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Topological Spaces.

Notions of Continuity.

The concept of continuity is fundamental in

large parts of contemporary mathematics. In

the nineteenth century, precise definitions of

continuity were formulated for functions of

a real or complex variable, enabling mathe-

maticians to produce rigorous proofs of fun-

damental theorems of real and complex anal-

ysis, such as the Intermediate Value The-

orem, Taylor’s Theorem, the Fundamental

Theorem of Calculus, and Cauchy’s Theo-

rem.

In the early years of the Twentieth Century,

the concept of continuity was generalized so

as to be applicable to functions between met-

ric spaces, and subsequently to functions be-

tween topological spaces.
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Topological Spaces.

Definition.

A topological space X consists of a set X to-

gether with a collection of subsets, referred

to as open sets, such that the following con-

ditions are satisfied:—

(i) the empty set ∅ and the whole set X are

open sets,

(ii) the union of any collection of open sets

is itself an open set,

(iii) the intersection of any finite collection

of open sets is itself an open set.

The collection consisting of all the open sets

in a topological space X is referred to as a

topology on the set X.
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Remark.

If it is necessary to specify explicitly the topol-
ogy on a topological space then one denotes
by (X, τ) the topological space whose un-
derlying set is X and whose topology is τ .
However if no confusion will arise then it is
customary to denote this topological space
simply by X.

Subsets of Euclidean Space.

Let X be a subset of n-dimensional Euclidean
space Rn. The Euclidean distance |x − y|
between two points x and y of X is defined
as follows:

|x− y| =

√√√√ n∑
i=1

(xi − yi)2,

where

x = (x1, x2, . . . , xn)

and

y = (y1, y2, . . . , yn).
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The Euclidean distances between any three

points x, y and z of X satisfy the Triangle

Inequality :

|x− z| ≤ |x− y|+ |y − z|.

A subset V of X is said to be open in X

if, given any point v of V , there exists some

δ > 0 such that

{x ∈ X : |x− v| < δ} ⊂ V.

The empty set is also considered to be open

in X.

5



Both ∅ and X are open sets in X. Also it

is not difficult to show that any union of

open sets in X is open in X, and that any

finite intersection of open sets in X is open

in X. (This will be proved in more gener-

ality for open sets in metric spaces.) Thus

the collection of open sets in a subset X of a

Euclidean space Rn satisfies the topological

space axioms. Thus every subset X of Rn

is a topological space with these open sets.

This topology on a subset X of Rn is referred

to as the usual topology on X, generated by

the Euclidean distance function.

In particular Rn is itself a topological space.
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Open Sets in Metric Spaces.

Definition.

A metric space (X, d) consists of a set X to-

gether with a distance function d:X × X →
[0,+∞) on X satisfying the following axioms:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈
X,

(iv) d(x, y) = 0 if and only if x = y.
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The quantity d(x, y) should be thought of as

measuring the distance between the points

x and y. The inequality d(x, z) ≤ d(x, y) +

d(y, z) is referred to as the Triangle Inequal-

ity. The elements of a metric space are

usually referred to as points of that metric

space.

An n-dimensional Euclidean space Rn is a

metric space with with respect to the Eu-

clidean distance function d, defined by

d(x,y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2

for all x,y ∈ Rn. Any subset X of Rn may

be regarded as a metric space whose dis-

tance function is the restriction to X of the

Euclidean distance function on Rn defined

above.
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Definition.

Let (X, d) be a metric space. Given a point x

of X and r ≥ 0, the open ball BX(x, r) of

radius r about x in X is defined by

BX(x, r) ≡ {x′ ∈ X : d(x′, x) < r}.

Definition.

Let (X, d) be a metric space. A subset V

of X is said to be an open set if and only if

the following condition is satisfied:

• given any point v of V there exists some

δ > 0 such that BX(v, δ) ⊂ V .

By convention, we regard the empty set ∅
as being an open subset of X. (The crite-

rion given above is satisfied vacuously in this

case.)
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Lemma 1.1 Let X be a metric space with

distance function d, and let x0 be a point

of X. Then, for any r > 0, the open ball

BX(x0, r) of radius r about x0 is an open set

in X.

Proof.

Let x ∈ BX(x0, r). We must show that there

exists some δ > 0 such that BX(x, δ) ⊂ BX(x0, r).

Now d(x, x0) < r, and hence δ > 0, where

δ = r − d(x, x0). Moreover if x′ ∈ BX(x, δ)

then

d(x′, x0) ≤ d(x′, x)+d(x, x0) < δ+d(x, x0) = r,

by the Triangle Inequality, hence x′ ∈ BX(x0, r).

Thus

BX(x, δ) ⊂ BX(x0, r),

showing that BX(x0, r) is an open set, as re-

quired.
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Proposition 1.2 Let X be a metric space.

The collection of open sets in X has the fol-

lowing properties:—

(i) the empty set ∅ and the whole set X are

both open sets;

(ii) the union of any collection of open sets

is itself an open set;

(iii) the intersection of any finite collection

of open sets is itself an open set.

Proof.

The empty set ∅ is an open set by conven-

tion. Moreover the definition of an open set

is satisfied trivially by the whole set X. Thus

(i) is satisfied.
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Let A be any collection of open sets in X,

and let U denote the union of all the open

sets belonging to A. We must show that

U is itself an open set. Let x ∈ U . Then

x ∈ V for some open set V belonging to the

collection A. Therefore there exists some

δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U ,

and thus BX(x, δ) ⊂ U . This shows that U is

open. Thus (ii) is satisfied.

Finally let V1, V2, V3, . . . , Vk be a finite collec-

tion of open sets in X, and let

V = V1 ∩ V2 ∩ · · · ∩ Vk.

Let x ∈ V . Now x ∈ Vj for all j, and there-

fore there exist strictly positive real numbers

δ1, δ2, . . . , δk such that

BX(x, δj) ⊂ Vj
for j = 1,2, . . . , k. Let δ be the minimum of

δ1, δ2, . . . , δk. Then δ > 0. (This is where we

need the fact that we are dealing with a finite

collection of open sets.)
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Moreover

BX(x, δ) ⊂ BX(x, δj) ⊂ Vj
for j = 1,2, . . . , k, and thus BX(x, δ) ⊂ V .

This shows that the intersection V of the

open sets V1, V2, . . . , Vk is itself open. Thus

(iii) is satisfied.

Any metric space may be regarded as a topo-

logical space. Indeed let X be a metric space

with distance function d. We recall that a

subset V of X is an open set if and only if,

given any point v of V , there exists some

δ > 0 such that {x ∈ X : d(x, v) < δ} ⊂ V .

Proposition 1.2 shows that the topological

space axioms are satisfied by the collection

of open sets in any metric space. We refer

to this collection of open sets as the topol-

ogy generated by the distance function d on

X.
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Further Examples of Topological

Spaces.

Example.

Given any set X, one can define a topology
on X where every subset of X is an open set.
This topology is referred to as the discrete
topology on X.

Example.

Given any set X, one can define a topology
on X in which the only open sets are the
empty set ∅ and the whole set X.

Closed Sets.

Definition.

Let X be a topological space. A subset F

of X is said to be a closed set if and only if
its complement X \ F is an open set.
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We recall that the complement of the union

of some collection of subsets of some set X is

the intersection of the complements of those

sets, and the complement of the intersec-

tion of some collection of subsets of X is

the union of the complements of those sets.

The following result therefore follows directly

from the definition of a topological space.

Proposition 1.3 Let X be a topological space.

Then the collection of closed sets of X has

the following properties:—

(i) the empty set ∅ and the whole set X are

closed sets,

(ii) the intersection of any collection of closed

sets is itself a closed set,

(iii) the union of any finite collection of closed

sets is itself a closed set.
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Hausdorff Spaces.

Definition.

A topological space X is said to be a Haus-

dorff space if and only if it satisfies the fol-

lowing Hausdorff Axiom:

• if x and y are distinct points of X then

there exist open sets U and V such that

x ∈ U , y ∈ V and U ∩ V = ∅.

Lemma 1.4 All metric spaces are Hausdorff

spaces.
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Proof.

Let X be a metric space with distance func-

tion d, and let x and y be points of X, where

x 6= y. Let ε = 1
2d(x, y). Then the open

balls BX(x, ε) and BX(y, ε) of radius ε cen-

tred on the points x and y are open sets (see

Lemma 1.1). If BX(x, ε)∩BX(y, ε) were non-

empty then there would exist z ∈ X satis-

fying d(x, z) < ε and d(z, y) < ε. But this

is impossible, since it would then follow from

the Triangle Inequality that d(x, y) < 2ε, con-

trary to the choice of ε. Thus x ∈ BX(x, ε),

y ∈ BX(y, ε), BX(x, ε) ∩ BX(y, ε) = ∅. This

shows that the metric space X is a Hausdorff

space.

We now give an example of a topological

space which is not a Hausdorff space.
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Example.

The Zariski topology on the set R of real

numbers is defined as follows: a subset U of R
is open (with respect to the Zariski topol-

ogy) if and only if either U = ∅ or else R \ U
is finite. It is a straightforward exercise to

verify that the topological space axioms are

satisfied, so that the set R of real numbers

is a topological space with respect to this

Zariski topology. Now the intersection of any

two non-empty open sets in this topology is

always non-empty. (Indeed if U and V are

non-empty open sets then U = R \ F1 and

V = R\F2, where F1 and F2 are finite sets of

real numbers. But then U ∩V = R\(F1∪F2),

which is non-empty, since F1∪F2 is finite and

R is infinite.) It follows immediately from this

that R, with the Zariski topology, is not a

Hausdorff space.
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Subspace Topologies.

Let X be a topological space with topology τ ,

and let A be a subset of X. Let τA be the

collection of all subsets of A that are of the

form V ∩ A for V ∈ τ . Then τA is a topol-

ogy on the set A. (It is a straightforward

exercise to verify that the topological space

axioms are satisfied.) The topology τA on A

is referred to as the subspace topology on A.

Any subset of a Hausdorff space is itself a

Hausdorff space (with respect to the sub-

space topology).
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Lemma 1.5 Let X be a metric space with
distance function d, and let A be a subset
of X. A subset W of A is open with respect
to the subspace topology on A if and only if,
given any point w of W , there exists some
δ > 0 such that

{a ∈ A : d(a,w) < δ} ⊂W.

Thus the subspace topology on A coincides
with the topology on A obtained on regard-
ing A as a metric space (with respect to the
distance function d).

Proof.

Suppose that W is open with respect to the
subspace topology on A. Then there exists
some open set U in X such that W = U ∩A.
Let w be a point of W . Then there exists
some δ > 0 such that

{x ∈ X : d(x,w) < δ} ⊂ U.

But then

{a ∈ A : d(a,w) < δ} ⊂ U ∩A = W.
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Conversely, suppose that W is a subset of A

with the property that, for any w ∈W , there

exists some δw > 0 such that

{a ∈ A : d(a,w) < δw} ⊂W.

Define U to be the union of the open balls

BX(w, δw) as w ranges over all points of W ,

where

BX(w, δw) = {x ∈ X : d(x,w) < δw}.

The set U is an open set in X, since each

open ball BX(w, δw) is an open set in X (see

Lemma 1.1), and any union of open sets is

itself an open set. Moreover

BX(w, δw) ∩A = {a ∈ A : d(a,w) < δw} ⊂W

for any w ∈ W . Therefore U ∩ A ⊂ W . How-

ever W ⊂ U ∩ A, since, W ⊂ A and {w} ⊂
BX(w, δw) ⊂ U for any w ∈ W . Thus W =

U ∩ A, where U is an open set in X. We

deduce that W is open with respect to the

subspace topology on A.
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Example.

Let X be any subset of n-dimensional Eu-

clidean space Rn. Then the subspace topol-

ogy on X coincides with the topology on X

generated by the Euclidean distance function

on X. We refer to this topology as the usual

topology on X.
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Let X be a topological space, and let A be

a subset of X. One can readily verify the

following:—

• a subset B of A is closed in A (relative to

the subspace topology on A) if and only

if B = A ∩ F for some closed subset F

of X;

• if A is itself open in X then a subset B

of A is open in A if and only if it is open

in X;

• if A is itself closed in X then a subset

B of A is closed in A if and only if it is

closed in X.
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Continuous Functions between Topo-

logical Spaces.

Definition.

A function f :X → Y from a topological space X

to a topological space Y is said to be contin-

uous if f−1(V ) is an open set in X for every

open set V in Y , where

f−1(V ) ≡ {x ∈ X : f(x) ∈ V }.

A continuous function from X to Y is often

referred to as a map from X to Y .

Lemma 1.6 Let X, Y and Z be topological

spaces, and let f :X → Y and g:Y → Z be

continuous functions. Then the composition

g ◦ f :X → Z of the functions f and g is con-

tinuous.
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Proof.

Let V be an open set in Z. Then g−1(V ) is

open in Y (since g is continuous), and hence

f−1(g−1(V )) is open in X (since f is con-

tinuous). But f−1(g−1(V )) = (g ◦ f)−1(V ).

Thus the composition function g ◦ f is con-

tinuous.

Lemma 1.7 Let X and Y be topological spaces,

and let f :X → Y be a function from X to Y .

The function f is continuous if and only if

f−1(G) is closed in X for every closed sub-

set G of Y .

