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3. The Fundamental Group of a Topological Space

3. The Fundamental Group of a Topological Space

3.1. Homotopies between Continuous Maps

Definition

Let f : X → Y and g : X → Y be continuous maps between
topological spaces X and Y . The maps f and g are said to be
homotopic if there exists a continuous map H : X × [0, 1]→ Y
such that H(x , 0) = f (x) and H(x , 1) = g(x) for all x ∈ X . If the
maps f and g are homotopic then we denote this fact by
writing f ' g . The map H with the properties stated above is
referred to as a homotopy between f and g .

Continuous maps f and g from X to Y are homotopic if and only
if it is possible to ‘continuously deform’ the map f into the map g .
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Definition

Let X and Y be topological spaces, and let A be a subset of X . Let
f : X → Y and g : X → Y be continuous maps from X to some
topological space Y , where f |A = g |A (i.e., f (a) = g(a) for all
a ∈ A). We say that f and g are homotopic relative to A (denoted
by f ' g rel A) if and only if there exists a (continuous) homotopy
H : X × [0, 1]→ Y such that H(x , 0) = f (x) and H(x , 1) = g(x)
for all x ∈ X and H(a, t) = f (a) = g(a) for all a ∈ A.
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Proposition 3.1

Let X and Y be topological spaces, and let A be a subset of X .
The relation of being homotopic relative to the subset A is then an
equivalence relation on the set of all continuous maps from X
to Y .

Proof
Given f : X → Y , let H0 : X × [0, 1]→ Y be defined so that
H0(x , t) = f (x) for all x ∈ X and t ∈ [0, 1]. Then
H0(x , 0) = H0(x , 1) = f (x) for all x ∈ X and H0(a, t) = f (a) for
all a ∈ A and t ∈ [0, 1], and therefore f ' f rel A. Thus the
relation of homotopy relative to A is reflexive.
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Let f and g be continuous maps from X to Y that satisfy
f (a) = g(a) for all a ∈ A. Suppose that f ' g rel A. Then there
exists a homotopy H : X × [0, 1]→ Y with the properties that
H(x , 0) = f (x) and H(x , 1) = g(x) for all x ∈ X and
H(a, t) = f (a) = g(a) for all a ∈ A and t ∈ [0, 1]. Let
K : X × [0, 1]→ Y be defined so that K (x , t) = H(x , 1− t) for all
t ∈ [0, 1]. Then K is a homotopy between g and f , and
K (a, t) = g(a) = f (a) for all a ∈ A and t ∈ [0, 1]. It follows that
g ' f rel A. Thus the relation of homotopy relative to A is
symmetric.
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Finally let f , g and h be continuous maps from X to Y with the
property that f (a) = g(a) = h(a) for all a ∈ A. Suppose that
f ' g rel A and g ' h rel A. Then there exist homotopies
H1 : X × [0, 1]→ Y and H2 : X × [0, 1]→ Y satisfying the
following properties:

H1(x , 0) = f (x),

H1(x , 1) = g(x) = H2(x , 0),

H2(x , 1) = h(x)

for all x ∈ X ;

H1(a, t) = H2(a, t) = f (a) = g(a) = h(a)

for all a ∈ A and t ∈ [0, 1].
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Define H : X × [0, 1]→ Y by

H(x , t) =

{
H1(x , 2t) if 0 ≤ t ≤ 1

2 ;
H2(x , 2t − 1) if 1

2 ≤ t ≤ 1.

Now H|X × [0, 12 ] and H|X × [12 , 1] are continuous. It follows from
the Pasting Lemma (Lemma 1.24) that H is continuous on
X × [0, 1]. Moreover H(x , 0) = f (x) and H(x , 1) = h(x) for all
x ∈ X . Thus f ' h rel A. Thus the relation of homotopy relative
to the subset A of X is transitive. This relation has now been
shown to be reflexive, symmetric and transitive. It is therefore an
equivalence relation.
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Remark
Let X and Y be topological spaces, and let H : X × [0, 1]→ Y be
a function whose restriction to the sets X × [0, 12 ] and X × [12 , 1] is
continuous. Then the function H is continuous on X × [0, 1]. The
Pasting Lemma (Lemma 1.24) was applied in the proof of
Proposition 3.1 to justify this assertion. We consider in more detail
how the Pasting Lemma guarantees the continuity of this function.
Let x ∈ X . If t ∈ [0, 1] and t 6= 1

