exists a unique continuous
map o: U — U defined such that, for all z € U, o(x) is the unique
element of U for which p(o(z)) = . Then o(v(c)) = 1.(c).

Then, given any d € J(s,0), let ng:[a,d] — X be the function
from [a,d] to X defined so that

(t)  ifa<t<g
na(t) = { Z(v(t)) if c<t<d.

Then ng(a) = w and p(ng(t)) = ~(t) for all t € [a,d]. The re-
strictions of the function 7y: [a,d] — X to the intervals [a, ¢] and
[c,d] are continuous. It follows from the Pasting Lemma that 7y
is continuous on [a,d]. Thus d € S. We conclude from this that
J(s,0) C S. However s is defined to be the supremum of the
set S. Therefore s = b, and b belongs to S. It follows that that
there exists a continuous map 7: [a,b] — X for which F(a) = w
and p o~y = 7, as required.



4. (a)

(c)

[Definition] Let X and Y be topological spaces and let ¢: X — Y
be a function from X to Y. The function ¢ is said to be an iden-
tification map if and only if the following conditions are satisfied:

e the function ¢: X — Y is surjective,
e a subset U of Y is open in Y if and only if ¢~*(U) is open
in X.

[Definition.] Let G be a group with identity element e, and let
X be a topological space. The group G is said to act freely and
properly discontinuously on X if each element g of G determines
a corresponding continuous map 64: X — X, where the following
conditions are satisfied:

(i) b4, = 6,080y for all g,h € G;
(ii) the continuous map 6, determined by the identity element e
of GG is the identity map of X

(iii) given any point = of X, there exists an open set U in X such
that € U and 6,(U) NU = 0 for all g € G satisfying g # e.

[Bookwork.] The quotient map ¢: X — X /G is surjective. Let V
be an open set in X. Then ¢~'(¢(V)) is the union |J . 6,(V) of
the open sets 0,(V') as g ranges over the group G, since ¢ *(¢(V))
is the subset of X consisting of all elements of X that belong to
the orbit of some element of V. But any union of open sets in a
topological space is an open set. We conclude therefore that if V'
is an open set in X then ¢(V') is an open set in X/G.

Let z be a point of X. Then there exists an open set U in X
such that z € U and 0,(U)NU = 0 for all ¢ € G satisfying
g # e Now ¢ '(q(U)) = U,eq8y(U). We claim that the sets
,(U) are disjoint. Let g and h be elements of G. Suppose that
0,(U)NO(U) # 0. Then 0),-1(0,(U)NO(U)) # 0. But j-1: X —

X is a bijection, and therefore
thl(gg(U) N 9h(U)) - thl(ﬁg(U)) N thl(é’h(U)) — ‘ghflg(U) N U,

and therefore 0),-1,(U) NU # 0. It follows that h~'g = e, where
e denotes the identity element of GG, and therefore g = h. Thus if
g and h are elements of g, and if g # h, then 0,(U) N0, (U) = 0.
We conclude therefore that the preimage ¢~ (q(U)) of q(U) is the
disjoint union of the sets 6,(U) as g ranges over the group G.
Moreover each these sets 6,(U) is an open set in X.

Now U N [u]¢ = {u} for all u € U, since [u|¢ = {0,(u) : g € G}
and UNO,(U) = when g # e. Thus if v and v are elements of U,
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and if ¢(u) = q(v) then [u]g = [v]g and therefore u = v. It follows
that the restriction ¢|U:U — X/G of the quotient map ¢ to U
is injective, and therefore ¢ maps U bijectively onto ¢(U). But
g maps open sets onto open sets, and any continuous bijection
that maps open sets onto open sets is a homeomorphism. We
conclude therefore that the restriction of ¢: X — X/G to the open
set U maps U homeomorphically onto ¢(U). Moreover, given any
element g of G, the quotient map ¢ satisfies ¢ = g o 0,1, and
the homeomorphism 6,-1 maps 6,(U) homeomorphically onto U.
It follows that the quotient map ¢ maps 6,(U) homeomorphically
onto ¢(U) for all ¢ € U. We conclude therefore that ¢(U) is an
evenly covered open set in X/G whose preimage ¢~!(q(U)) is the
disjoint union of the open sets §,(U) as g ranges over the group G.
It follows that the quotient map ¢: X — X/G is a covering map,
as required.
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