Proof.

If G is any subset of Y then X \ f−1(G) =

f−1(Y \G) (i.e., the complement of the preim-

age of G is the preimage of the complement

of G). The result therefore follows immedi-

ately from the definitions of continuity and

closed sets.
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Continuous Functions between Met-

ric Spaces.

The following definition of continuity for func-
tions between metric spaces generalizes that
for functions of a real or complex variable.

Definition.

Let X and Y be metric spaces with distance
functions dX and dY respectively. A function
f :X → Y from X to Y is said to be con-
tinuous at a point x of X if and only if the
following criterion is satisfied:—

• given any real number ε satisfying ε > 0
there exists some δ > 0 such that dY (f(x), f(x′)) <
ε for all points x′ of X satisfying dX(x, x′) <
δ.

The function f :X → Y is said to be contin-
uous on X if and only if it is continuous at x
for every point x of X.
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This definition can be rephrased in terms

of open balls: a function f :X → Y from a

metric space X to a metric space Y is con-

tinuous at a point x of X if and only if,

given any ε > 0, there exists some δ > 0

such that f maps BX(x, δ) into BY (f(x), ε)

(where BX(x, δ) and BY (f(x), ε) denote the

open balls of radius δ and ε about x and f(x)

respectively).

Let f :X → Y be a function from a set X

to a set Y . Given any subset V of Y , we

denote by f−1(V ) the preimage of V under

the map f , defined by

f−1(V ) = {x ∈ X : f(x) ∈ V }.

The following result shows that the defini-

tion of continuity given above for functions

between metric spaces is consistent with the

more general definition of continuity for func-

tions between topological spaces.
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Proposition 1.8 Let X and Y be metric spaces,

and let f :X → Y be a function from X to Y .

The function f is continuous if and only if

f−1(V ) is an open set in X for every open

set V of Y .

Proof.

Suppose that f :X → Y is continuous. Let

V be an open set in Y . We must show that

f−1(V ) is open in X. Let x be a point be-

longing to f−1(V ). We must show that there

exists some δ > 0 with the property that

BX(x, δ) ⊂ f−1(V ). Now f(x) belongs to V .

But V is open, hence there exists some ε > 0

with the property that BY (f(x), ε) ⊂ V . But

f is continuous at x. Therefore there exists

some δ > 0 such that f maps the open ball

BX(x, δ) into BY (f(x), ε) (see the remarks

above). Thus f(x′) ∈ V for all x′ ∈ BX(x, δ),

showing that BX(x, δ) ⊂ f−1(V ). We have

thus shown that if f :X → Y is continuous

then f−1(V ) is open in X for every open set V

in Y .
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Conversely suppose that f :X → Y has the

property that f−1(V ) is open in X for every

open set V in Y . Let x be any point of X.

We must show that f is continuous at x. Let

ε > 0 be given. The open ball BY (f(x), ε)

is an open set in Y , by Lemma 1.1, hence

f−1 (BY (f(x), ε)) is an open set in X which

contains x. It follows that there exists some

δ > 0 such that BX(x, δ) ⊂ f−1 (BY (f(x), ε)).

We have thus shown that, given any ε > 0,

there exists some δ > 0 such that f maps

the open ball BX(x, δ) into BY (f(x), ε). We

conclude that f is continuous at x, as re-

quired.

A Criterion for Continuity.

We now show that, if a topological space X is

the union of a finite collection of closed sets,

and if a function from X to some topological

space is continuous on each of these closed

sets, then that function is continuous on X.
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Lemma 1.9 Let X and Y be topological spaces,
let f :X → Y be a function from X to Y , and
let X = A1∪A2∪· · ·∪Ak, where A1, A2, . . . , Ak
are closed sets in X. Suppose that the re-
striction of f to the closed set Ai is contin-
uous for i = 1,2, . . . , k. Then f :X → Y is
continuous.

Proof.

Let V be an open set in Y . We must show
that f−1(V ) is open in X. Now the preimage
of the open set V under the restriction f |Ai
of f to Ai is f−1(V ) ∩ Ai. It follows from
the continuity of f |Ai that f−1(V ) ∩ Ai is
relatively open in Ai for each i, and hence
there exist open sets U1, U2, . . . , Uk in X such
that f−1(V ) ∩ Ai = Ui ∩ Ai for i = 1,2, . . . , k.
Let Wi = Ui ∪ (X \ Ai) for i = 1,2, . . . , k.
Then Wi is an open set in X (as it is the
union of the open sets Ui and X \ Ai), and
Wi ∩ Ai = Ui ∩ Ai = f−1(V ) ∩ Ai for each i.
We claim that

f−1(V ) = W1 ∩W2 ∩ · · · ∩Wk.
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Let W = W1 ∩W2 ∩ · · · ∩Wk. Then f−1(V ) ⊂
W , since f−1(V ) ⊂Wi for each i. Also

W =
k⋃
i=1

(W ∩Ai) ⊂
k⋃
i=1

(Wi ∩Ai)

=
k⋃
i=1

(f−1(V ) ∩Ai) ⊂ f−1(V ),

since X = A1 ∪ A2 ∪ · · · ∪ Ak and Wi ∩ Ai =

f−1(V ) ∩ Ai for each i. Therefore f−1(V ) =

W . But W is open in X, since it is the in-

tersection of a finite collection of open sets.

We have thus shown that f−1(V ) is open in

X for any open set V in Y . Thus f :X → Y

is continuous, as required.
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Proof.

[Alternative Proof] A function f :X → Y is

continuous if and only if f−1(G) is closed in X

for every closed set G in Y (Lemma 1.7). Let

G be an closed set in Y . Then f−1(G)∩Ai is

relatively closed in Ai for i = 1,2, . . . , k, since

the restriction of f to Ai is continuous for

each i. But Ai is closed in X, and therefore

a subset of Ai is relatively closed in Ai if and

only if it is closed in X. Therefore f−1(G) ∩
Ai is closed in X for i = 1,2, . . . , k. Now

f−1(G) is the union of the sets f−1(G) ∩ Ai
for i = 1,2, . . . , k. It follows that f−1(G),

being a finite union of closed sets, is itself

closed in X. It now follows from Lemma 1.7

that f :X → Y is continuous.
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Example.

Let Y be a topological space, and let α: [0,1]→
Y and β: [0,1] → Y be continuous functions

defined on the interval [0,1], where α(1) =

β(0). Let γ: [0,1]→ Y be defined by

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2;

β(2t− 1) if 1
2 ≤ t ≤ 1.

Now γ|[0, 1
2] = α ◦ ρ where ρ: [0, 1

2] → [0,1] is

the continuous function defined by ρ(t) = 2t

for all t ∈ [0, 1
2]. Thus γ|[0, 1

2] is continu-

ous, being a composition of two continu-

ous functions. Similarly γ|[1
2,1] is continuous.

The subintervals [0, 1
2] and [1

2,1] are closed

in [0,1], and [0,1] is the union of these two

subintervals. It follows from Lemma 1.9 that

γ: [0,1]→ Y is continuous.
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Homeomorphisms.

Definition.

Let X and Y be topological spaces. A func-

tion h:X → Y is said to be a homeomorphism

if and only if the following conditions are sat-

isfied:

• the function h:X → Y is both injective

and surjective (so that the function h:X →
Y has a well-defined inverse h−1:Y → X),

• the function h:X → Y and its inverse

h−1:Y → X are both continuous.

Two topological spaces X and Y are said to

be homeomorphic if there exists a homeo-

morphism h:X → Y from X to Y .
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If h:X → Y is a homeomorphism between
topological spaces X and Y then h induces a
one-to-one correspondence between the open
sets of X and the open sets of Y . Thus the
topological spaces X and Y can be regarded
as being identical as topological spaces.

Neighbourhoods, Closures and In-

teriors.

Definition.

Let X be a topological space, and let x be a
point of X. Let N be a subset of X which
contains the point x. Then N is said to be
a neighbourhood of the point x if and only
if there exists an open set U for which x ∈ U
and U ⊂ N .

One can readily verify that this definition of
neighbourhoods in topological spaces is con-
sistent with that for neighbourhoods in met-
ric spaces.
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Lemma 1.10 Let X be a topological space.

A subset V of X is open in X if and only if V

is a neighbourhood of each point belonging

to V .

Proof.

It follows directly from the definition of neigh-

bourhoods that an open set V is a neigh-

bourhood of any point belonging to V . Con-

versely, suppose that V is a subset of X which

is a neighbourhood of each v ∈ V . Then,

given any point v of V , there exists an open

set Uv such that v ∈ Uv and Uv ⊂ V . Thus

V is an open set, since it is the union of

the open sets Uv as v ranges over all points

of V .
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Definition.

Let X be a topological space and let A be

a subset of X. The closure A of A in X is

defined to be the intersection of all of the

closed subsets of X that contain A. The

interior A0 of A in X is defined to be the

union of all of the open subsets of X that

are contained in A.

Let X be a topological space and let A be

a subset of X. It follows directly from the

definition of A that the closure A of A is

uniquely characterized by the following two

properties:

(i) the closure A of A is a closed set con-

taining A,

(ii) if F is any closed set containing A then

F contains A.
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Similarly the interior A0 of A is uniquely char-

acterized by the following two properties:

(i) the interior A0 of A is an open set con-

tained in A,

(ii) if U is any open set contained in A then

U is contained in A0.

Moreover a point x of A belongs to the inte-

rior A0 of A if and only if A is a neighbour-

hood of x.

Connected Topological Spaces.

Definition.

A topological space X is said to be connected

if the empty set ∅ and the whole space X are

the only subsets of X that are both open and

closed.
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Lemma 1.11 A topological space X is con-

nected if and only if it has the following prop-

erty: if U and V are non-empty open sets

in X such that X = U ∪ V , then U ∩ V is

non-empty.

Proof.

If U is a subset of X that is both open and

closed, and if V = X \ U , then U and V are

both open, U ∪ V = X and U ∩ V = ∅. Con-

versely if U and V are open subsets of X

satisfying U ∪ V = X and U ∩ V = ∅, then

U = X \ V , and hence U is both open and

closed. Thus a topological space X is con-

nected if and only if there do not exist non-

empty open sets U and V such that U∪V = X

and U ∩ V = ∅. The result follows.
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Let Z be the set of integers with the usual

topology (i.e., the subspace topology on Z
induced by the usual topology on R). Then

{n} is open for all n ∈ Z, since

{n} = Z ∩ {t ∈ R : |t− n| < 1
2}.

It follows that every subset of Z is open (since

it is a union of sets consisting of a single ele-

ment, and any union of open sets is open). It

follows that a function f :X → Z on a topo-

logical space X is continuous if and only if

f−1(V ) is open in X for any subset V of Z.

We use this fact in the proof of the next the-

orem.
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Proposition 1.12 A topological space X is

connected if and only if every continuous func-

tion f :X → Z from X to the set Z of integers

is constant.

Proof.

Suppose that X is connected. Let f :X → Z
be a continuous function. Choose n ∈ f(X),

and let

U = {x ∈ X : f(x) = n},

V = {x ∈ X : f(x) 6= n}.

Then U and V are the preimages of the open

subsets {n} and Z \ {n} of Z, and therefore

both U and V are open in X. Moreover U ∩
V = ∅, and X = U ∪ V . It follows that V =

X \ U , and thus U is both open and closed.

Moreover U is non-empty, since n ∈ f(X).

It follows from the connectedness of X that

U = X, so that f :X → Z is constant, with

value n.

41



Conversely suppose that every continuous func-

tion f :X → Z is constant. Let S be a subset

of X which is both open and closed. Let

f :X → Z be defined by

f(x) =
{

1 if x ∈ S;

0 if x 6∈ S.

Now the preimage of any subset of Z under f

is one of the open sets ∅, S, X \ S and X.

Therefore the function f is continuous. But

then the function f is constant, so that ei-

ther S = ∅ or S = X. This shows that X is

connected.
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Lemma 1.13 The closed interval [a, b] is con-

nected, for all real numbers a and b satisfying

a ≤ b.

Proof.

Let f : [a, b] → Z be a continuous integer-

valued function on [a, b]. We show that f

is constant on [a, b]. Indeed suppose that

f were not constant. Then f(τ) 6= f(a)

for some τ ∈ [a, b]. But the Intermediate

Value Theorem would then ensure that, given

any real number c between f(a) and f(τ),

there would exist some t ∈ [a, τ ] for which

f(t) = c, and this is clearly impossible, since

f is integer-valued. Thus f must be con-

stant on [a, b]. We now deduce from Propo-

sition 1.12 that [a, b] is connected.
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Example.

Let X = {(x, y) ∈ R2 : x 6= 0}. The topo-

logical space X is not connected. Indeed if

f :X → Z is defined by

f(x, y) =
{

1 if x > 0,

−1 if x < 0,

then f is continuous on X but is not con-

stant.

A concept closely related to that of connect-

edness is path-connectedness. Let x0 and

x1 be points in a topological space X. A

path in X from x0 to x1 is defined to be a

continuous function γ: [0,1] → X such that

γ(0) = x0 and γ(1) = x1. A topological

space X is said to be path-connected if and

only if, given any two points x0 and x1 of X,

there exists a path in X from x0 to x1.

44



Proposition 1.14 Every path-connected topo-

logical space is connected.

Proof.