2 then the point (x , t) is
contained in an open subset of X × [0, 1] over which the function
H is continuous, and therefore the function H is continuous at
(x , t). In order to complete the proof that the function H is
continuous everywhere on X × [0, 1] it suffices to verify continuity
of H at (x , 12), where x ∈ X .
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Let V be an open set in Y for which f (x , 12) ∈ V . Then the
continuity of the restrictions of H to X × [0, 12 ] and X × [12 , 1]
ensures the existence of open sets W1 and W2 in X × [0, 1] such
that (x , 12) ∈W1 ∩W2, H(W1 ∩ (X × [0, 12 ])) ⊂ V and
H(W2 ∩ (X × [12 , 1])) ⊂ V . Let W = W1 ∩W2. Then H(W ) ⊂ V .
This completes the verification that the function H is continuous
at (x , 12). The Pasting Lemma is a basic tool for establishing the
continuity of functions occurring in algebraic topology that are
similar in nature to the function H : X × [0, 1]→ Y considered in
this discussion. The continuity of such functions can typically be
established directly using arguments analogous to that employed
here.
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Corollary 3.2

Let X and Y be topological spaces. The homotopy relation ' is
an equivalence relation on the set of all continuous maps from X
to Y .

Proof
This result follows on applying Proposition 3.1 in the case where
homotopies are relative to the empty set.
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3.2. The Fundamental Group of a Topological Space

Definition

Let X be a topological space, and let x0 and x1 be points of X . A
path in X from x0 to x1 is defined to be a continuous map
γ : [0, 1]→ X for which γ(0) = x0 and γ(1) = x1. A loop in X
based at x0 is defined to be a continuous map γ : [0, 1]→ X for
which γ(0) = γ(1) = x0.

We can concatenate paths. Let γ1 : [0, 1]→ X and γ2 : [0, 1]→ X
be paths in some topological space X . Suppose that
γ1(1) = γ2(0). We define the product path γ1 . γ2 : [0, 1]→ X by

(γ1 . γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2 ;

γ2(2t − 1) if 1
2 ≤ t ≤ 1.
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If γ : [0, 1]→ X is a path in X then we define the inverse path
γ−1 : [0, 1]→ X by γ−1(t) = γ(1− t). (Thus if γ is a path from
the point x0 to the point x1 then γ−1 is the path from x1 to x0
obtained by traversing γ in the reverse direction.)
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Let X be a topological space, and let x0 ∈ X be some chosen point
of X . We define an equivalence relation on the set of all
(continuous) loops based at the basepoint x0 of X , where two such
loops γ0 and γ1 are equivalent if and only if γ0 ' γ1 rel {0, 1}. We
denote the equivalence class of a loop γ : [0, 1]→ X based at x0 by
[γ]. This equivalence class is referred to as the based homotopy
class of the loop γ. The set of equivalence classes of loops based
at x0 is denoted by π1(X , x0). Thus two loops γ0 and γ1 represent
the same element of π1(X , x0) if and only if γ0 ' γ1 rel {0, 1}
(i.e., there exists a homotopy F : [0, 1]× [0, 1]→ X between γ0
and γ1 which maps (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]).
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Theorem 3.3

Let X be a topological space, let x0 be some chosen point of X ,
and let π1(X , x0) be the set of all based homotopy classes of loops
based at the point x0. Then π1(X , x0) is a group, the group
multiplication on π1(X , x0) being defined according to the rule
[γ1][γ2] = [γ1 . γ2] for all loops γ1 and γ2 based at x0.
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Proof
First we show that the group operation on π1(X , x0) is
well-defined. Let γ1, γ′1, γ2 and γ′2 be loops in X based at the
point x0. Suppose that [γ1] = [γ′1] and [γ2] = [γ′2]. Let the map
F : [0, 1]× [0, 1]→ X be defined by

