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1. (a) [Bookwork.] Let f :Z → X be a function with the property that
pi ◦ f is continuous for all i. Let U be an open set in X. We must
show that f−1(U) is open in Z.

Let z be a point of f−1(U), and let f(z) = (u1, u2, . . . , un). Now
U is open in X, and therefore there exist open sets V1, V2, . . . , Vn
in X1, X2, . . . , Xn respectively such that ui ∈ Vi for all i and V1×
V2 × · · · × Vn ⊂ U . Let

Nz = f−11 (V1) ∩ f−12 (V2) ∩ · · · ∩ f−1n (Vn),

where fi = pi◦f for i = 1, 2, . . . , n. Now f−1i (Vi) is an open subset
of Z for i = 1, 2, . . . , n, since Vi is open in Xi and fi:Z → Xi is
continuous. Thus Nz, being a finite intersection of open sets, is
itself open in Z. Moreover

f(Nz) ⊂ V1 × V2 × · · · × Vn ⊂ U,

so that Nz ⊂ f−1(U). It follows that f−1(U) is the union of the
open sets Nz as z ranges over all points of f−1(U). Therefore
f−1(U) is open in Z. This shows that f :Z → X is continuous, as
required.

(b) [Definition. From printed lecture notes.] Let X and Y be topo-
logical spaces and let q:X → Y be a function from X to Y . The
function q is said to be an identification map if and only if the
following conditions are satisfied:

• the function q:X → Y is surjective,

• a subset U of Y is open in Y if and only if q−1(U) is open
in X.

(c) [Bookwork adapted from printed lecture notes] Let τ be the col-
lection consisting of all subsets U of Y for which q−1(U) is open
in X. Now q−1(∅) = ∅, and q−1(Y ) = X, so that ∅ ∈ τ and Y ∈ τ .

It follows directly from (b) that, given any collection of subsets of
Y , the union of the preimages of the sets is the preimage of the
union of those sets, and the intersection of the preimages of the
sets is the preimage of the intersection of those sets. Therefore
unions and finite intersections of sets belonging to τ must them-
selves belong to τ . Thus τ is a topology on Y , and the function
q:X → Y is an identification map with respect to the topology τ .
Moreover the definition of identification maps ensures that the
open subsets of Y must be the subsets belonging to τ , and thus τ
is the unique topology on Y for which the function q:X → Y is
an identification map.
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(d) [From printed lecture notes.] Suppose that f is continuous. Then
the composition function f ◦q is a composition of continuous func-
tions and hence is itself continuous.

Conversely suppose that f ◦ q is continuous. Let U be an open
set in Z. Then q−1(f−1(U)) is open in X (since f ◦ q is continu-
ous), and hence f−1(U) is open in Y (since the function q is an
identification map). Therefore the function f is continuous, as
required.
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2. (a) [Definition.] Let X and X̃ be topological spaces and let p: X̃ → X
be a continuous map. An open subset U of X is said to be evenly
covered by the map p if and only if p−1(U) is a disjoint union of
open sets of X̃ each of which is mapped homeomorphically onto U
by p. The map p: X̃ → X is said to be a covering map if p: X̃ → X
is surjective and in addition every point of X is contained in some
open set that is evenly covered by the map p.

(b) [Mostly bookwork. The covering map from the helicoid to the
punctured plane is discussed extensively in notes, but in various
places as free-form text to introduce the ideas of covering maps
and path lifting rather than as a labelled proposition or example.]

The map p is a surjective map from the helicoid X̃ to the punc-
tured plane X.

Let (x, y) be a point of the punctured plane X, and let ρ =√
x2 + y2. Then there exists some real number z such that x =

ρ cos 2πz and y = ρ sin 2πz. Then (x, y) = p(x, y, z). Thus the
map p: X̃ → X is surjective.

[Material from this point on is quoted verbatim from the lecture
notes, up to the final paragraph of the worked solution.]

Given any real number θ, let

Ũθ =

{
(x, y, z) ∈ X̃ :

∣∣∣∣z − θ

2π

∣∣∣∣ < 1

2

}
,

and let Uθ = p(Ũθ). Then Uθ is the sector of the punctured plane
consisting all all half-lines starting at the origin that make an
angle of less than π with the half-line in the direction of the vector
(cos θ, sin θ). It follows that Uθ = X \ Lθ, where Lθ is the half-
line from the origin in the direction of the vector (− cos θ,− sin θ),
defined so that

Lθ = {(−t cos θ,−t sin θ) : t ∈ R and t > 0}.