Let X be a path-connected topological space,

and let f :X → Z be a continuous integer-

valued function on X. If x0 and x1 are any

two points of X then there exists a path

γ: [0,1]→ X such that γ(0) = x0 and γ(1) =

x1. But then f ◦ γ: [0,1] → Z is a contin-

uous integer-valued function on [0,1]. But

[0,1] is connected (Lemma 1.13), therefore

f ◦ γ is constant (Proposition 1.12). It fol-

lows that f(x0) = f(x1). Thus every con-

tinuous integer-valued function on X is con-

stant. Therefore X is connected, by Propo-

sition 1.12.
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The topological spaces R, C and Rn are all

path-connected. Indeed, given any two points

of one of these spaces, the straight line seg-

ment joining these two points is a continuous

path from one point to the other. Also the

n-sphere Sn is path-connected for all n > 0.

We conclude that these topological spaces

are connected.

Let A be a subset of a topological space X.

Using Lemma 1.11 and the definition of the

subspace topology, we see that A is con-

nected if and only if the following condition

is satisfied:

• if U and V are open sets in X such that

A ∩ U and A ∩ V are non-empty and A ⊂
U ∪ V then A ∩ U ∩ V is also non-empty.
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Lemma 1.15 Let X be a topological space

and let A be a connected subset of X. Then

the closure A of A is connected.

Proof.

It follows from the definition of the closure

of A that A ⊂ F for any closed subset F of X

for which A ⊂ F . On taking F to be the

complement of some open set U , we deduce

that A ∩ U = ∅ for any open set U for which

A∩U = ∅. Thus if U is an open set in X and

if A ∩ U is non-empty then A ∩ U must also

be non-empty.

Now let U and V be open sets in X such that

A∩U and A∩V are non-empty and A ⊂ U∪V .

Then A ∩ U and A ∩ V are non-empty, and

A ⊂ U∪V . But A is connected. Therefore A∩
U∩V is non-empty, and thus A∩U∩V is non-

empty. This shows that A is connected.
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Lemma 1.16 Let f :X → Y be a continuous

function between topological spaces X and

Y , and let A be a connected subset of X.

Then f(A) is connected.

Proof.

Let g: f(A) → Z be any continuous integer-

valued function on f(A). Then g ◦ f :A → Z
is a continuous integer-valued function on A.

It follows from Proposition 1.12 that g ◦ f
is constant on A. Therefore g is constant

on f(A). We deduce from Proposition 1.12

that f(A) is connected.
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Proposition 1.17 Let X be a topological space.
For each x ∈ X, let Sx be the union of all con-
nected subsets of X that contain x. Then

(i) Sx is connected,

(ii) Sx is closed,

(iii) if x, y ∈ X, then either Sx = Sy, or else
Sx ∩ Sy = ∅.

Proof.

Let f :Sx → Z be a continuous integer-valued
function on Sx, for some x ∈ X. Let y be
any point of Sx. Then, by definition of Sx,
there exists some connected set A containing
both x and y. But then f is constant on A,
and thus f(x) = f(y). This shows that the
function f is constant on Sx. We deduce that
Sx is connected. This proves (i). Moreover
the closure Sx is connected, by Lemma 1.15.
Therefore Sx ⊂ Sx. This shows that Sx is
closed, proving (ii).
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Finally, suppose that x and y are points of X

for which Sx ∩ Sy 6= ∅. Let f :Sx ∪ Sy → Z
be any continuous integer-valued function on

Sx ∪ Sy. Then f is constant on both Sx and

Sy. Moreover the value of f on Sx must agree

with that on Sy, since Sx ∩ Sy is non-empty.

We deduce that f is constant on Sx ∪ Sy.

Thus Sx ∪ Sy is a connected set containing

both x and y, and thus Sx ∪ Sy ⊂ Sx and

Sx ∪ Sy ⊂ Sy, by definition of Sx and Sy. We

conclude that Sx = Sy. This proves (iii).

Given any topological space X, the connected

subsets Sx of X defined as in the statement

of Proposition 1.17 are referred to as the

connected components of X. We see from

Proposition 1.17, part (iii) that the topolog-

ical space X is the disjoint union of its con-

nected components.
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Example.

The connected components of

{(x, y) ∈ R2 : x 6= 0}

are

{(x, y) ∈ R2 : x > 0}

and

{(x, y) ∈ R2 : x < 0}.

Example.

The connected components of

{t ∈ R : |t− n| < 1
2 for some integer n}.

are the sets Jn for all n ∈ Z, where

Jn = (n−
1

2
, n+

1

2
).
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Compact Topological Spaces.

Compact Topological Spaces.

Let X be a topological space, and let A be

a subset of X. A collection of subsets of X

in X is said to cover A if and only if every

point of A belongs to at least one of these

subsets. In particular, an open cover of X is

collection of open sets in X that covers X.

If U and V are open covers of some topolog-

ical space X then V is said to be a subcover

of U if and only if every open set belonging

to V also belongs to U.

Definition.

A topological space X is said to be compact

if and only if every open cover of X possesses

a finite subcover.
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Lemma 2.1 Let X be a topological space.
A subset A of X is compact (with respect
to the subspace topology on A) if and only
if, given any collection U of open sets in X

covering A, there exists a finite collection
V1, V2, . . . , Vr of open sets belonging to U such
that A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof.

A subset B of A is open in A (with respect
to the subspace topology on A) if and only
if B = A∩ V for some open set V in X. The
desired result therefore follows directly from
the definition of compactness.

We now show that any closed bounded in-
terval in the real line is compact. This re-
sult is known as the Heine-Borel Theorem.
The proof of this theorem uses the least up-
per bound principle which states that, given
any non-empty set S of real numbers which
is bounded above, there exists a least upper
bound (or supremum) supS for the set S.
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Theorem 2.2 (Heine-Borel) Let a and b be
real numbers satisfying a < b. Then the
closed bounded interval [a, b] is a compact
subset of R.

Proof.

Let U be a collection of open sets in R with
the property that each point of the interval
[a, b] belongs to at least one of these open
sets. We must show that [a, b] is covered by
finitely many of these open sets.

Let S be the set of all τ ∈ [a, b] with the
property that [a, τ ] is covered by some finite
collection of open sets belonging to U, and
let s = supS. Now s ∈ W for some open
set W belonging to U. Moreover W is open
in R, and therefore there exists some δ > 0
such that (s − δ, s + δ) ⊂ W . Moreover s − δ
is not an upper bound for the set S, hence
there exists some τ ∈ S satisfying τ > s−δ. It
follows from the definition of S that [a, τ ] is
covered by some finite collection V1, V2, . . . , Vr
of open sets belonging to U.
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Let t ∈ [a, b] satisfy τ ≤ t < s+ δ. Then

[a, t] ⊂ [a, τ ]∪(s−δ, s+δ) ⊂ V1∪V2∪· · ·∪Vr∪W,

and thus t ∈ S. In particular s ∈ S, and more-
over s = b, since otherwise s would not be an
upper bound of the set S. Thus b ∈ S, and
therefore [a, b] is covered by a finite collection
of open sets belonging to U, as required.

Lemma 2.3 Let A be a closed subset of some
compact topological space X. Then A is
compact.

Proof.

Let U be any collection of open sets in X

covering A. On adjoining the open set X \A
to U, we obtain an open cover of X. This
open cover of X possesses a finite subcover,
since X is compact. Moreover A is cov-
ered by the open sets in the collection U
that belong to this finite subcover. It fol-
lows from Lemma 2.1 that A is compact, as
required.
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Lemma 2.4 Let f :X → Y be a continuous

function between topological spaces X and

Y , and let A be a compact subset of X. Then

f(A) is a compact subset of Y .

Proof.

Let V be a collection of open sets in Y which

covers f(A). Then A is covered by the col-

lection of all open sets of the form f−1(V )

for some V ∈ V. It follows from the compact-

ness of A that there exists a finite collection

V1, V2, . . . , Vk of open sets belonging to V such

that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vk).

But then f(A) ⊂ V1∪V2∪· · ·∪Vk. This shows

that f(A) is compact.
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Lemma 2.5 Let f :X → R be a continuous

real-valued function on a compact topologi-

cal space X. Then f is bounded above and

below on X.

Proof.

The range f(X) of the function f is covered

by some finite collection I1, I2, . . . , Ik of open

intervals of the form (−m,m), where m ∈ N,

since f(X) is compact (Lemma 2.4) and R
is covered by the collection of all intervals of

this form. It follows that f(X) ⊂ (−M,M),

where (−M,M) is the largest of the intervals

I1, I2, . . . , Ik. Thus the function f is bounded

above and below on X, as required.
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Proposition 2.6 Let f :X → R be a continu-
ous real-valued function on a compact topo-
logical space X. Then there exist points u

and v of X such that

f(u) ≤ f(x) ≤ f(v)

for all x ∈ X.

Proof.

Let m = inf{f(x) : x ∈ X} and M = sup{f(x) :
x ∈ X}. There must exist v ∈ X satisfying
f(v) = M , for if f(x) < M for all x ∈ X then
the function

x 7→ 1/(M − f(x))

would be a continuous real-valued function
on X that was not bounded above, contra-
dicting Lemma 2.5. Similarly there must ex-
ist u ∈ X satisfying f(u) = m, since other-
wise the function x 7→ 1/(f(x) − m) would
be a continuous function on X that was not
bounded above, again contradicting Lemma
2.5. But then f(u) ≤ f(x) ≤ f(v) for all
x ∈ X, as required.
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Proposition 2.7 Let A be a compact subset

of a metric space X. Then A is closed in X.

Proof.

Let p be a point of X that does not belong to

A, and let f(x) = d(x, p), where d is the dis-

tance function on X. It follows from Propo-

sition 2.6 that there is a point q of A such

that f(a) ≥ f(q) for all a ∈ A, since A is

compact. Now f(q) > 0, since q 6= p. Let δ

satisfy 0 < δ ≤ f(q). Then the open ball of

radius δ about the point p is contained in the

complement of A, since f(x) < f(q) for all

points x of this open ball. It follows that the

complement of A is an open set in X, and

thus A itself is closed in X.
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Proposition 2.8 Let X be a Hausdorff topo-

logical space, and let K be a compact subset

of X. Let x be a point of X \ K. Then

there exist open sets V and W in X such

that x ∈ V , K ⊂W and V ∩W = ∅.

Proof.

For each point y ∈ K there exist open sets

Vx,y and Wx,y such that x ∈ Vx,y, y ∈ Wx,y

and Vx,y ∩Wx,y = ∅ (since X is a Hausdorff

space). But then there exists a finite set

{y1, y2, . . . , yr} of points of K such that K is

contained in Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr, since

K is compact. Define

V = Vx,y1 ∩ Vx,y2 ∩ · · · ∩ Vx,yr,

W = Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr.

Then V and W are open sets, x ∈ V , K ⊂W
and V ∩W = ∅, as required.

60



Corollary 2.9 A compact subset of a Haus-

dorff topological space is closed.

Proof.

Let K be a compact subset of a Hausdorff

topological space X. It follows immediately

from Proposition 2.8 that, for each x ∈ X\K,

there exists an open set Vx such that x ∈ Vx
and Vx ∩ K = ∅. But then X \ K is equal

to the union of the open sets Vx as x ranges

over all points of X \K, and any set that is a

union of open sets is itself an open set. We

conclude that X \ K is open, and thus K is

closed.
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Proposition 2.10 Let X be a Hausdorff topo-

logical space, and let K1 and K2 be compact

subsets of X, where K1∩K2 = ∅. Then there

exist open sets U1 and U2 such that K1 ⊂ U1,

K2 ⊂ U2 and U1 ∩ U2 = ∅.

Proof.

It follows from Proposition 2.8 that, for each

point x of K1, there exist open sets Vx and

Wx such that x ∈ Vx, K2 ⊂ Wx and Vx ∩
Wx = ∅. But then there exists a finite set

{x1, x2, . . . , xr} of points of K1 such that

K1 ⊂ Vx1 ∪ Vx2 ∪ · · · ∪ Vxr,

since K1 is compact. Define

U1 = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr,

U2 = Wx1 ∩Wx2 ∩ · · · ∩Wxr.

Then U1 and U2 are open sets, K1 ⊂ U1,

K2 ⊂ U2 and U1 ∩ U2 = ∅, as required.
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Lemma 2.11 Let f :X → Y be a continuous

function from a compact topological space X

to a Hausdorff space Y . Then f(K) is closed

in Y for every closed set K in X.

Proof.

If K is a closed set in X, then K is compact

(Lemma 2.3), and therefore f(K) is compact

(Lemma 2.4). But any compact subset of

a Hausdorff space is closed (Corollary 2.9).

Thus f(K) is closed in Y , as required.

Remark.

If the Hausdorff space Y in Lemma 2.11 is

a metric space, then Proposition 2.7 may be

used in place of Corollary 2.9 in the proof of

the lemma.
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Theorem 2.12 A continuous bijection f :X →
Y from a compact topological space X to a

Hausdorff space Y is a homeomorphism.

Proof.

Let g:Y → X be the inverse of the bijection

f :X → Y . If U is open in X then X \ U is

closed in X, and hence f(X \ U) is closed

in Y , by Lemma 2.11. But

f(X \ U) = g−1(X \ U) = Y \ g−1(U).