F (t, τ) =

{
F1(2t, τ) if 0 ≤ t ≤ 1

2 ,

F2(2t − 1, τ) if 1
2 ≤ t ≤ 1,

where F1 : [0, 1]× [0, 1]→ X is a homotopy between γ1 and γ′1,
F2 : [0, 1]× [0, 1]→ X is a homotopy between γ2 and γ′2, and
where the homotopies F1 and F2 map (0, τ) and (1, τ) to x0 for all
τ ∈ [0, 1]. Then F is itself a homotopy from γ1 . γ2 to γ′1 . γ

′
2, and

maps (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Thus
[γ1 . γ2] = [γ′1 . γ

′
2], showing that the group operation on π1(X , x0)

is well-defined.
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Next we show that the group operation on π1(X , x0) is associative.
Let γ1, γ2 and γ3 be loops based at x0, and let α = (γ1.γ2).γ3.
Then γ1.(γ2.γ3) = α ◦ θ, where

θ(t) =


1
2 t if 0 ≤ t ≤ 1

2 ;

t − 1
4 if 1

2 ≤ t ≤ 3
4 ;

2t − 1 if 3
4 ≤ t ≤ 1.

Thus the map G : [0, 1]× [0, 1]→ X defined by
G (t, τ) = α((1− τ)t + τθ(t)) is a homotopy between (γ1.γ2).γ3
and γ1.(γ2.γ3), and moreover this homotopy maps (0, τ) and (1, τ)
to x0 for all τ ∈ [0, 1]. It follows that
(γ1 . γ2) . γ3 ' γ1 . (γ2 . γ3) rel {0, 1} and hence
([γ1][γ2])[γ3] = [γ1]([γ2][γ3]). This shows that the group operation
on π1(X , x0) is associative.
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Let ε : [0, 1]→ X denote the constant loop at x0, defined by
ε(t) = x0 for all t ∈ [0, 1]. Then ε . γ = γ ◦ θ0 and γ . ε = γ ◦ θ1
for any loop γ based at x0, where

θ0(t) =

{
0 if 0 ≤ t ≤ 1

2 ,
2t − 1 if 1

2 ≤ t ≤ 1,

θ1(t) =

{
2t if 0 ≤ t ≤ 1

2 ,
1 if 1

2 ≤ t ≤ 1,

for all t ∈ [0, 1]. But the continuous map
(t, τ) 7→ γ((1− τ)t + τθj(t)) is a homotopy between γ and γ ◦ θj
for j = 0, 1 which sends (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1].
Therefore ε . γ ' γ ' γ . ε rel {0, 1}, and hence
[ε][γ] = [γ] = [γ][ε]. We conclude that [ε] represents the identity
element of π1(X , x0).
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It only remains to verify the existence of inverses. Now the map
K : [0, 1]× [0, 1]→ X defined by

K (t, τ) =

{
γ(2τ t) if 0 ≤ t ≤ 1

2 ;

γ(2τ(1− t)) if 1
2 ≤ t ≤ 1.

is a homotopy between the loops ε and γ . γ−1, and moreover this
homotopy sends (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Therefore
ε ' γ . γ−1 rel{0, 1}, and thus [γ][γ−1] = [γ . γ−1] = [ε]. On
replacing γ by γ−1, we see also that [γ−1][γ] = [ε], and thus
[γ−1] = [γ]−1, as required.
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Let x0 be a point of some topological space X . The group
π1(X , x0) is referred to as the fundamental group of X based at
the point x0.
Let f : X → Y be a continuous map between topological spaces X
and Y , and let x0 be a point of X . Then f induces a
homomorphism f# : π1(X , x0)→ π1(Y , f (x0)), where
f#([γ]) = [f ◦ γ] for all loops γ : [0, 1]→ X based at x0. If x0, y0
and z0 are points belonging to topological spaces X , Y and Z , and
if f : X → Y and g : Y → Z are continuous maps satisfying
f (x0) = y0 and g(y0) = z0, then the induced homomorphisms
f# : π1(X , x0)→ π1(Y , y0) and g# : π1(Y , y0)→ π1(Z , z0) satisfy
g# ◦ f# = (g ◦ f )#. It follows easily from this that any
homeomorphism of topological spaces induces a corresponding
isomorphism of fundamental groups, and thus the fundamental
group is a topological invariant.
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3.3. Simply-Connected Topological Spaces

Definition

A topological space X is said to be simply-connected if it is
path-connected, and any continuous map f : ∂D → X mapping the
boundary circle ∂D of a closed disc D into X can be extended
continuously over the whole of the disk.