Then the preimage p−1(Uθ) of Uθ is the disjoint union
⋃
n∈Z

Vn of

the open subsets Vn of X̃ for all integers n, where

Vn = {(x, y, z) ∈ X̃ : (x, y, z − n) ∈ Ũθ}

=

{
(x, y, z) ∈ X̃ :

θ

2π
+ n− 1

2
< z <

θ

2π
+ n+

1

2

}
.
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Each of these open set Vn is mapped homeomorphically onto Uθ
by the map p: X̃ → X. Indeed let sn:Uθ → Vn be defined such
that

sn(ρ cos(θ+ϕ), ρ sin(θ+ϕ)) =

(
ρ cos(θ + ϕ), ρ sin(θ + ϕ),

θ + ϕ

2π
+ n

)
for all angles ϕ satisfying −π < ϕ < π. Then sn:Uθ → Vn is a
continuous map, and this map is the inverse of the restriction of
the map p: X̃ → X to Vn. It follows that the preimage p−1(Uθ) of
the open subset Uθ of X is a disjoint union of open sets, each of
which is mapped homeomorphically onto Uθ by the map p: X̃ →
X. We say that the open set Uθ is evenly covered by the continuous
map p: X̃ → X.

[The direct quote from the lecture notes ends here.]

The continuous map p: X̃ → X is surjective, and we have verified
that, given any point of X, there exists an open neighbourhood of
that point that is evenly covered by the map p: X̃ → X. It follows
that p: X̃ → X is a covering map, as required.
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3. [Based on lecture notes.] Let X be a topological space, and let x0
and x1 be points of X. A path in X from x0 to x1 is defined to be a
continuous map γ: [0, 1] → X for which γ(0) = x0 and γ(1) = x1. A
loop in X based at x0 is defined to be a continuous map γ: [0, 1] → X
for which γ(0) = γ(1) = x0.

We can concatenate paths. Let γ1: [0, 1] → X and γ2: [0, 1] → X be
paths in some topological space X. Suppose that γ1(1) = γ2(0). We
define the product path γ1.γ2: [0, 1]→ X by

(γ1.γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2
;

γ2(2t− 1) if 1
2
≤ t ≤ 1.

If γ: [0, 1]→ X is a path inX then we define the inverse path γ−1: [0, 1]→
X by γ−1(t) = γ(1− t).
Let X be a topological space, and let x0 ∈ X be some chosen point
of X. We define an equivalence relation on the set of all (continuous)
loops based at the basepoint x0 ofX, where two such loops γ0 and γ1 are
equivalent if and only if γ0 ' γ1 rel {0, 1}. We denote the equivalence
class of a loop γ: [0, 1]→ X based at x0 by [γ]. This equivalence class
is referred to as the based homotopy class of the loop γ. The set of
equivalence classes of loops based at x0 is denoted by π1(X, x0).

Let X be a topological space, let x0 be some chosen point of X, and
let π1(X, x0) be the set of all based homotopy classes of loops based at
the point x0. We show π1(X, x0) is a group, the group multiplication
on π1(X, x0) being defined according to the rule [γ1][γ2] = [γ1.γ2] for
all loops γ1 and γ2 based at x0. This group is the fundamental group
of the topological space X based at x0.

First we show that the group operation on π1(X, x0) is well-defined.
Let γ1, γ

′
1, γ2 and γ′2 be loops in X based at the point x0. Suppose

that [γ1] = [γ′1] and [γ2] = [γ′2]. Let the map F : [0, 1] × [0, 1] → X be
defined by

F (t, τ) =

{
F1(2t, τ) if 0 ≤ t ≤ 1

2
,

F2(2t− 1, τ) if 1
2
≤ t ≤ 1,

where F1: [0, 1]×[0, 1]→ X is a homotopy between γ1 and γ′1, F2: [0, 1]×
[0, 1]→ X is a homotopy between γ2 and γ′2, and where the homotopies
F1 and F2 map (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Then F is itself
a homotopy from γ1.γ2 to γ′1.γ

′
2, and maps (0, τ) and (1, τ) to x0 for all
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τ ∈ [0, 1]. Thus [γ1.γ2] = [γ′1.γ
′
2], showing that the group operation on

π1(X, x0) is well-defined.

Next we show that the group operation on π1(X, x0) is associative.
Let γ1, γ2 and γ3 be loops based at x0, and let α = (γ1.γ2).γ3. Then
γ1.(γ2.γ3) = α ◦ θ, where

θ(t) =


1
2
t if 0 ≤ t ≤ 1

2
;

t− 1
4

if 1
2
≤ t ≤ 3

4
;

2t− 1 if 3
4
≤ t ≤ 1.

Thus the map G: [0, 1] × [0, 1] → X defined by G(t, τ) = α((1 − τ)t +
τθ(t)) is a homotopy between (γ1.γ2).γ3 and γ1.(γ2.γ3), and moreover
this homotopy maps (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. It fol-
lows that (γ1.γ2).γ3 ' γ1.(γ2.γ3) rel {0, 1} and hence ([γ1][γ2])[γ3] =
[γ1]([γ2][γ3]). This shows that the group operation on π1(X, x0) is as-
sociative.