It follows that g−1(U) is open in Y for ev-

ery open set U in X. Therefore g:Y → X is

continuous, and thus f :X → Y is a homeo-

morphism.

We recall that a function f :X → Y from a

topological space X to a topological space Y

is said to be an identification map if it is sur-

jective and satisfies the following condition:

a subset U of Y is open in Y if and only if

f−1(U) is open in X.
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Proposition 2.13 A continuous surjection
f :X → Y from a compact topological space X
to a Hausdorff space Y is an identification
map.

Proof.

Let U be a subset of Y . We claim that

Y \ U = f(K), where K = X \ f−1(U).

Clearly f(K) ⊂ Y \ U . Also, given any y ∈
Y \ U , there exists x ∈ X satisfying y = f(x),
since f :X → Y is surjective. Moreover x ∈ K,
since f(x) 6∈ U . Thus Y \ U ⊂ f(K), and
hence Y \ U = f(K), as claimed.

We must show that the set U is open in Y if
and only if f−1(U) is open in X. First sup-
pose that f−1(U) is open in X. Then K is
closed in X, and hence f(K) is closed in Y ,
by Lemma 2.11. It follows that U is open in
Y . Conversely if U is open in Y then f−1(U)
is open in X, since f :X → Y is continuous.
Thus the surjection f :X → Y is an identifi-
cation map.
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Example.

Let S1 be the unit circle in R2, defined by

S1 = {(x, y) ∈ R2 : x2 + y2 = 1},

and let q: [0,1]→ S1 be defined by

q(t) = (cos 2πt, sin 2πt)

for all t ∈ [0,1]. It has been shown that the

map q is an identification map. This also fol-

lows directly from the fact that q: [0,1]→ S1

is a continuous surjection from the compact

space [0,1] to the Hausdorff space S1.
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The Lebesgue Lemma and Uni-

form Continuity.

Definition.

Let X be a metric space with distance func-

tion d. A subset A of X is said to be bounded

if there exists a non-negative real number K

such that d(x, y) ≤ K for all x, y ∈ A. The

smallest real number K with this property is

referred to as the diameter of A, and is de-

noted by diamA. (Note that diamA is the

supremum of the values of d(x, y) as x and y

range over all points of A.)

Lemma 2.14 (Lebesgue Lemma) Let (X, d)

be a compact metric space. Let U be an open

cover of X. Then there exists a positive real

number δ such that every subset of X whose

diameter is less than δ is contained wholly

within one of the open sets belonging to the

open cover U.
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Proof.

Every point of X is contained in at least

one of the open sets belonging to the open

cover U. It follows from this that, for each

point x of X, there exists some δx > 0 such

that the open ball B(x,2δx) of radius 2δx
about the point x is contained wholly within

one of the open sets belonging to the open

cover U. But then the collection consisting

of the open balls B(x, δx) of radius δx about

the points x of X forms an open cover of the

compact space X. Therefore there exists a

finite set x1, x2, . . . , xr of points of X such

that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi for i = 1,2, . . . , r. Let δ > 0 be

given by

δ = minimum(δ1, δ2, . . . , δr).
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Suppose that A is a subset of X whose di-

ameter is less than δ. Let u be a point of A.

Then u belongs to B(xi, δi) for some inte-

ger i between 1 and r. But then it follows

that A ⊂ B(xi,2δi), since, for each point v

of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi,2δi) is contained wholly within one

of the open sets belonging to the open cover U.

Thus A is contained wholly within one of the

open sets belonging to U, as required.

Let U be an open cover of a compact met-

ric space X. A Lebesgue number for the

open cover U is a positive real number δ

such that every subset of X whose diame-

ter is less than δ is contained wholly within

one of the open sets belonging to the open

cover U. The Lebesgue Lemma thus states

that there exists a Lebesgue number for ev-

ery open cover of a compact metric space.
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Let X and Y be metric spaces with distance

functions dX and dY respectively, and let

f :X → Y

be a function from X to Y . The function f is

said to be uniformly continuous on X if and

only if, given ε > 0, there exists some δ > 0

such that

dY (f(x), f(x′)) < ε

for all points x and x′ of X satisfying

dX(x, x′) < δ.

(The value of δ should be independent of

both x and x′.)
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Theorem 2.15 Let X and Y be metric spaces.

Suppose that X is compact. Then every con-

tinuous function from X to Y is uniformly

continuous.

Proof.

Let dX and dY denote the distance functions

for the metric spaces X and Y respectively.

Let f :X → Y be a continuous function from

X to Y . We must show that f is uniformly

continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f(x), y) < 1
2ε}.

Note that Vy = f−1
(
BY (y, 1

2ε)
)
, where BY (y, 1

2ε)

denotes the open ball of radius 1
2ε about y

in Y . Now the open ball BY (y, 1
2ε) is an open

set in Y , and f is continuous. Therefore Vy is

open in X for all y ∈ Y . Note that x ∈ Vf(x)
for all x ∈ X.
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Now {Vy : y ∈ Y } is an open cover of the

compact metric space X. It follows from the

Lebesgue Lemma (Lemma 2.14) that there

exists some δ > 0 such that every subset of

X whose diameter is less than δ is a subset

of some set Vy. Let x and x′ be points of X

satisfying dX(x, x′) < δ. The diameter of the

set {x, x′} is dX(x, x′), which is less than δ.

Therefore there exists some y ∈ Y such that

x ∈ Vy and x′ ∈ Vy. But then

dY (f(x), y) <
1

2
ε

and

dY (f(x′), y) <
1

2
ε,

and hence

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, f(x′))

< ε.

This shows that f :X → Y is uniformly con-

tinuous, as required.
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Let K be a closed bounded subset of Rn. It

follows from Theorem 3.15 and Theorem 2.15

that any continuous function f :K → Rk is

uniformly continuous.
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Product and Quotient Topolo-

gies.

Bases for Topologies.

Proposition 3.1 Let X be a set, let β be

a collection of subsets of X, and let τ be

the collection consisting of the empty set,

together with all subsets of X that are unions

of sets belonging to the collection β. Then τ

is a topology on X if and only if the following

conditions are satisfied:—

(i) the set X is the union of the subsets be-

longing to the collection β;

(ii) given subsets B1, B2 ∈ β, and given any

point p of B1∩B2, there exists some B ∈ β
such that p ∈ B and B ⊂ B1 ∩B2.
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Proof.

First suppose that τ is a topology on X.

Then X ∈ τ . But any subset of X that be-

longs to τ is a union of sets belonging to β.

Therefore X is a union of subsets belonging

to the collection β, and thus condition (i) is

satisfied.

Moreover the intersection of any two open

subsets of a topological space is required to

be open. Thus if τ is a topology on X, and

if B1, B2 ∈ β, then B1, B2 ∈ τ and therefore

B1 ∩ B2 ∈ τ . It follows that B1 ∩ B2 is a

union of subsets of X that belong to β, and

therefore, given any p ∈ B1 ∩B2, there exists

B ∈ β such that p ∈ B and B ⊂ B1∩B2. Thus

condition (ii) is satisfied.
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Conversely we must prove that if the collec-

tion β of subsets of a set X satisfies con-

ditions (i) and (ii) then the collection τ of

unions of sets belonging to β is a topology

on X.

The empty set belongs to τ . Condition (i)

ensures that the whole set X belongs to τ . It

follows directly from the definition of τ that

any union of sets belonging to τ is a union

of sets belonging to β, and therefore itself

belongs to τ .

It therefore only remains to show that the in-

tersection of any finite collection of sets be-

longing to τ belongs to τ . It suffices to prove

that the intersection of two sets belonging to

τ belongs to τ .
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Let V1, V2 ∈ τ , and let p ∈ V1 ∩ V2. Then

V1 and V2 are union of sets belonging to β,

and therefore there exist B1, B2 ∈ β such that

p ∈ B1, p ∈ B2, B1 ⊂ V1, and B2 ⊂ V2. Now

condition (ii) ensures the existence of Bp ∈ β
such that p ∈ Bp and Bp ⊂ B1 ∩ B2. Then

Bp ⊂ B1 ⊂ V1 and Bp ⊂ B2 ⊂ V2. We have

thus shown that, given any point p of V1∩V2,

there exists some member Bp of the collec-

tion β such that p ∈ Bp and Bp ⊂ V1 ∩ V2.

It follows that V1 ∩ V2 is the union of the

sets Bp as p ranges over all points of the in-

tersection V1 ∩ V2, and therefore V1 ∩ V2 ∈ τ .

We have thus proved that the intersection

of two sets belonging to τ belongs to τ . It

follows directly by induction on the number

of sets involved that the intersection of any

finite collection of sets belonging to τ must

belong to τ . Thus τ is a topology on the

set X, as required.
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Definition.

Let X be a set. A collection β of subsets of

X is said to be a basis for a topology on X

if the following conditions are satisfied:—

(i) the set X is the union of the subsets be-

longing to the collection β;

(ii) given subsets B1, B2 ∈ β, and given any

point p of B1∩B2, there exists some B ∈ β
such that p ∈ B and B ⊂ B1 ∩B2.

If β is a basis for a topology on X then

the topology generated by β is the topology

whose open sets are those subsets of X that

are unions of sets belonging to the basis β.
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Lemma 3.2 Let X be a set, and let β be

a basis for a topology on X. A non-empty

subset V is open in X with respect to the

topology generated by β if and only if, given

any point v of V , there exists B ∈ β such that

v ∈ B and B ⊂ V .

Proof.

This result follows directly from the fact that

the non-empty open sets in X are those sub-

sets of X that are unions of sets belonging

to the basis β.
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Example.

Let X be a metric space. Then the collection
of open balls in X (determined by the dis-
tance function d on X) is a basis for a topol-
ogy on X. Indeed let x and y be points of
X that are the centres of open balls BX(x, r)
and BX(y, s) of radii r and s respectively, and
let z ∈ BX(x, r) ∩ BX(y, s). Then d(z, x) < r

and d(z, y) < s. Let δ be the minimum of
r − d(z, x) and s − d(z, y). Then δ > 0 and
z ∈ BX(z, δ), and it follows from the Triangle
Inequality that BX(z, δ) ⊂ BX(x, r)∩BX(y, s).
This ensures that the collection of open balls
in this metric space is a basis for a topology
on the metric space. The topology generated
by this basis is the standard topology carried
by the metric space when we consider metric
spaces to be topological spaces.

The following result is an immediate conse-
quence of the requirements for a collection
of subsets of a given set to be a basis for a
topology of that set.

80



Lemma 3.3 Let X be a topological space,

and let β be a collection of subsets of X.

Suppose that X ∈ β and that the intersection

of any finite collection of sets belonging to β

itself belongs to β. Then β is a basis for a

topology on X.

Subbases for Topologies.

Let X be a set, and let σ be a collection

of subsets of X. Let β be the collection

of subsets of X consisting of the set X it-

self together with all subsets of X that are

finite intersections of sets belonging to the

collection σ. It follows from an immediate

application of Lemma 3.3 that β is a basis

for a topology τ on X. We refer to τ as the

topology on X generated by the collection σ

of subsets of X, and we refer to the collec-

tion σ as a subbasis for the topology τ which

it generates.
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Lemma 3.4 Let σ be a collection of subsets
of a set X which is a subbasis for a topology τ
on X, and let τ̃ be a topology on X. Suppose
that σ ⊂ τ̃ . Then τ ⊂ τ̃ . Thus the topology τ
generated by the subbasis σ is the smallest
topology on X that contains σ.

Proof.

The definition of topologies ensures that X ∈
τ̃ . It also ensures that any finite intersection
of subsets of X that belong to τ̃ must itself
belong to τ̃ . It follows that if σ ⊂ τ̃ then
β ⊂ τ̃ , where β is the collection of subsets of
X consisting of the set X itself together with
all subsets of X that are finite intersections
of sets belonging to the collection σ. Now
every non-empty subset of X that belongs
to the topology τ is a union of subsets of X
that belong to β. These subsets belong to τ̃ ,
and any union of subsets of X belonging to
τ̃ must itself belong to τ̃ . Therefore τ ⊂ τ̃ .
This shows that the topology τ generated
by a subbasis σ is the smallest topology on
X that contains the members of the subba-
sis σ.

82



It follows immediately from Lemma 3.4 that

the topology τ on a set X generated by a

subbasis σ is the intersection of all topolo-

gies τ̃ on X for which σ ⊂ τ̃ .

Product Topologies.

The Cartesian product X1×X2× · · · ×Xn of

sets X1, X2, . . . , Xn is defined to be the set

of all ordered n-tuples (x1, x2, . . . , xn), where

xi ∈ Xi for i = 1,2, . . . , n.

The sets R2 and R3 are the Cartesian prod-

ucts R× R and R× R× R respectively.
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Lemma 3.5 Let X1, X2, . . . , Xn be topolog-

ical spaces, let X be the Cartesian product

X1×X2× · · · ×Xn of the sets X1, X2, . . . , Xn,

and let β be the collection consisting of all

subsets of the Cartesian product X that are

of the form V1× V2× · · · × Vn, where Vj is an

open set in Xj for j = 1,2, . . . , n. Then β is

a basis for a topology on X.

Proof.

The definition of topological spaces ensures

that each of the sets X1, X2, . . . , Xn is an

open set in itself. It follows that X ∈ β.