Example
Rn is simply-connected for all n. Indeed any continuous map
f : ∂D → Rn defined over the boundary ∂D of the closed unit
disk D can be extended to a continuous map F : D → Rn over the
whole disk by setting F (rx) = rf (x) for all x ∈ ∂D and r ∈ [0, 1].
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Let E be a topological space that is homeomorphic to the closed
disk D, and let ∂E = h(∂D), where ∂D is the boundary circle of
the disk D and h : D → E is a homeomorphism from D to E .
Then any continuous map g : ∂E → X mapping ∂E into a
simply-connected space X extends continuously to the whole of E .
Indeed there exists a continuous map F : D → X which extends
g ◦ h : ∂D → X , and the map F ◦ h−1 : E → X then extends the
map g .
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Theorem 3.4

A path-connected topological space X is simply-connected if and
only if π1(X , x) is trivial for all x ∈ X.

Proof
Suppose that the space X is simply-connected. Let γ : [0, 1]→ X
be a loop based at some point x of X . Now the unit square is
homeomorphic to the unit disk, and therefore any continuous map
defined over the boundary of the square can be continuously
extended over the whole of the square. It follows that there exists
a continuous map F : [0, 1]× [0, 1]→ X such that F (t, 0) = γ(t)
and F (t, 1) = x for all t ∈ [0, 1], and F (0, τ) = F (1, τ) = x for all
τ ∈ [0, 1]. Thus γ ' εx rel{0, 1}, where εx is the constant loop at
x , and hence [γ] = [εx ] in π1(X , x). This shows that π1(X , x) is
trivial.
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Conversely suppose that X is path-connected and π1(X , x) is
trivial for all x ∈ X . Let f : ∂D → X be a continuous function
defined on the boundary circle ∂D of the closed unit disk D in R2.
We must show that f can be extended continuously over the whole
of D. Let x = f (1, 0). There exists a continuous map
G : [0, 1]× [0, 1]→ X such that G (t, 0) = f (cos(2πt), sin(2πt))
and G (t, 1) = x for all t ∈ [0, 1] and G (0, τ) = G (1, τ) = x for all
τ ∈ [0, 1], since π1(X , x) is trivial. Moreover G (t1, τ1) = G (t2, τ2)
whenever q(t1, τ1) = q(t2, τ2), where

q(t, τ) =
(
(1− τ) cos(2πt) + τ, (1− τ) sin(2πt)

)
for all t, τ ∈ [0, 1]. It follows that there is a well-defined function
F : D → X such that F ◦ q = G .
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However q : [0, 1]× [0, 1]→ D is a continuous surjection from a
compact space to a Hausdorff space and is therefore an
identification map. It follows that F : D → X is continuous (since
a basic property of identification maps ensures that a function
F : D → X is continuous if and only if F ◦ q : [0, 1]× [0, 1]→ X is
continuous). Moreover F : D → X extends the map f . We
conclude that the space X is simply-connected, as required.
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One can show that, if two points x1 and x2 in a topological
space X can be joined by a path in X then π1(X , x1) and
π1(X , x2) are isomorphic. On combining this result with
Theorem 3.4, we see that a path-connected topological space X is
simply-connected if and only if π1(X , x) is trivial for some x ∈ X .
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Theorem 3.5

Let X be a topological space, and let U and V be open subsets of
X , with U ∪ V = X. Suppose that U and V are simply-connected,
and that U ∩ V is non-empty and path-connected. Then X is itself
simply-connected.

Proof
We must show that any continuous function f : ∂D → X defined
on the unit circle ∂D can be extended continuously over the closed
unit disk D. Now the preimages f −1(U) and f −1(V ) of U and V
are open in ∂D (since f is continuous), and
∂D = f −1(U) ∪ f −1(V ). It follows from the Lebesgue Lemma that
there exists some δ > 0 such that any arc in ∂D whose length is
less than δ is entirely contained in one or other of the sets f −1(U)
and f −1(V ).
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Choose points z1, z2, . . . , zn around ∂D such that the distance
from zi to zi+1 is less than δ for i = 1, 2, . . . , n − 1 and the
distance from zn to z1 is also less than δ. Then, for each i , the
short arc joining zi−1 to zi is mapped by f into one or other of the
open sets U and V .

