Module MA3427: Michaelmas Term 2014 Problems

- 1. A function $f: X \to Y$ between topological spaces X and Y is continuous if and only if, for every open set V in Y, the preimage $f^{-1}(V)$ of V is an open set in X.
 - (a) Explain why the identity map $1_X: X \to X$ of any topological space X is continuous.
 - (b) Let X and Y be topological spaces, let q be a point of Y, and let $c_q: X \to Y$ be the constant map defined such that $c_q(x) = q$ for all $x \in X$. Explain why $c_q: X \to Y$ is continuous.
- 2. Prove that

$$\left\{ (x, y, z) \in \mathbb{R}^3 : x > 0 \text{ and } y^2 + z^2 \ge \frac{1}{x^2} \right\}$$

is a closed set in \mathbb{R}^3 .

- 3. An infinite sequence x_1, x_2, x_3, \ldots of points in a topological space X is said to *converge* to some point p of X if and only if, given any open set V in Y with $p \in V$, there exists some positive integer N such that $x_j \in V$ whenever $j \geq N$. Prove that an infinite sequence of points of a Hausdorff space can converge to at most one point of that Hausdorff space.
- 4. (a) Let $f: X \to Y$ be a function from a topological space X to a topological space Y, and let A and B be subsets of X for which $X = A \cup B$. Suppose that the restrictions f|A and f|B of f to the sets A and B are continuous. Is $f: X \to Y$ necessarily continuous on X? [Give proof or counterexample.]
 - (b) Let $f: X \to Y$ be a function from a topological space X to a topological space Y, and let \mathcal{F} be a (not necessarily finite) collection of closed subsets of X whose union is the whole of X. Suppose that the restriction f|A of f to A is continuous for all closed sets A in the collection \mathcal{F} . Is $f: X \to Y$ necessarily continuous on X? [Give proof or counterexample.]

- 5. Let $f: X \to Y$ be a function from a topological space X to a topological space Y, and let \mathcal{U} be a collection of open subsets of X whose union is the whole of X. Suppose that the restriction f|W of f to W is continuous for all open sets W in the collection \mathcal{U} . Prove that $f: X \to Y$ is continuous on X.
- 6. Let X be a topological space, let A be a subset of X, and let B be the complement $X \setminus A$ of A in X. Prove that the interior of B is the complement of the closure of A.
- 7. Determine which of the following subsets of \mathbb{R}^3 are compact.
 - (i) The x-axis $\{(x, y, z) \in \mathbb{R}^3 : y = z = 0\}$
 - (ii) The surface of a tetrahedron in \mathbb{R}^3 .
 - (iii) $\{(x, y, z) \in \mathbb{R}^3 : x > 0 \text{ and } x^2 + y^2 z^2 \le 1\}.$
- 8. Let X be a topological space. Suppose that $X = A \cup B$, where A and B are path-connected subsets of X and $A \cap B$ is non-empty. Show that X is path-connected.
- 9. Let $f: X \to Y$ be a continuous map between topological spaces X and Y. Suppose that X is path-connected. Prove that the image f(X) of the map f is also path-connected.
- 10. Determine the connected components of the following subsets of \mathbb{R}^2 :
 - (i) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},$
 - (ii) $\{(x,y) \in \mathbb{R}^2 : x^2 y^2 = 1\},\$
 - (iii) $\{(x,y) \in \mathbb{R}^2 : y^2 = x(x^2 1)\},\$
 - (iv) $\{(x,y) \in \mathbb{R}^2 : (x-n)^2 + y^2 > \frac{1}{4} \text{ for all } n \in \mathbb{Z}\}.$

[Fully justify your answers.]

11. A topological space X is said to be *locally path-connected* if, given any point x of X there exists a path-connected open set U in X such that $x \in U$.

- (a) Let X be a locally path-connected topological space, and let p be a point of X. Let A be the set of all points x of X for which there exists a path from p to x, and let B be the complement of A in X. Prove that A and B are open in X.
- (b) Use the result of (a) to show that any connected and locally path-connected topological space is path-connected.
- 12. Let X and Y be path-connected topological spaces, let q be a point of Y, and let $i_q: X \to X \times Y$ be the function from X to the Cartesian product $X \times Y$ of the topological spaces X and Y defined such that $i_q(x) = (x, q)$ for all $x \in X$. Explain why $i_q: X \to X \times Y$ is guaranteed to be continuous.
- 13. Let X and Y be path-connected topological spaces. Explain why the Cartesian product $X \times Y$ of X and Y is path-connected.
- 14. Let n an integer satisfying $n \geq 2$, let S^n be the unit sphere in \mathbb{R}^{n+1} , and let E_n denote the closed unit ball in \mathbb{R}^n , so that

$$S^{n} = \{(x_{1}, x_{2}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} + x_{n+1}^{2} = 1\},$$

$$E^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) \in \mathbb{R}^{n+1} : x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \leq 1\}.$$

Real projective n-dimensional space RP^n can be identified with the set of lines passing through the origin in \mathbb{R}^{n+1} , and there is a two-to-one function $q: S^n \to RP^n$ that maps each point \mathbf{x} to the element of RP^n represented by the line through the origin that contains the point \mathbf{x} . Points \mathbf{u} and \mathbf{v} of S^n satisfy $q(\mathbf{u}) = q(\mathbf{v})$ if and only if $\mathbf{v} = \pm \mathbf{u}$. The topology on RP^n is the quotient topology with respect to which the function $q: S^n \to RP^n$ is an identification map.