Let U1, U2, . . . , Um be subsets of X, where

Ui ∈ β for i = 1,2, . . . ,m. Then there ex-

ist subsets Vi,j of Xj, where Vi,j is an open

set in Xj for j = 1,2, . . . , n and i = 1,2, . . . , n,

such that
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Ui = Vi,1×Vi,2×· · ·×Vi,n for i = 1,2, . . . ,m.

Then
m⋂
i=1

Ui = V1 × V2 × · · · × Vn

where

Vj =
m⋂
i=1

Vi,j for j = 1,2, . . . , n.

Indeed let (x1, x2, . . . , xn) ∈ X, where xj ∈ Xj
for j = 1,2, . . . , n. Then

(x1, x2, . . . , xn) ∈
m⋂
i=1

Ui

⇐⇒ (x1, x2, . . . , xn) ∈ Ui
for i = 1,2, . . . ,m

⇐⇒ xj ∈ Vi,j for i = 1,2, . . . ,m

and j = 1,2, . . . , n

⇐⇒ xj ∈
m⋂
i=1

Vi,j for j = 1,2, . . . , n

⇐⇒ xj ∈ Vj for j = 1,2, . . . , n

⇐⇒ (x1, x2, . . . , xn) ∈ V1 × V2 × · · · × Vn.
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But Vj is an open set in Xj for j = 1,2, . . . , n,

since any finite intersection of open sets in a

topological space must itself be an open set

in that space, and therefore
m⋂
i=1

Ui ∈ β. We

have now shown that X ∈ β, and also that

any finite intersection of subsets of X that

belong to β must itself belong to β. It now

follows from Lemma 3.3 that β is a basis for

a topology on X.

Definition.

Let X1, X2, . . . , Xn be topological spaces. The

product topology on the Cartesian product

X1 × X2 × · · · × Xn is the topology on this

Cartesian product of sets that is generated

by the collection consisting of all subsets of

the product set that are of the form

V1 × V2 × · · · × Vn,

where Vj is an open set in Xj for j = 1,2, . . . , n.
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Lemma 3.6 Let X1, X2, . . . , Xn be topolog-

ical spaces. A non-empty subset U of the

Cartesian product X1×X2× · · · ×Xn is open

with respect to the product topology if and

only if, given any point p of U , there exist

open sets Vi in Xi for i = 1,2, . . . , n such that

p ∈ V1×V2×· · ·×Vn and V1×V2×· · ·×Vn ⊂ U.

Proof.

The product topology is the topology gener-

ated by the collection β consisting of those

subsets of the Cartesian product that are of

the form V1 × V2 × · · · × Vn, where Vj is an

open set in Xj for j = 1,2, . . . , n. This col-

lection of subsets is a basis for the product

topology (Lemma 3.5). It follows that a non-

empty subset of X is open with respect to the

product topology if and only if it is a union

of sets that belong to the basis β. The result

follows directly (see Lemma 3.2).
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Lemma 3.7 Let X1, X2, . . . , Xn and Z be topo-

logical spaces. Then a function

f :X1 ×X2 × · · · ×Xn → Z

is continuous if and only if, given any point

p of

X1 ×X2 × · · · ×Xn,

and given any open set U in Z containing

f(p), there exist open sets Vi in Xi for i =

1,2, . . . , n such that

p ∈ V1 × V2 · · · × Vn

and

f(V1 × V2 × · · · × Vn) ⊂ U.
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Proof.

Let Vi be an open set in Xi for i = 1,2, . . . , n,

and let U be an open set in Z. Then

V1 × V2 × · · · × Vn ⊂ f−1(U)

if and only if

f(V1 × V2 × · · · × Vn) ⊂ U.

It follows that f−1(U) is open in the product

topology on

X1 ×X2 × · · · ×Xn

if and only if, given any point p of

X1 ×X2 × · · · ×Xn

satisfying f(p) ∈ U , there exist open sets Vi
in Xi for i = 1,2, . . . , n such that

f(V1 × V2 × · · · × Vn) ⊂ U.

The required result now follows from the def-

inition of continuity.
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Let X1, X2, . . . , Xn be topological spaces, and

let Vi be an open set in Xi for i = 1,2, . . . , n.

It follows directly from the definition of the

product topology that

V1 × V2 × · · · × Vn

is open in X1 ×X2 × · · · ×Xn.

Theorem 3.8 Let X = X1 × X2 × · · · × Xn,

where X1, X2, . . . , Xn are topological spaces

and X is given the product topology, and for

each i, let pi:X → Xi denote the projection

function which sends (x1, x2, . . . , xn) ∈ X to

xi. Then the functions p1, p2, . . . , pn are con-

tinuous. Moreover a function f :Z → X map-

ping a topological space Z into X is contin-

uous if and only if

pi ◦ f :Z → Xi

is continuous for i = 1,2, . . . , n.
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Proof.

Let V be an open set in Xi. Then

p−1
i (V ) = X1×· · ·×Xi−1×V ×Xi+1×· · ·×Xn,

and therefore p−1
i (V ) is open in X. Thus

pi:X → Xi is continuous for all i.

Let f :Z → X be continuous. Then, for each i,

pi ◦ f :Z → Xi is a composition of continuous

functions, and is thus itself continuous.

Conversely suppose that f :Z → X is a func-

tion with the property that pi◦f is continuous

for all i. Let U be an open set in X. We must

show that f−1(U) is open in Z.
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Let z be a point of f−1(U), and let

f(z) = (u1, u2, . . . , un).

Now U is open in X, and therefore there ex-

ist open sets V1, V2, . . . , Vn in X1, X2, . . . , Xn

respectively such that ui ∈ Vi for all i and

V1 × V2 × · · · × Vn ⊂ U.

Let

Nz = f−1
1 (V1) ∩ f−1

2 (V2) ∩ · · · ∩ f−1
n (Vn),

where fi = pi ◦ f for i = 1,2, . . . , n. Now

f−1
i (Vi) is an open subset of Z for i = 1,2, . . . , n,

since Vi is open in Xi and fi:Z → Xi is con-

tinuous. Thus Nz, being a finite intersection

of open sets, is itself open in Z. Moreover

f(Nz) ⊂ V1 × V2 × · · · × Vn ⊂ U,

so that Nz ⊂ f−1(U). It follows that f−1(U)

is the union of the open sets Nz as z ranges

over all points of f−1(U). Therefore f−1(U)

is open in Z. This shows that f :Z → X is

continuous, as required.
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Proposition 3.9 The usual topology on Rn

coincides with the product topology on Rn

obtained on regarding Rn as the Cartesian

product R×R×· · ·×R of n copies of the real

line R.

Proof.

We must show that a subset U of Rn is open

with respect to the usual topology if and only

if it is open with respect to the product topol-

ogy.

Let U be a subset of Rn that is open with

respect to the usual topology, and let u ∈ U .

Then there exists some δ > 0 such that

B(u, δ) ⊂ U,

where

B(u, δ) = {x ∈ Rn : |x− u| < δ}.
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Let I1, I2, . . . , In be the open intervals in R
defined by

Ii = {t ∈ R : ui −
δ
√
n
< t < ui +

δ
√
n
}

for i = 1,2, . . . , n. Then I1, I2, . . . , In are open

sets in R. Moreover

{u} ⊂ I1 × I2 × · · · × In ⊂ B(u, δ) ⊂ U,

since

|x− u|2 =
n∑
i=1

(xi − ui)2 < n

(
δ
√
n

)2

= δ2

for all

x ∈ I1 × I2 × · · · × In.

This shows that any subset U of Rn that

is open with respect to the usual topology

on Rn is also open with respect to the prod-

uct topology on Rn.
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Conversely suppose that U is a subset of Rn

that is open with respect to the product topol-

ogy on Rn, and let u ∈ U . Then there ex-

ist open sets V1, V2, . . . , Vn in R containing

u1, u2, . . . , un respectively such that

V1 × V2 × · · · × Vn ⊂ U.

Now we can find δ1, δ2, . . . , δn such that δi > 0

and

(ui − δi, ui + δi) ⊂ Vi
for all i. Let δ > 0 be the minimum of

δ1, δ2, . . . , . . . , δn. Then

B(u, δ) ⊂ V1 × V2 × · · ·Vn ⊂ U,

for if x ∈ B(u, δ) then

|xi − ui| < δi for i = 1,2, . . . , n.

This shows that any subset U of Rn that is

open with respect to the product topology

on Rn is also open with respect to the usual

topology on Rn.
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The following result is now an immediate

corollary of Proposition 3.9 and Theorem 3.8.

Corollary 3.10 Let X be a topological space

and let f :X → Rn be a function from X to Rn.

Let us write

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where the components

f1, f2, . . . , fn

of f are functions from X to R. The func-

tion f is continuous if and only if its compo-

nents f1, f2, . . . , fn are all continuous.

Let f :X → R and g:X → R be continu-

ous real-valued functions on some topologi-

cal space X. We claim that f+g, f−g and f.g

are continuous. Now it is a straightforward

exercise to verify that the sum and product

functions s:R2 → R and p:R2 → R defined by

s(x, y) = x + y and p(x, y) = xy are continu-

ous, and f + g = s ◦ h and f.g = p ◦ h, where

h:X → R2 is defined by h(x) = (f(x), g(x)).
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Moreover it follows from Corollary 3.10 that

the function h is continuous, and composi-

tions of continuous functions are continu-

ous. Therefore f + g and f.g are continu-

ous, as claimed. Also −g is continuous, and

f − g = f + (−g), and therefore f − g is con-

tinuous. If in addition the continuous func-

tion g is non-zero everywhere on X then 1/g

is continuous (since 1/g is the composition of

g with the reciprocal function t 7→ 1/t), and

therefore f/g is continuous.

97



Lemma 3.11 The Cartesian product X1 ×
X2×. . . Xn of Hausdorff spaces X1, X2, . . . , Xn

is Hausdorff.

Proof.

Let X = X1 × X2 × . . . , Xn, and let u and v

be distinct points of X, where

u = (x1, x2, . . . , xn)

and

v = (y1, y2, . . . , yn).

Then xi 6= yi for some integer i between 1

and n. But then there exist open sets U

and V in Xi such that xi ∈ U , yi ∈ V and

U∩V = ∅ (since Xi is a Hausdorff space). Let

pi:X → Xi denote the projection function.

Then p−1
i (U) and p−1

i (V ) are open sets in X,

since pi is continuous. Moreover u ∈ p−1
i (U),

v ∈ p−1
i (V ), and p−1

i (U) ∩ p−1
i (V ) = ∅. Thus

X is Hausdorff, as required.

98



Cartesian Products of Connected

Topological Spaces.

Lemma 3.12 The Cartesian product X × Y
of connected topological spaces X and Y is
itself connected.

Proof.

Let f :X × Y → Z be a continuous integer-
valued function from X × Y to Z. Choose
x0 ∈ X and y0 ∈ Y . The function x 7→ f(x, y0)
is continuous on X, and is thus constant.
Therefore f(x, y0) = f(x0, y0) for all x ∈ X.
Now fix x. The function y 7→ f(x, y) is contin-
uous on Y , and is thus constant. Therefore

f(x, y) = f(x, y0) = f(x0, y0)

for all x ∈ X and y ∈ Y . We deduce from
Proposition 1.12 that X×Y is connected.

We deduce immediately that a finite Carte-
sian product of connected topological spaces
is connected.
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Finite Cartesian Products of Com-

pact Topological Spaces.

We shall show that a finite Cartesian product

of compact spaces is compact. To prove this,

we apply the following result, known as the

Tube Lemma.
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Lemma 3.13 Let X and Y be topological
spaces, let K be a compact subset of Y , and
U be an open set in X × Y . Let

V = {x ∈ X : {x} ×K ⊂ U}.
Then V is an open set in X.

Proof.

Let x ∈ V . For each y ∈ K there exist open
subsets Dy and Ey of X and Y respectively
such that (x, y) ∈ Dy × Ey and Dy × Ey ⊂ U .
Now there exists a finite set {y1, y2, . . . , yk} of
points of K such that

K ⊂ Ey1 ∪ Ey2 ∪ · · · ∪ Eyk,
since K is compact. Set

Nx = Dy1 ∩Dy2 ∩ · · · ∩Dyk.
Then Nx is an open set in X. Moreover

Nx ×K ⊂
k⋃
i=1

(Nx × Eyi) ⊂
k⋃
i=1

(Dyi × Eyi) ⊂ U,

so that Nx ⊂ V . It follows that V is the union
of the open sets Nx for all x ∈ V . Thus V is
itself an open set in X, as required.
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Theorem 3.14 A Cartesian product of a fi-

nite number of compact spaces is itself com-

pact.

Proof.

It suffices to prove that the product of two

compact topological spaces X and Y is com-

pact, since the general result then follows

easily by induction on the number of com-

pact spaces in the product.

Let U be an open cover of X × Y . We must

show that this open cover possesses a finite

subcover.
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Let x be a point of X. The set {x} × Y is a

compact subset of X × Y , since it is the im-

age of the compact space Y under the con-

tinuous map from Y to X × Y which sends

y ∈ Y to (x, y), and the image of any compact

set under a continuous map is itself compact

(Lemma 2.4). Therefore there exists a finite

collection U1, U2, . . . , Ur of open sets belong-

ing to the open cover U such that {x} × Y is

contained in

U1 ∪ U2 ∪ · · · ∪ Ur.