Let x0 be some point of U ∩ V . Now the sets U, V and U ∩ V are
all path-connected. Therefore we can choose paths αi : [0, 1]→ X
for i = 1, 2, . . . , n such that αi (0) = x0, αi (1) = f (zi ),
αi ([0, 1]) ⊂ U whenever f (zi ) ∈ U, and αi ([0, 1]) ⊂ V whenever
f (zi ) ∈ V . For convenience let α0 = αn.



3. The Fundamental Group of a Topological Space (continued)

Now, for each i , consider the sector Ti of the closed unit disk
bounded by the line segments joining the centre of the disk to the
points zi−1 and zi and by the short arc joining zi−1 to zi . Now this
sector is homeomorphic to the closed unit disk, and therefore any
continuous function mapping the boundary ∂Ti of Ti into a
simply-connected space can be extended continuously over the
whole of Ti . In particular, let Fi be the function on ∂Ti defined by

Fi (z) =


f (z) if z ∈ Ti ∩ ∂D,
αi−1(t) if z = tzi−1 for some t ∈ [0, 1],
αi (t) if z = tzi for some t ∈ [0, 1],

Note that Fi (∂Ti ) ⊂ U whenever the short arc joining zi−1 to zi is
mapped by f into U, and Fi (∂Ti ) ⊂ V whenever this short arc is
mapped into V .
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Now U and V are both simply-connected. It follows that each of
the functions Fi can be extended continuously over the whole of
the sector Ti . Moreover the functions defined in this fashion on
each of the sectors Ti agree with one another wherever the sectors
intersect, and can therefore be pieced together to yield a
continuous map defined over the the whole of the closed disk D
which extends the map f , as required.
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Example
The n-dimensional sphere Sn is simply-connected for all n > 1,
where Sn = {x ∈ Rn+1 : |x| = 1}. Indeed let
U = {x ∈ Sn : xn+1 > −1

2} and V = {x ∈ Sn : xn+1 <
1
2}. Then

U and V are homeomorphic to an n-dimensional ball, and are
therefore simply-connected. Moreover U ∩ V is path-connected,
provided that n > 1. It follows that Sn is simply-connected for all
n > 1.
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3.4. The Fundamental Group of the Circle

Proposition 3.6

Let S1 be the unit circle in the Euclidean plane, defined so that

S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

and let γ : [a, b]→ S1 be a continuous map into S1 defined on a
closed bounded interval [a, b]. Then there exists a continuous
real-valued function γ̃ : [a, b]→ R on the interval [a, b] with the
property that

(cos 2πγ̃(t), sin 2πγ̃(t)) = γ(t)

for all t ∈ [a, b].
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Proof
Let γ(t) =

(
γ1(t), γ2(t)

)
for all t ∈ [a, b] and let η : [a, b]→ C be

the continuous map into the complex plane defined such that
η(t) = γ1(t) + iγ2(t) for all t ∈ [a, b], where i2 = −1. Now
|η(t)| = 1 for all t ∈ [a, b]. It follows from the path-lifting property
of the exponential map (Theorem 2.5) that there exists a
continuous map η̃ : [a, b]→ C with the property that
exp(η̃(t)) = η(t) for all t ∈ [a, b]. Moreover Re[η̃(t)] = 0 for all
t ∈ [a, b] (where Re[η̃(t)] denotes the real part of η̃(t)), because
|η(t)| = 1 for all t ∈ [a, b]. Therefore there exists a continuous
map γ̃ : [a, b]→ R such that η̃(t) = 2πi γ̃(t) for all t ∈ [a, b].
Then

cos 2πγ̃(t) + i sin 2πγ̃(t) = exp(2πi γ̃(t)) = exp(η̃(t))

= η(t) = γ1(t) + i γ2(t)

for all t ∈ [a, b]. The result follows.
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Let
S1 = {(x , y) ∈ R2 : x2 + y2 = 1}.

and let p : R→ S1 be defined so that p(t) = (cos 2πt, sin 2πt) for
all t ∈ R. This function p has the following periodicity property:

real numbers s and t satisfy p(s) = p(t) if and only if
s − t is an integer.