(a) Let $h: E^n \to S^n$ be the function from E^n to the 'upper hemisphere' of S^n defined such that

$$h(x_1, x_2, \dots, x_n) = \left(x_1, x_2, \dots, x_n, \sqrt{1 - x_1^2 - \dots - x_n^2}\right)$$

for all $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, and let $r: E^n \to RP^n$ be the composition $q \circ h$ of the continuous map $h: E^n \to S^n$ and the identification map $q: S^n \to RP^n$. Prove that $r: E^n \to RP^n$ is also an identification map.

- (b) Let $h: E^n \to RP^n$ be the continuous map defined in (a). Describe necessary and sufficient conditions to be satisfied by points \mathbf{y} and \mathbf{z} of E^n to ensure that $r(\mathbf{y}) = r(\mathbf{z})$.
- 15. Let X be a convex subset of \mathbb{R}^n . (A subset X of \mathbb{R}^n is said to be convex if $(1-t)\mathbf{x} + t\mathbf{y} \in X$ for all $\mathbf{x}, \mathbf{y} \in X$ and real numbers t satisfying $0 \le t \le 1$.)
 - (a) Prove that any two continuous functions mapping some topological space into X are homotopic.
 - (b) Prove that any two continuous functions mapping X into some path-connected topological space Y are homotopic.
- 16. Determine which of the following maps are covering maps:—
 - (i) the map from \mathbb{R} to [-1,1] sending θ to $\sin \theta$,
 - (ii) the map from S^1 to S^1 sending $(\cos \theta, \sin \theta)$ to $(\cos n\theta, \sin n\theta)$, where n is some non-zero integer,
 - (iii) the map from $\{z \in \mathbb{C} : \operatorname{Re} z < 0\}$ to $\{z \in \mathbb{C} : 0 < |z| < 1\}$ sending z to $\exp(z)$,
 - (iv) the map from $\{z \in \mathbb{C} : -4\pi < \text{Im } z < 4\pi\}$ to $\{z \in \mathbb{C} : |z| > 0\}$ sending z to $\exp(z)$.

[Briefly justify your answers.]

- 17. A continuous function $f: X \to Y$ between topological spaces X and Y is said to be a *local homeomorphism* if, given any point x of X there exists an open set Y in X containing the point x and an open set Y in Y containing the point Y such that the function Y homeomorphically onto Y is a local homeomorphism.
- 18. Determine which of the maps described in question 16 are local homeomorphisms.
- 19. (a) Let W, X, Y and Z be topological spaces, and let A be a subset of X. Let $f: X \to Y$ and $g: X \to Y$ be continuous maps. Suppose that $f \simeq g \operatorname{rel} A$. Show that $h \circ f \simeq h \circ g \operatorname{rel} A$ for all continuous maps $h: Y \to Z$, and that $f \circ e \simeq g \circ e \operatorname{rel} e^{-1}(A)$ for all continuous maps $e: W \to X$.