Let Vx denote the set of all points x′ of X

for which {x′} × Y is contained in

U1 ∪ U2 ∪ · · · ∪ Ur.

Then x ∈ Vx, and Lemma 3.13 ensures That

Vx is an open set in X. Note that Vx × Y

is covered by finitely many of the open sets

belonging to the open cover U.
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Now {Vx : x ∈ X} is an open cover of the

space X. It follows from the compactness of

X that there exists a finite set {x1, x2, . . . , xr}
of points of X such that

X = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr
. Now X × Y is the union of the sets Vxj × Y
for j = 1,2, . . . , r, and each of these sets can

be covered by a finite collection of open sets

belonging to the open cover U. On combin-

ing these finite collections, we obtain a finite

collection of open sets belonging to U which

covers X×Y . This shows that X×Y is com-

pact.
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Theorem 3.15 Let K be a subset of Rn.

Then K is compact if and only if K is both

closed and bounded.

Proof.

Suppose that K is compact. Then K is closed,

since Rn is Hausdorff, and a compact sub-

set of a Hausdorff space is closed (by Corol-

lary 2.9). For each natural number m, let

Bm be the open ball of radius m about the

origin, given by

Bm = {x ∈ Rn : |x| < m}.

Then {Bm : m ∈ N} is an open cover of Rn.

It follows from the compactness of K that

there exist natural numbers m1,m2, . . . ,mk

such that K ⊂ Bm1 ∪ Bm2 ∪ · · · ∪ Bmk. But

then K ⊂ BM , where M is the maximum of

m1,m2, . . . ,mk, and thus K is bounded.
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Conversely suppose that K is both closed and

bounded. Then there exists some real num-

ber L such that K is contained within the

closed cube C given by

C = {(x1, x2, . . . , xn) ∈ Rn :

− L ≤ xj ≤ L for j = 1,2, . . . , n}.

Now the closed interval [−L,L] is compact

by the Heine-Borel Theorem (Theorem 2.2),

and C is the Cartesian product of n copies

of the compact set [−L,L]. It follows from

Theorem 3.14 that C is compact. But K

is a closed subset of C, and a closed subset

of a compact topological space is itself com-

pact, by Lemma 2.3. Thus K is compact, as

required.
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Identification Maps and Quotient

Topologies.

Definition.

Let X and Y be topological spaces and let

q:X → Y be a function from X to Y . The

function q is said to be an identification map

if and only if the following conditions are sat-

isfied:

• the function q:X → Y is surjective,

• a subset U of Y is open in Y if and only

if q−1(U) is open in X.
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It follows directly from the definition that any

identification map is continuous. Moreover,

in order to show that a continuous surjection

q:X → Y is an identification map, it suffices

to prove that if V is a subset of Y with the

property that q−1(V ) is open in X then V is

open in Y .

Lemma 3.16 Let X be a topological space,

let Y be a set, and let q:X → Y be a surjec-

tion. Then there is a unique topology on Y

for which the function q:X → Y is an identi-

fication map.
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Proof.

Let τ be the collection consisting of all sub-
sets U of Y for which q−1(U) is open in X.
Now q−1(∅) = ∅, and q−1(Y ) = X, so that
∅ ∈ τ and Y ∈ τ . If {Vα : α ∈ A} is any collec-
tion of subsets of Y indexed by a set A, then
it is a straightforward exercise to verify that⋃

α∈A q
−1(Vα) = q−1

(⋃
α∈A Vα

)
,

⋂
α∈A q

−1(Vα) = q−1
(⋂

α∈A Vα
)

(i.e., given any collection of subsets of Y ,
the union of the preimages of the sets is
the preimage of the union of those sets, and
the intersection of the preimages of the sets
is the preimage of the intersection of those
sets). It follows easily from this that unions
and finite intersections of sets belonging to τ

must themselves belong to τ . Thus τ is a
topology on Y , and the function q:X → Y

is an identification map with respect to the
topology τ . Clearly τ is the unique topology
on Y for which the function q:X → Y is an
identification map.
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Let X be a topological space, let Y be a

set, and let q:X → Y be a surjection. The

unique topology on Y for which the func-

tion q is an identification map is referred to

as the quotient topology (or identification

topology) on Y .

Lemma 3.17 Let X and Y be topological

spaces and let q:X → Y be an identification

map. Let Z be a topological space, and let

f :Y → Z be a function from Y to Z. Then

the function f is continuous if and only if the

composition function f ◦ q:X → Z is contin-

uous.

Proof.

Suppose that f is continuous. Then the com-

position function f ◦ q is a composition of

continuous functions and hence is itself con-

tinuous.
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Conversely suppose that f ◦ q is continuous.

Let U be an open set in Z. Then q−1(f−1(U))

is open in X (since f ◦ q is continuous), and

hence f−1(U) is open in Y (since the func-

tion q is an identification map). Therefore

the function f is continuous, as required.

Example.

Let S1 be the unit circle in R2, and let

q: [0,1]→ S1

be the map that sends t ∈ [0,1] to

(cos 2πt, sin 2πt).

Then q: [0,1] → S1 is an identification map,

and therefore a function f :S1 → Z from S1

to some topological space Z is continuous if

and only if f ◦ q: [0,1]→ Z is continuous.
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Example.

Let Sn be the n-sphere, consisting of all points

x in Rn+1 satisfying |x| = 1. Let RPn be

the set of all lines in Rn+1 passing through

the origin (i.e., RPn is the set of all one-

dimensional vector subspaces of Rn+1). Let

q:Sn → RPn denote the function which sends

a point x of Sn to the element of RPn repre-

sented by the line in Rn+1 that passes through

both x and the origin. Note that each ele-

ment of RPn is the image (under q) of exactly

two antipodal points x and −x of Sn. The

function q induces a corresponding quotient

topology on RPn such that q:Sn → RPn is

an identification map. The set RPn, with

this topology, is referred to as real projec-

tive n-dimensional space. In particular RP2

is referred to as the real projective plane. It

follows from Lemma 3.17 that a function

f :RPn → Z from RPn to any topological

space Z is continuous if and only if the com-

position function f ◦ q:Sn → Z is continuous.
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Covering Maps and the Mon-

odromy Theorem.

The Helicoidal Covering of the

Punctured Plane.

Let the topological space X be the punctured

plane

X = {(x, y) ∈ R2 : (x, y) 6= (0,0)}

with the usual topology, and let

X̃ = {(x, y, z) ∈ R3 : x sin 2πz = y cos 2πz

and x cos 2πz + y sin 2πz > 0}.
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Lemma 4.1 Let

X̃ = {(x, y, z) ∈ R3 : x sin 2πz = y cos 2πz

and x cos 2πz + y sin 2πz > 0}.

Then a point (x, y, z) of R3 belongs to the

surface X̃ if and only if there exists some

positive real number ρ such that

x = ρ cos 2πz and y = ρ sin 2πz.

Proof.

Suppose that (x, y, z) ∈ X̃. Let

ρ = x cos 2πz + y sin 2πz.

Then ρ > 0. Now

x sin 2πz = y cos 2πz.

It follows that
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ρ cos 2πz = x cos2 2πz + y sin 2πz cos 2πz

= x cos2 2πz + x sin2 2πz

= x;

ρ sin 2πz = x sin 2πz cos 2πz + y sin2 2πz

= y cos2 2πz + y sin2 2πz

= y.

Thus if (x, y, z) is a point of the surface X̃

then there exists some positive real number ρ

such that

x = ρ cos 2πz and y = ρ sin 2πz.
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Conversely suppose that (x, y, z) is a point of
R3 for which there exists some ρ > 0 such
that

x = ρ cos 2πz and y = ρ sin 2πz.

Then

x sin 2πz = y cos 2πz

and

x cos 2πz + y sin 2πz = ρ > 0,

and therefore (x, y, z) ∈ X̃, as required

Now, for each real number θ, the intersection

of the surface X̃ with the plane z =
θ

2π
is the

half line consisting of all points of R3 that
are of the form(

ρ cos θ, ρ sin θ,
θ

2π

)
for some ρ > 0. Moreover both the height

θ

2π
of this half line and the angle which the half-
line makes with the x-direction increase at a
constant rate as θ increases. The surface X̃
thus takes the form of a spiral ramp about
the z-axis in R3.
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The surface X̃ is an example of a helicoid.

We let p: X̃ → X be the continuous map de-

fined such that

p(x, y, z) = (x, y)

for all (x, y, z) ∈ X̃. The map p is a surjective

map from the helicoid X̃ to the punctured

plane X.

Given any real number θ, let

Ũθ =
{

(x, y, z) ∈ X̃ :
∣∣∣∣z − θ

2π

∣∣∣∣ < 1

2

}
,

and let Uθ = p(Ũθ). Then Uθ is the sector

of the punctured plane consisting all all half-

lines starting at the origin that make an angle

of less than π with the half-line in the di-

rection of the vector (cos θ, sin θ). It follows

that Uθ = X \ Lθ, where Lθ is the half-line

from the origin in the direction of the vector

(− cos θ,− sin θ), defined so that

Lθ = {(−t cos θ,−t sin cos θ) : t ∈ R and t > 0}.
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Then the preimage p−1(Uθ) of Uθ is the dis-

joint union
⋃
n∈Z

Vn of the open subsets Vn of

X̃ for all integers n, where

Vn = {(x, y, z) ∈ X̃ : (x, y, z − n) ∈ Ũθ}

= {(x, y, z) ∈ X̃ :
θ

2π
+ n−

1

2
< z

<
θ

2π
+ n+

1

2
}.

Each of these open set Vn is mapped home-

omorphically onto Uθ by the map p: X̃ → X.

Indeed let sn: Ũθ → Vn be defined such that

sn(ρ cos(θ + ϕ), ρ sin(θ + ϕ))

=
(
ρ cos(θ + ϕ), ρ sin(θ + ϕ),

θ + ϕ

2π

)
for all angles ϕ satisfying −π < ϕ < π. Then

sn:Uθ → Vn is a continuous map, and this

map is the inverse of the restriction of the

map p: X̃ → X to Vn.
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It follows that the preimage p−1(Uθ) of the

open subset Uθ of X is a disjoint union of

open sets, each of which is mapped home-

omorphically onto Uθ by the map p: X̃ → X.

We say that the open set Uθ is evenly covered

by the continuous map p: X̃ → X.

A continuous map between topological spaces

is said to be a covering map if it is surjective,

and if in addition every point of the codomain

is contained in some evenly covered open set.

The map p: X̃ → X from the helicoid X̃ to

the punctured plane X is an example of a

covering map.
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A path γ: [0,1] → X defined on the unit in-

terval [0,1] is by definition a continuous map

from [0,1] into the topological space X. It

can be shown that, given any path γ: [0,1]→
X, and given any point w of X̃ satisfying

p(w) = γ(0), there exists a unique path γ̃: [0,1]→
X̃ such that γ̃(0) = w and p ◦ γ̃ = γ. Such a

path γ̃: [0,1] → X̃ is said to be a lift of the

path γ: [0,1] → X. This result is a special

case of the Path Lifting Theorem for cover-

ing maps. It can also be shown that, given

any continuous map H: [0,1]× [0,1]→ X de-

fined on the unit square [0,1] × [0,1], and

given any point w of X̃ satisfying p(w) =

H(0,0), there exists a unique continuous map

H̃: [0,1] × [0,1] → X̃ such that H̃(0,0) = w

and p ◦ H̃ = H. This result is a special case

of the Monodromy Theorem, a theorem ap-

plicable to any covering map.
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Covering Maps.

Definition.

Let X and X̃ be topological spaces and let

p: X̃ → X be a continuous map. An open

subset U of X is said to be evenly covered by

the map p if and only if p−1(U) is a disjoint

union of open sets of X̃ each of which is

mapped homeomorphically onto U by p. The

map p: X̃ → X is said to be a covering map if

p: X̃ → X is surjective and in addition every

point of X is contained in some open set that

is evenly covered by the map p.

If p: X̃ → X is a covering map, then we say

that X̃ is a covering space of X.
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Example.

Let S1 be the unit circle in R2. Then the

map p:R→ S1 defined by

p(t) = (cos 2πt, sin 2πt)

is a covering map. Indeed let n be a point

of S1. Consider the open set U in S1 con-

taining n defined by U = S1\{−n}. Now n =

(cos 2πt0, sin 2πt0) for some t0 ∈ R. Then

p−1(U) is the union of the disjoint open sets Jn
for all integers n, where

Jn = {t ∈ R : t0 + n− 1
2 < t < t0 + n+ 1

2}.

Each of the open sets Jn is mapped homeo-

morphically onto U by the map p. This shows

that p:R→ S1 is a covering map.
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Example.