It follows from Proposition 3.6 that, given any loop γ : [0, 1]→ S1

in the circle S1, there exists a continuous real-valued function
γ̃ : [0, 1]→ R with the property that p ◦ γ̃ = γ. Then
p(γ̃(1)) = p(γ̃(0)). It follows from the periodicity property of the
function p that γ̃(1)− γ̃(0) is an integer. We now that the value
of this integer is determined by the loop γ, and does not depend
on the choice of function γ̃, provided that p ◦ γ̃ = γ.
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If η : [0, 1]→ R is a continuous function with the property that
p ◦ η = γ then p ◦ η = p ◦ γ̃ and therefore

η(t)− γ̃(t) ∈ Z

for all t ∈ [0, 1]. But η(t)− γ̃(t) is a continuous function of t on
[0, 1], and the connectedness of [0, 1] ensures that every
continuous integer-valued function on [0, 1] is constant
(Corollary 1.58). It follows that there exists some integer m with
the property that η(t) = γ̃(t) + m for all t ∈ [0, 1], where the
value of m is independent of t. But then
η(1)− η(0) = γ̃(1)− γ̃(0). It follows that the loop γ determines a
well-defined integer n(γ) characterized by the property that
n(γ) = γ̃(1)− γ̃(0) for all continuous real-valued functions
γ̃ : [0, 1]→ R on [0, 1] that satisfy p ◦ γ̃ = γ.
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Definition

Let γ : [0, 1]→ S1 be a loop in the circle S1, where

S1 = {(x , y) ∈ R2 : x2 + y2 = 1}.

The winding number n(γ) of γ is defined to be unique integer
characterized by the property that

n(γ) = γ̃(1)− γ̃(0)

for all continuous functions γ̃ : [0, 1]→ R that satisfy

(cos 2πγ̃(t), sin 2πγ̃(t)) = γ(t)

for all t ∈ [0, 1].
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Proposition 3.7

Let
S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

let H : [0, 1]× [0, 1]→ S1 be a continuous map that satisfies
H(0, τ) = H(1, τ) for all τ ∈ [0, 1]. Also, for each τ ∈ [0, 1], let
n(γτ ) be the winding number of the loop γτ in S1 defined such
that γτ (t) = H(t, τ) for all t ∈ [0, 1]. Then n(γ0) = n(γ1).
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Proof
Let G = T ◦ H, where T : R2 → C is defined so that
T (x , y) = x + iy for all real numbers x and y . Then
G (t, τ) = T ◦ γτ (t) for all t ∈ [0, 1] and τ ∈ [0, 1]. Moreover
n(γτ ) = n(T ◦ γτ , 0) for all τ ∈ [0, 1], where n(T ◦ γτ , 0) denotes
the winding number of the closed curve T ◦ γτ around zero. It
therefore follows from Proposition 2.9 that

n(γ0) = n(T ◦ γ0, 0) = n(T ◦ γ1, 0) = n(γ1),

as required.
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Corollary 3.8

Let S1 be the unit circle in the Euclidean plane, defined so that

S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

and let b be a point of S1. Let α and β be loops in S1 based at b.
Suppose that α ' β rel {0, 1}. Then n(α) = n(β), where n(α) and
n(β) denote the winding numbers of the loops α and β
respectively.

Proof
The loops α and β satisfy α ' β rel {0, 1} if and only if there
exists a homotopy H : [0, 1]× [0, 1]→ S1 with the following
properties: H(t, 0) = α(t) and H(t, 1) = β(t) for all t ∈ [0, 1];
H(0, τ) = H(1, τ) = b for all τ ∈ [0, 1]. The result therefore
follows directly from Proposition 3.7.
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Theorem 3.9