- (b) Using (a), explain why, given any continuous map $f: X \to Y$ between topological spaces X and Y, there is a well-defined homomorphism $f_{\#}: \pi_1(X, x) \to \pi_1(Y, f(x))$ of fundamental groups for any $x \in X$ which sends $[\gamma]$ to $[f \circ \gamma]$ for any loop γ based at the point x.
- (c) Let $f: X \to Y$ and $g: X \to Y$ be continuous maps satisfying f(x) = g(x) and $f \simeq g \operatorname{rel}\{x\}$. Show that the homomorphisms $f_{\#}$ and $g_{\#}$ from $\pi_1(X, x)$ to $\pi_1(Y, f(x))$ induced by the maps f and g are equal.
- 20. (a) Let X and Y be topological spaces, let $f: X \to Y$ and $h: Y \to X$ continuous maps, and let x be a point of X. Suppose that h(f(x)) = x and that $h \circ f \simeq 1_X \operatorname{rel}\{x\}$ and $f \circ h \simeq 1_Y \operatorname{rel}\{f(x)\}$, where 1_X and 1_Y denote the identity maps of the spaces X and Y. Explain why the fundamental groups $\pi_1(X, x)$ and $\pi_1(Y, f(x))$ are isomorphic.
 - (b) Using (a), explain why the fundamental groups $\pi_1(\mathbb{R}^n \setminus \{\mathbf{0}\}, \mathbf{p})$ and $\pi^1(S^{n-1}, \mathbf{p})$ of $\mathbb{R}^n \setminus \{\mathbf{0}\}$ and the (n-1)-dimensional sphere S^{n-1} are isomorphic for all n > 1, where $\mathbf{p} \in S^{n-1}$.
- 21. Let X be a topological space, and let $\alpha:[0,1] \to X$ and $\beta:[0,1] \to X$ be paths in X. We say that the path β is a reparameterization of the path α if there exists a strictly increasing continuous function $\sigma:[0,1] \to [0,1]$ such that $\sigma(0)=0$, $\sigma(1)=1$ and $\beta=\alpha\circ\sigma$. (Note that if β is a reparameterization of α then $\alpha(0)=\beta(0)$, $\alpha(1)=\beta(1)$, and the paths α and β have the same image in X.)
 - (a) Show that there is a well-defined equivalence relation on the set of all paths in X, where a path α is related to a path β if and only if β is a reparameterization of a path α . [Hint: use the basic result of analysis which states that a strictly increasing continuous function mapping one interval onto another has a continuous inverse.]
 - (b) Show that if the path β is a reparameterization of the path α , then $\beta \simeq \alpha \operatorname{rel}\{0,1\}.$
 - Given paths $\gamma_1, \gamma_2, \ldots, \gamma_n$ in a topological space X, where $\gamma_i(1) = \gamma_{i+1}(0)$ for $i = 1, 2, \ldots, n-1$, we define the concatenation $\gamma_1, \gamma_2, \ldots, \gamma_n$ of the paths by the formula $(\gamma_1, \gamma_2, \ldots, \gamma_n)(t) = \gamma_i(nt i + 1)$ for all t satisfying $(i-1)/n \le t \le i/n$.
 - (c) Show that the path $(\gamma_1, \ldots, \gamma_r), (\gamma_{r+1}, \ldots, \gamma_n)$ is a reparameterization of $\gamma_1, \gamma_2, \cdots, \gamma_n$ for any r between 1 and n-1.

- (d) By making repeated applications of (c), or otherwise, show that $(\gamma_1.\gamma_2).\gamma_3.(\gamma_4.\gamma_5)$ is a reparameterization of $\gamma_1.(\gamma_2.\gamma_3.\gamma_4).\gamma_5$ for all paths $\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5$ in X satisfying $\gamma_i(1) = \gamma_{i+1}(0)$ for i = 1, 2, 3, 4.
- 22. Let X be a topological space.
 - (a) Show that, given any path $\alpha: [0,1] \to X$ in X, there is a well-defined homomorphism $\Theta_{\alpha}: \pi_1(X, \alpha(1)) \to \pi_1(X, \alpha(0))$ of fundamental groups which sends the homotopy class $[\gamma]$ of any loop γ based at $\alpha(1)$ to the homotopy class $[\alpha.\gamma.\alpha^{-1}]$ of the loop $\alpha.\gamma.\alpha^{-1}$, where

$$(\alpha.\gamma.\alpha^{-1})(t) = \begin{cases} \alpha(3t) & \text{if } 0 \le t \le \frac{1}{3}, \\ \gamma(3t-1) & \text{if } \frac{1}{3} \le t \le \frac{2}{3}, \\ \alpha(3-3t) & \text{if } \frac{2}{3} \le t \le 1 \end{cases}$$

(i.e., $\alpha \cdot \gamma \cdot \alpha^{-1}$ represents ' α followed by γ followed by α reversed').

- (b) Show that $\Theta_{\alpha,\beta} = \Theta_{\alpha} \circ \Theta_{\beta}$ for all paths α and β in X satisfying $\beta(0) = \alpha(1)$.
- (c) Show that Θ_{α} is the identity homomorphism whenever α is a constant path.
- (d) Let α and $\hat{\alpha}$ be paths in X satisfying $\alpha(0) = \hat{\alpha}(0)$ and $\alpha(1) = \hat{\alpha}(1)$. Suppose that $\alpha(0) \simeq \hat{\alpha}(0)$ rel $\{0, 1\}$. Show that $\Theta_{\alpha} = \Theta_{\hat{\alpha}}$.
- (e) Explain why the homomorphism Θ_{α} : $\pi_1(X, \alpha(1)) \to \pi_1(X, \alpha(0))$ is an isomorphism for all paths α in X. (This shows that, up to isomorphism, the fundamental group of a path-connected topological space does not depend on the choice of basepoint.)
- 23. Let X and Y be topological spaces, and let x_0 and y_0 be points of X and Y. Prove that $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$. [Hint: you should make use of the result that a function mapping a topological space into $X \times Y$ is continuous if and only if its components are continuous.]