Let ε: [0, 1] → X denote the constant loop at x0, defined by ε(t) = x0
for all t ∈ [0, 1]. Then ε.γ = γ ◦θ0 and γ.ε = γ ◦θ1 for any loop γ based
at x0, where

θ0(t) =

{
0 if 0 ≤ t ≤ 1

2
,

2t− 1 if 1
2
≤ t ≤ 1,

θ1(t) =

{
2t if 0 ≤ t ≤ 1

2
,

1 if 1
2
≤ t ≤ 1,

for all t ∈ [0, 1]. But the continuous map (t, τ) 7→ γ((1− τ)t + τθj(t))
is a homotopy between γ and γ ◦ θj for j = 0, 1 which sends (0, τ) and
(1, τ) to x0 for all τ ∈ [0, 1]. Therefore ε.γ ' γ ' γ.ε rel {0, 1}, and
hence [ε][γ] = [γ] = [γ][ε]. We conclude that [ε] represents the identity
element of π1(X, x0).

It only remains to verify the existence of inverses. Now the map
K: [0, 1]× [0, 1]→ X defined by

K(t, τ) =

{
γ(2τt) if 0 ≤ t ≤ 1

2
;

γ(2τ(1− t)) if 1
2
≤ t ≤ 1.

is a homotopy between the loops γ.γ−1 and ε, and moreover this ho-
motopy sends (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Therefore
γ.γ−1 ' ε rel{0, 1}, and thus [γ][γ−1] = [γ.γ−1] = [ε]. On replacing
γ by γ−1, we see also that [γ−1][γ] = [ε], and thus [γ−1] = [γ]−1, as
required.
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4. (a) [Bookwork.] Let γ: [0, 1]→ X/G be a loop in the orbit space with
γ(0) = γ(1) = q(x0). It follows from the Path Lifting Theorem
for covering maps that there exists a unique path γ̃: [0, 1]→ X for
which γ̃(0) = x0 and q ◦ γ̃ = γ. Now γ̃(0) and γ̃(1) must belong to
the same orbit, since q(γ̃(0)) = γ(0) = γ(1) = q(γ̃(1)). Therefore
there exists some element g of G such that γ̃(1) = θg(x0). This
element g is uniquely determined, since the group G acts freely on
X. Moreover the value of g is determined by the based homotopy
class [γ] of γ in π1(X/G, q(x0)). Indeed it follows from a basic
result (stated on the examination paper) that if σ is a loop in
X/G based at q(x0), if σ̃ is the lift of σ starting at x0 (so that
q ◦ σ̃ = σ and σ̃(0) = x0), and if [γ] = [σ] in π1(X/G, q(x0)) (so
that γ ' σ rel {0, 1}), then γ̃(1) = σ̃(1). We conclude therefore
that there exists a well-defined function

λ: π1(X/G, q(x0))→ G,

which is characterized by the property that γ̃(1) = θλ([γ])(x0) for
any loop γ in X/G based at q(x0), where γ̃ denotes the unique
path in X for which γ̃(0) = x0 and q ◦ γ̃ = γ.

Now let α: [0, 1] → X/G and β: [0, 1] → X/G be loops in X/G
based at q(x0), and let α̃: [0, 1] → X and β̃: [0, 1] → X be the
lifts of α and β respectively starting at x0, so that q ◦ α̃ = α,
q ◦ β̃ = β and α̃(0) = β̃(0) = x0. Then α̃(1) = θλ([α])(x0) and

β̃(1) = θλ([β])(x0). Then the path θλ([α]) ◦ β̃ is also a lift of the
loop β, and is the unique lift of β starting at α̃(1). Let α.β be the
concatenation of the loops α and β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Then the unique lift of α.β toX starting at x0 is the path σ: [0, 1]→
X, where

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

θλ([α])(β̃(2t− 1)) if 1
2
≤ t ≤ 1.

It follows that

θλ([α][β])(x0) = θλ([α.β])(x0) = σ(1) = θλ([α])(β̃(1))

= θλ([α])(θλ([β])(x0)) = θλ([α])λ([β])(x0)
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and therefore λ([α][β]) = λ([α])λ([β]). Therefore the function

λ: π1(X/G, q(x0))→ G

is a homomorphism.

Let g ∈ G. Then there exists a path α in X from x0 to θg(x0), since
the space X is path-connected. Then q ◦α is a loop in X/G based
at q(x0), and g = λ([q◦α]). This shows that the homomorphism λ
is surjective.

(b) [Bookwork.] Let γ: [0, 1]→ X/G be a loop in X/G based at q(x0).
Suppose that [γ] ∈ kerλ. Then γ̃(1) = θe(x0) = x0, and therefore
γ̃ is a loop in X based at x0. Moreover [γ] = q#[γ̃], and therefore
[γ] ∈ q#(π1(X, x0)). On the other hand, if [γ] ∈ q#(π1(X, x0))
then γ = q ◦ γ̃ for some loop γ̃ in X based at x0. But then
x0 = γ̃(1) = θλ([γ])(x0), and therefore λ([γ]) = e, where e is the
identity element of G. Thus kerλ = q#(π1(X, x0)), as required.
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