The map

pexp:C→ C \ {0}

defined by pexp(z) = exp(z) is a covering

map, where

exp(x+ iy) = ex cos y + iex sin y

for all real numbers x and y. This covering

map is closely related to the helicoidal cov-

ering pvert: X̃ → X of the punctured plane X,

where

X = {(x, y) ∈ R2 : (x, y) 6= (0,0)},
X̃ = {(x, y, z) ∈ R3 : x sin 2πz = y cos 2πz

and x cos 2πz + y sin 2πz > 0}.

and pvert(x, y, z) = (x, y) for all (x, y) ∈ X̃.
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Indeed let h:C→ X̃ be defined such that

h(u+ iv) =
(
eu cos v, eu sin v,

v

2π

)
for all u, v ∈ R. Then the function h is a

homeomorphism from the complex plane C
to the helicoid X̃ whose inverse h−1X̃ → C
satisfies

h−1(x, y, z) =
(

1

2
log(x2 + y2),2πz

)
for all (x, y, z) ∈ X̃. Also let ν:X → C \ {0}
be the natural homeomorphism between the

punctured Euclidean plane R2 \ {(0,0)} and

the punctured complex plane C \ {0}, defined

such that ν(x, y) = x + iy for all (x, y) ∈ X.

Then pexp(z) = ν(pvert(h(z))) for all z ∈ C,

and thus pexp = ν ◦ pvert ◦h. Moreover h:C→
X̃ and ν:X → C \ {0} are homeomorphisms.

It follows that pexp:C→ C \ {0} is a covering

map that corresponds naturally to the heli-

coidal covering of the punctured plane.
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Given any θ ∈ [−π, π] let us define

Wθ = {z ∈ C \ {0} : arg(−z) 6= θ}.

Then p−1
exp(Wθ) is the disjoint union of the

open sets

{z ∈ C : |Im z − θ − 2πn| < π} ,

for all integers n, and pexp maps each of

these open sets homeomorphically onto Wθ.

Thus Wθ is evenly covered by the exponential

map pexp.
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Example.

Consider the map α: (−2,2) → S1, where

α(t) = (cos 2πt, sin 2πt) for all t ∈ (−2,2). It

can easily be shown that there is no open set

U containing the point (1,0) that is evenly

covered by the map α. Indeed suppose that

there were to exist such an open set U . Then

there would exist some δ satisfying 0 < δ < 1
2

such that Uδ ⊂ U , where

Uδ = {(cos 2πt, sin 2πt) : −δ < t < δ}.

The open set Uδ would then be evenly cov-

ered by the map α. However the connected

components of α−1(Uδ) are

(−2,−2 + δ), (−1− δ,−1 + δ), (−δ, δ),

(1− δ,1 + δ) and (2− δ,2),

and neither (−2,−2+δ) nor (2−δ,2) is mapped

homeomorphically onto Uδ by α.
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Example.

Let Z = C \ {1,−1}, let

Z̃ = {(z, w) ∈ C2 : w 6= 0 and w2 = z2 − 1},

and let p: Z̃ → Z be defined such that

p(z, w) = z

for all (z, w) ∈ Z̃. Let (z0, w0) ∈ Z̃, let z =

z0+ζ, and let (z, w) ∈ C be a complex number

for which (z, w) ∈ Z̃. Then

w2 = z2 − 1 = z2
0 − 1 + 2z0ζ + ζ2

= w2
0 + 2z0ζ + ζ2

= w2
0

(
1 +

2z0ζ + ζ2

w2
0

)
.

Now there exists δ > 0 such that∣∣∣∣∣2z0ζ + ζ2

w2
0

∣∣∣∣∣ < 1

whenever |ζ| < δ.
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It follows from Taylor’s Theorem (for holo-

morphic functions of a complex variable) that

if |z − z0| < δ and (z, w) ∈ W̃ , then

w = ±w0

+∞∑
n=0

an

(
2z0ζ + ζ2

w2
0

)n
,

where a0 = 1 and

an =
(3

2 − n)an−1

n

for all natural numbers n satisfying n > 1.

This ensures that the open disk {z ∈ Z : |z −
z0| < δ} is evenly covered by the map p: Z̃ →
Z. We conclude from this that every point

z0 of Z is contained in some open set that

is evenly covered by the map p: Z̃ → Z. This

map is thus a covering map.
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Let f̃(z, w) = w for all (z, w) ∈ Z̃. Then

f̃(z̃)2 = p(z̃)2 − 1

for all z̃ ∈ Z̃. It follows that the function

f̃ : Z̃ → C represents in some sense the many-

valued ‘function’
√
z2 − 1. However this func-

tion z̃ is not defined on the open subset Z of

the complex plane, but is instead defined over

a covering space Z̃ of this open set. This

covering space is the Riemann surface for

the ‘function’
√
z2 − 1. This method of rep-

resenting many-valued ‘functions’ of a com-

plex variable using single-valued functions de-

fined over a covering space was initiated and

extensively developed by Bernhard Riemann

(1826–1866) in his doctoral thesis.
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Lemma 4.2 Let p: X̃ → X be a covering

map. Then p(V ) is open in X for every open

set V in X̃. In particular, a covering map

p: X̃ → X is a homeomorphism if and only if

it is a bijection.

Proof.

Let V be open in X̃, and let x ∈ p(V ). Then

x = p(v) for some v ∈ V . Now there exists an

open set U containing the point x which is

evenly covered by the covering map p. Then

p−1(U) is a disjoint union of open sets, each

of which is mapped homeomorphically onto U

by the covering map p. One of these open

sets contains v; let Ũ be this open set, and

let Nx = p(V ∩ Ũ). Now Nx is open in X,

since V ∩ Ũ is open in Ũ and p|Ũ is a home-

omorphism from Ũ to U . Also x ∈ Nx and

Nx ⊂ p(V ).
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It follows that p(V ) is the union of the open

sets Nx as x ranges over all points of p(V ),

and thus p(V ) is itself an open set, as re-

quired. The result that a bijective cover-

ing map is a homeomorphism then follows

directly from the fact that a continuous bi-

jection is a homeomorphism if and only if it

maps open sets to open sets.

Path Lifting and the Monodromy

Theorem.

Let p: X̃ → X be a covering map over a

topological space X. Let Z be a topological

space, and let f :Z → X be a continuous map

from Z to X. A continuous map f̃ :Z → X̃

is said to be a lift of the map f :Z → X if

and only if p ◦ f̃ = f . We shall prove various

results concerning the existence and unique-

ness of such lifts.
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Proposition 4.3 Let p: X̃ → X be a covering

map, let Z be a connected topological space,

and let g:Z → X̃ and h:Z → X̃ be continuous

maps. Suppose that p ◦ g = p ◦ h and that

g(z) = h(z) for some z ∈ Z. Then g = h.

Proof.

Let Z0 = {z ∈ Z : g(z) = h(z)}. Note that Z0

is non-empty, by hypothesis. We show that

Z0 is both open and closed in Z.
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Let z be a point of Z. There exists an open

set U in X containing the point p(g(z)) which

is evenly covered by the covering map p. Then

p−1(U) is a disjoint union of open sets, each

of which is mapped homeomorphically onto U

by the covering map p. One of these open

sets contains g(z); let this set be denoted

by Ũ . Also one of these open sets con-

tains h(z); let this open set be denoted by

Ṽ . Let Nz = g−1(Ũ) ∩ h−1(Ṽ ). Then Nz is

an open set in Z containing z.

Consider the case when z ∈ Z0. Then g(z) =

h(z), and therefore Ṽ = Ũ . It follows from

this that both g and h map the open set Nz
into Ũ . But p ◦ g = p ◦ h, and p|Ũ : Ũ → U is

a homeomorphism. Therefore g|Nz = h|Nz,
and thus Nz ⊂ Z0. We have thus shown that,

for each z ∈ Z0, there exists an open set Nz
such that z ∈ Nz and Nz ⊂ Z0. We conclude

that Z0 is open.
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Next consider the case when z ∈ Z \ Z0. In

this case Ũ ∩ Ṽ = ∅, since g(z) 6= h(z). But

g(Nz) ⊂ Ũ and h(Nz) ⊂ Ṽ . Therefore g(z′) 6=
h(z′) for all z′ ∈ Nz, and thus Nz ⊂ Z \ Z0.

We have thus shown that, for each z ∈ Z\Z0,

there exists an open set Nz such that z ∈ Nz
and Nz ⊂ Z \ Z0. We conclude that Z \ Z0 is

open.

The subset Z0 of Z is therefore both open

and closed. Also Z0 is non-empty by hypoth-

esis. We deduce that Z0 = Z, since Z is

connected. Thus g = h, as required.

Lemma 4.4 Let p: X̃ → X be a covering

map, let Z be a topological space, let A be a

connected subset of Z, and let f :Z → X and

g:A→ X̃ be continuous maps with the prop-

erty that p◦g = f |A. Suppose that f(Z) ⊂ U ,

where U is an open subset of X that is evenly

covered by the covering map p. Then there

exists a continuous map f̃ :Z → X̃ such that

f̃ |A = g and p ◦ f̃ = f .
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Proof.

The open set U is evenly covered by the

covering map p, and therefore p−1(U) is a

disjoint union of open sets, each of which

is mapped homeomorphically onto U by the

covering map p. One of these open sets con-

tains g(a) for some a ∈ A; let this set be

denoted by Ũ . Let σ:U → Ũ be the inverse

of the homeomorphism p|Ũ : Ũ → U , and let

f̃ = σ ◦ f . Then p ◦ f̃ = f . Also p ◦ f̃ |A = p ◦ g
and f̃(a) = g(a). It follows from Proposi-

tion 4.3 that f̃ |A = g, since A is connected.

Thus f̃ :Z → X̃ is the required map.

Theorem 4.5 (Path Lifting Theorem) Let

p: X̃ → X be a covering map, let γ: [0,1]→ X

be a continuous path in X, and let w be a

point of X̃ satisfying p(w) = γ(0). Then

there exists a unique continuous path

γ̃: [0,1]→ X̃

such that γ̃(0) = w and p ◦ γ̃ = γ.
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Proof.

The map p: X̃ → X is a covering map; there-

fore there exists an open cover U of X such

that each open set U belonging to X is evenly

covered by the map p. Now the collection

consisting of the preimages γ−1(U) of the

open sets U belonging to U is an open cover

of the interval [0,1]. But [0,1] is compact,

by the Heine-Borel Theorem. It follows from

the Lebesgue Lemma that there exists some

δ > 0 such that every subinterval of length

less than δ is mapped by γ into one of the

open sets belonging to U. Partition the in-

terval [0,1] into subintervals [ti−1, ti], where

0 = t0 < t1 < · · · < tn−1 < tn = 1,

and where the length of each subinterval is

less than δ. Then each subinterval [ti−1, ti] is

mapped by γ into some open set in X that

is evenly covered by the map p.
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It follows from Lemma 4.4 that once γ̃(ti−1)

has been determined, we can extend γ̃ con-

tinuously over the ith subinterval [ti−1, ti].

Thus by extending γ̃ successively over

[t0, t1], [t1, t2], . . . , [tn−1, tn],

we can lift the path γ: [0,1] → X to a path

γ̃: [0,1] → X̃ starting at w. The uniqueness

of γ̃ follows from Proposition 4.3.

Theorem 4.6 (The Monodromy Theorem)

Let p: X̃ → X be a covering map, let

H: [0,1]× [0,1]→ X

be a continuous map, and let w be a point

of X̃ satisfying p(w) = H(0,0). Then there

exists a unique continuous map

H̃: [0,1]× [0,1]→ X̃

such that H̃(0,0) = w and p ◦ H̃ = H.
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Proof.

The unit square [0,1]× [0,1] is compact. By

applying the Lebesgue Lemma to an open

cover of the square by preimages of evenly

covered open sets in X (as in the proof of

Theorem 4.5), we see that there exists some

δ > 0 with the property that any square con-

tained in [0,1]×[0,1] whose sides have length

less than δ is mapped by H into some open

set in X which is evenly covered by the cover-

ing map p. It follows from Lemma 4.4 that if

the lift H̃ of H has already been determined

over a corner, or along one side, or along two

adjacent sides of a square whose sides have

length less than δ, then H̃ can be extended

over the whole of that square.
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Thus if we subdivide [0,1]×[0,1] into squares

Sj,k, where

Sj,k = {(s, t) ∈ [0,1]× [0,1] :
j − 1

n
≤ s ≤

j

n

and
k − 1

n
≤ t ≤

k

n
},

and 1/n < δ, then we can construct a lift H̃

of H by defining H̃(0,0) = w, and then suc-

cessively extending H̃ in turn over each of

these smaller squares. (Indeed the map H̃

can be extended successively over the squares

S1,1, S1,2, . . . , S1,n, S2,1, S2,2, . . . , S2,n,

S3,1, . . . , Sn−1,n, . . . , Sn,1, Sn,2, . . . , Sn,n.)

The uniqueness of H̃ follows from Proposi-

tion 4.3.
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Homotopies and the Funda-

mental Group.

Homotopies.

Definition.

Let f :X → Y and g:X → Y be continuous

maps between topological spaces X and Y .

The maps f and g are said to be homotopic if

there exists a continuous map H:X× [0,1]→
Y such that H(x,0) = f(x) and H(x,1) =

g(x) for all x ∈ X. If the maps f and g are

homotopic then we denote this fact by writ-

ing f ' g. The map H with the properties

stated above is referred to as a homotopy

between f and g.

Continuous maps f and g from X to Y are

homotopic if and only if it is possible to ‘con-

tinuously deform’ the map f into the map g.
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Lemma 5.1 Let X and Y be topological spaces.

The homotopy relation ' is an equivalence

relation on the set of all continuous maps

from X to Y .

Proof.