Let S1 be the unit circle in the Euclidean plane, defined so that

S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

and let b be a point of S1. Then the function sending each loop γ
in S1 based at b to its winding number n(γ) induces an
isomorphism from the fundamental group π1(S1,b) of the circle S1

to the group Z of integers.
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Proof
Let p : R→ S1 denote the function from R to S1 defined so that

p(t) = (cos2πt, sin 2πt)

for all real numbers t. Also, for each loop γ : [0, 1]→ S1 in S1

based at b let [γ] denote the element of the fundamental group
π1(S1,b) determined by γ, and let n(γ) denote the winding
number of γ. Every element of π1(S1,b) is the based homotopy
class [γ] of some loop γ in S1 based at b. If γ̃ : [0, 1]→ R is a
real-valued function for which p ◦ γ̃ = γ then n(γ) = γ̃(1)− γ̃(0).

Let α and β be loops in S1 based at b. Suppose that [α] = [β].
Then α ' β rel {0, 1}. It then follows from Corollary 3.8 that
n(α) = n(β). It follows from this that there is a well-defined
function λ : π1(S1,b)→ Z characterized by the property that
λ([γ]) = n(γ) for all loops γ in S1 based at b.
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Next we show that the function λ : π1(S1,b)→ Z is a
homomorphism. Let α : [0, 1]→ S1 and β : [0, 1]→ S1 be loops in
S1 based at b. Then there exists a continuous real-valued function
η : [0, 1]→ R with the property that

p(η(t)) =

{
α(2t) if 0 ≤ t ≤ 1

2 ,
β(2t − 1) if 1

2 ≤ t ≤ 1,

where p(t) = (cos 2πt, sin 2πt) for all t ∈ R (see Proposition 3.6).
Then α(t) = p(η(12 t)) for all t ∈ [0, 1]. It follows from the
definition of winding numbers that n(α) = η(12)− η(0). Also
β(t) = p(η(12(t + 1))) for all t ∈ [0, 1], and therefore
n(β) = η(1)− η(12). It follows that

n(α) + n(β) = η(1)− η(0) = n(p ◦ η) = n(α . β),

where α . β is the concatenation of the loops α and β. It follows
that
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λ([α]) + λ([β]) = n(α) + n(β) = n(α . β) = λ([α . β]) = λ([α][β]).

We conclude that λ : π1(S1,b)→ Z is a homomorphism.
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Next we show that λ : π1(S1,b)→ Z is injective. Let α and β be
loops in S1 for which n(α) = n(β). Then there exist real-valued
functions α̃ : [0, 1]→ R and β̃ : [0, 1]→ R for which α = p ◦ α̃ and
β = p ◦ β̃ (Proposition 3.6). Moreover

α̃(1)− α̃(0) = n(α) = n(β) = β̃(1)− β̃(0).

Also p(α̃(0)) = b = p(β̃(0)), and therefore there exists some
integer m for which β̃(0) = α̃(0) + m. Then

β̃(1) = β̃(1)− β̃(0) + α̃(0) + m = α̃(1) + m.
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Let
F (t, τ) = (1− τ)α̃(t) + τ(β̃(t)−m).

Then F (t, 0) = α̃(t) and F (t, 1) = β̃(t)−m for all t ∈ [0, 1]. Also
F (0, τ) = α̃(0) and F (1, τ) = α̃(1) for all τ ∈ [0, 1]. Let
H : [0, 1]× [0, 1]→ S1 be defined so that H(t, τ) = p(F (t, τ)) for
all t ∈ [0, 1] and τ ∈ [0, 1]. Then H(t, 0) = α(t) and
H(t, 1) = β(t) for all t ∈ [0, 1]. Also H(0, τ) = H(1, τ) = b for all
τ ∈ [0, 1]. It follows that α ' β rel {0, 1} and therefore [α] = [β]
in π1(X ,b). We conclude therefore that λ : π1(S1,b)→ Z is
injective.
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Let m be an integer, let t0 be a real number for which p(t0) = b,
and let γ(t) = p(t0 + mt) for all t ∈ [0, 1]. Then γ : [0, 1]→ S1 is
a loop in S1 based at b, and λ([γ]) = n(γ) = m. We conclude
that λ : π1(S1,b)→ Z is surjective. We have now shown that the
function λ is a homomorphism that is both injective and surjective.
It follows that λ : π1(S1,b)→ Z is an isomorphism. This
completes the proof.
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Proposition 3.10

Let X = R2 \ {(0, 0)}. Then π1(X , (1, 0)) ∼= Z.

Proof
Let

S1 = {(x , y) ∈ R2 : x2 + y2 = 1,

let i : S1 → X be the inclusion map, and let r : X → S1 be the
radial projection map, defined such that

r(x , y) =

(
x√

x2 + y2
,

y√
x2 + y2

)

for all (x , y) ∈ X . Now the composition map r ◦ i is the identity
map of S1. Let
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u(x , y , τ) =
1− τ√
x2 + y2

+ τ

for all (x , y) ∈ X and τ ∈ [0, 1]. Then the function
F : X × [0, 1]→ X that sends ((x , y), τ) ∈ X × [0, 1] to
(u(x , y , τ)x , u(x , y , τ)y) is a homotopy between the composition
map i ◦ r and the identity map of the punctured plane X .
Moreover F ((x , y), τ) = (x , y) for all (x , y) ∈ S1 and τ ∈ [0, 1].

Let γ : [0, 1]→ X be a loop in X based at (1, 0) and let
H : [0, 1]× [0, 1]→ X be defined so that H(t, τ) = F (γ(t), τ) for
all t ∈ [0, 1] and τ ∈ [0, 1]. Then H(t, 0) = r(γ(t)) and
H(t, 1) = γ(t) for all t ∈ [0, 1], and H(0, τ) = H(1, τ) = (1, 0) for
all τ ∈ [0, 1], and therefore i ◦ r ◦ γ ' γ rel {0, 1}.
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Now the continuous maps i : S1 → X and r : X → S1 induce
well-defined homomorphisms i# : π1(S1, (1, 0))→ π1(X , (1, 0))
and r# : π1(X , (1, 0))→ π1(S1, (1, 0)), where i#[η] = [i ◦ η] for all
loops η in S1 based at (1, 0) and r#[γ] = [r ◦ γ] for all loops γ in
X based at (1, 0). Moreover

i#(r#([γ]) = i#([r ◦ γ]) = [i ◦ r ◦ γ] = [γ]

for all loops γ in X based at (1, 0), and

r#(i#([η])r#[i ◦ η] = [r ◦ i ◦ η] = [η]

for all loops η in S1 based at (1, 0). It follows that the
homomorphism i# : π1(S1, (1, 0))→ π1(X , (1, 0)) is an
isomorphism whose inverse is the homomorphism
r# : π1(X , (1, 0))→ π1(S1, (1, 0)), and therefore

π1(X , (1, 0)) ∼= π1(S1, (1, 0)) ∼= Z,

as required.
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Example
Let D be the closed unit disk in R2 and let ∂D be its boundary
circle, where

D2 = {(x , y) ∈ R2 : x2 + y2 ≤ 1},
∂D2 = S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

let i : ∂D → D be the inclusion map, and let b = (1, 0). Suppose
there were to exist a continuous map r : D → ∂D with the property
that r(x) = x for all x ∈ ∂D. Then r ◦ i : ∂D → ∂D would be the
identity map of the unit circle ∂D. It would then follow that
r# ◦ i# would be the identity isomorphism of π1(∂D,b), where
i# : π1(∂D,b)→ π1(D, ) and r# : π1(D,b)→ π1(∂D, ) denote the
homomorphisms of fundamental groups induced by i : ∂D → D
and r : D → ∂D respectively.
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But π1(D,b) is the trivial group, because D is a convex set in R2,
and π1(∂D,b) ∼= Z (Theorem 3.9). It follows that the identity
homomorphism of π1(D,b) cannot be expressed as a composition
of two homomorphisms θ ◦ ϕ where θ is a homomorphism from
π1(∂D,b) to π1(D,b) and ϕ is a homomorphism from π1(D,b) to
π1(∂D,b). Therefore there cannot exist any continous map
r : D → ∂D with the property that r(x) = x for all x ∈ ∂D. This
result has already been established (see Corollary 2.15). Moreover
the result is used to establish the Brouwer Fixed Point Theorem in
the two-dimensional case (Theorem 2.16) which ensures that every
continuous map from the two-dimensional closed disk D2 to itself
has a fixed point.
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