Clearly f ' f , since (x, t) 7→ f(x) is a homo-

topy between f and itself. Thus the relation

is reflexive. If f ' g then there exists a ho-

motopy

H:X × [0,1]→ Y

between f and g (so that H(x,0) = f(x) and

H(x,1) = g(x) for all x ∈ X). But then

(x, t) 7→ H(x,1 − t) is a homotopy between

g and f . Therefore f ' g if and only if g ' f .

Thus the relation is symmetric.
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Finally, suppose that f ' g and g ' h. Then

there exist homotopies H1:X×[0,1]→ Y and

H2:X × [0,1]→ Y such that

H1(x,0) = f(x),

H1(x,1) = g(x) = H2(x,0),

H2(x,1) = h(x)

for all x ∈ X. Define H:X × [0,1]→ Y by

H(x, t) =

{
H1(x,2t) if 0 ≤ t ≤ 1

2;

H2(x,2t− 1) if 1
2 ≤ t ≤ 1.

Now H|X × [0, 1
2] and H|X × [1

2,1] are con-

tinuous. It follows from elementary point set

topology that H is continuous on X × [0,1].

Moreover H(x,0) = f(x) and H(x,1) = h(x)

for all x ∈ X. Thus f ' h. Thus the relation

is transitive. The relation ' is therefore an

equivalence relation.
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Definition.

Let X and Y be topological spaces, and let

A be a subset of X. Let f :X → Y and

g:X → Y be continuous maps from X to

some topological space Y , where f |A = g|A
(i.e., f(a) = g(a) for all a ∈ A). We say that f

and g are homotopic relative to A (denoted

by f ' g rel A) if and only if there exists

a (continuous) homotopy H:X × [0,1] → Y

such that H(x,0) = f(x) and H(x,1) = g(x)

for all x ∈ X and H(a, t) = f(a) = g(a) for all

a ∈ A.

Homotopy relative to a chosen subset of X is

also an equivalence relation on the set of all

continuous maps between topological spaces

X and Y .
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The Fundamental Group of a

Topological Space.

Definition.

Let X be a topological space, and let x0 and

x1 be points of X. A path in X from x0 to x1

is defined to be a continuous map γ: [0,1]→
X for which γ(0) = x0 and γ(1) = x1. A loop

in X based at x0 is defined to be a continuous

map γ: [0,1]→ X for which

γ(0) = γ(1) = x0.
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We can concatenate paths. Let γ1: [0,1] →
X and γ2: [0,1]→ X be paths in some topo-

logical space X. Suppose that γ1(1) = γ2(0).

We define the product path γ1.γ2: [0,1]→ X

by

(γ1.γ2)(t) =

 γ1(2t) if 0 ≤ t ≤ 1
2;

γ2(2t− 1) if 1
2 ≤ t ≤ 1.

(The continuity of γ1.γ2 may be deduced from

Lemma 5.1.)

If γ: [0,1]→ X is a path in X then we define

the inverse path γ−1: [0,1]→ X by

γ−1(t) = γ(1− t).

(Thus if γ is a path from the point x0 to

the point x1 then γ−1 is the path from x1

to x0 obtained by traversing γ in the reverse

direction.)
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Let X be a topological space, and let x0 ∈ X
be some chosen point of X. We define an

equivalence relation on the set of all (contin-

uous) loops based at the basepoint x0 of X,

where two such loops γ0 and γ1 are equivalent

if and only if γ0 ' γ1 rel {0,1}. We denote

the equivalence class of a loop γ: [0,1] → X

based at x0 by [γ]. This equivalence class is

referred to as the based homotopy class of

the loop γ. The set of equivalence classes

of loops based at x0 is denoted by π1(X,x0).

Thus two loops γ0 and γ1 represent the same

element of π1(X,x0) if and only if γ0 ' γ1 rel

{0,1} (i.e., there exists a homotopy

F : [0,1]× [0,1]→ X

between γ0 and γ1 which maps (0, τ) and

(1, τ) to x0 for all τ ∈ [0,1]).
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Theorem 5.2 Let X be a topological space,

let x0 be some chosen point of X, and let

π1(X,x0) be the set of all based homotopy

classes of loops based at the point x0. Then

π1(X,x0) is a group, the group multiplication

on π1(X,x0) being defined according to the

rule [γ1][γ2] = [γ1.γ2] for all loops γ1 and γ2

based at x0.
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Proof.

First we show that the group operation on

π1(X,x0) is well-defined. Let γ1, γ′1, γ2 and

γ′2 be loops in X based at the point x0. Sup-

pose that [γ1] = [γ′1] and [γ2] = [γ′2]. Let the

map F : [0,1]× [0,1]→ X be defined by

F (t, τ) =

F1(2t, τ) if 0 ≤ t ≤ 1
2,

F2(2t− 1, τ) if 1
2 ≤ t ≤ 1,

where F1: [0,1] × [0,1] → X is a homotopy

between γ1 and γ′1, F2: [0,1] × [0,1] → X is

a homotopy between γ2 and γ′2, and where

the homotopies F1 and F2 map (0, τ) and

(1, τ) to x0 for all τ ∈ [0,1]. Then F is itself

a homotopy from γ1.γ2 to γ′1.γ
′
2, and maps

(0, τ) and (1, τ) to x0 for all τ ∈ [0,1]. Thus

[γ1.γ2] = [γ′1.γ
′
2], showing that the group op-

eration on π1(X,x0) is well-defined.
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Next we show that the group operation on

π1(X,x0) is associative. Let γ1, γ2 and γ3

be loops based at x0, and let α = (γ1.γ2).γ3.

Then γ1.(γ2.γ3) = α ◦ θ, where

θ(t) =


1
2t if 0 ≤ t ≤ 1

2;

t− 1
4 if 1

2 ≤ t ≤
3
4;

2t− 1 if 3
4 ≤ t ≤ 1.

Thus the map G: [0,1]×[0,1]→ X defined by

G(t, τ) = α((1 − τ)t + τθ(t)) is a homotopy

between (γ1.γ2).γ3 and γ1.(γ2.γ3), and more-

over this homotopy maps (0, τ) and (1, τ) to

x0 for all τ ∈ [0,1]. It follows that

(γ1.γ2).γ3 ' γ1.(γ2.γ3) rel {0,1}

and hence

([γ1][γ2])[γ3] = [γ1]([γ2][γ3]).

This shows that the group operation on

π1(X,x0) is associative.
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Let ε: [0,1] → X denote the constant loop

at x0, defined by ε(t) = x0 for all t ∈ [0,1].

Then ε.γ = γ ◦ θ0 and γ.ε = γ ◦ θ1 for any

loop γ based at x0, where

θ0(t) =

{
0 if 0 ≤ t ≤ 1

2,

2t− 1 if 1
2 ≤ t ≤ 1,

θ1(t) =

{
2t if 0 ≤ t ≤ 1

2,

1 if 1
2 ≤ t ≤ 1,

for all t ∈ [0,1]. But the continuous map

(t, τ) 7→ γ((1− τ)t+ τθj(t))

is a homotopy between γ and γ ◦ θj for j =

0,1 which sends (0, τ) and (1, τ) to x0 for all

τ ∈ [0,1]. Therefore

ε.γ ' γ ' γ.ε rel {0,1},

and hence

[ε][γ] = [γ] = [γ][ε].

We conclude that [ε] represents the identity

element of π1(X,x0).
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It only remains to verify the existence of in-

verses. Now the map K: [0,1] × [0,1] → X

defined by

K(t, τ) =

 γ(2τt) if 0 ≤ t ≤ 1
2;

γ(2τ(1− t)) if 1
2 ≤ t ≤ 1.

is a homotopy between the loops γ.γ−1 and

ε, and moreover this homotopy sends (0, τ)

and (1, τ) to x0 for all τ ∈ [0,1]. Therefore

γ.γ−1 ' ε rel{0,1},

and thus

[γ][γ−1] = [γ.γ−1] = [ε].

On replacing γ by γ−1, we see also that

[γ−1][γ] = [ε],

and thus [γ−1] = [γ]−1, as required.
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Let x0 be a point of some topological space
X. The group π1(X,x0) is referred to as
the fundamental group of X based at the
point x0.

Let f :X → Y be a continuous map between
topological spaces X and Y , and let x0 be a
point of X. Then f induces a homomorphism

f#:π1(X,x0)→ π1(Y, f(x0)),

where f#([γ]) = [f ◦γ] for all loops γ: [0,1]→
X based at x0. If x0, y0 and z0 are points
belonging to topological spaces X, Y and Z,
and if f :X → Y and g:Y → Z are continuous
maps satisfying f(x0) = y0 and g(y0) = z0,
then the induced homomorphisms

f#:π1(X,x0)→ π1(Y, y0)

and

g#:π1(Y, x0)→ π1(Z, z0)

satisfy g# ◦ f# = (g ◦ f)#. It follows easily
from this that any homeomorphism of topo-
logical spaces induces a corresponding iso-
morphism of fundamental groups, and thus
the fundamental group is a topological in-
variant.
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Simply-Connected Topological

Spaces.

Definition.

A topological space X is said to be simply-

connected if it is path-connected, and any

continuous map

f : ∂D → X

mapping the boundary circle ∂D of a closed

disc D into X can be extended continuously

over the whole of the disk.

Example.

Rn is simply-connected for all n. Indeed any

continuous map f : ∂D → Rn defined over the

boundary ∂D of the closed unit disk D can

be extended to a continuous map F :D → Rn

over the whole disk by setting F (rx) = rf(x)

for all x ∈ ∂D and r ∈ [0,1].
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Let E be a topological space that is homeo-

morphic to the closed disk D, and let ∂E =

h(∂D), where ∂D is the boundary circle of

the disk D and h:D → E is a homeomor-

phism from D to E. Then any continuous

map g: ∂E → X mapping ∂E into a simply-

connected space X extends continuously to

the whole of E. Indeed there exists a contin-

uous map F :D → X which extends g◦h: ∂D →
X, and the map F ◦h−1:E → X then extends

the map g.
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Theorem 5.3 A path-connected topological

space X is simply-connected if and only if

π1(X,x) is trivial for all x ∈ X.

Proof.

Suppose that X is simply-connected. Let

γ: [0,1]→ X be a loop based at some point x

of X. Now the unit square is homeomorphic

to the unit disk, and therefore any contin-

uous map defined over the boundary of the

square can be continuously extended over the

whole of the square. It follows that there ex-

ists a continuous map F : [0,1] × [0,1] → X

such that F (t,0) = γ(t) and F (t,1) = x for

all t ∈ [0,1], and F (0, τ) = F (1, τ) = x for all

τ ∈ [0,1]. Thus γ ' εx rel{0,1}, where εx is

the constant loop at x, and hence [γ] = [εx]

in π1(X,x). This shows that π1(X,x) is triv-

ial.
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Conversely suppose that X is path-connected

and π1(X,x) is trivial for all x ∈ X. Let

f : ∂D → X be a continuous function defined

on the boundary circle ∂D of the closed unit

disk D in R2. We must show that f can be

extended continuously over the whole of D.

Let x = f(1,0). There exists a continuous

map G: [0,1]× [0,1]→ X such that

G(t,0) = f(cos(2πt), sin(2πt))

and G(t,1) = x for all t ∈ [0,1] and

G(0, τ) = G(1, τ) = x

for all τ ∈ [0,1], since π1(X,x) is trivial. More-

over G(t1, τ1) = G(t2, τ2) whenever q(t1, τ1) =

q(t2, τ2), where

q(t, τ) = ((1−τ) cos(2πt)+τ, (1−τ) sin(2πt))

for all t, τ ∈ [0,1]. It follows that there is

a well-defined function F :D → X such that

F ◦ q = G.
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However q: [0,1]× [0,1] → D is a continuous

surjection from a compact space to a Haus-

dorff space and is therefore an identification

map. It follows that F :D → X is continuous

(since a basic property of identification maps

ensures that a function F :D → X is contin-

uous if and only if F ◦ q: [0,1] × [0,1] → X

is continuous). Moreover F :D → X extends

the map f . We conclude that the space X is

simply-connected, as required.
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One can show that, if two points x1 and x2 in

a topological space X can be joined by a path

in X then π1(X,x1) and π1(X,x2) are isomor-

phic. On combining this result with Theorem

5.3, we see that a path-connected topolog-

ical space X is simply-connected if and only

if π1(X,x) is trivial for some x ∈ X.

Theorem 5.4 Let X be a topological space,

and let U and V be open subsets of X, with

U∪V = X. Suppose that U and V are simply-

connected, and that U ∩ V is non-empty and

path-connected. Then X is itself simply-

connected.
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Proof.

We must show that any continuous func-

tion f : ∂D → X defined on the unit circle ∂D

can be extended continuously over the closed

unit disk D. Now the preimages f−1(U) and

f−1(V ) of U and V are open in ∂D (since f is

continuous), and ∂D = f−1(U) ∪ f−1(V ). It

follows from the Lebesgue Lemma that there

exists some δ > 0 such that any arc in ∂D

whose length is less than δ is entirely con-

tained in one or other of the sets f−1(U) and

f−1(V ). Choose points z1, z2, . . . , zn around

∂D such that the distance from zi to zi+1 is

less than δ for i = 1,2, . . . , n− 1 and the dis-

tance from zn to z1 is also less than δ. Then,

for each i, the short arc joining zi−1 to zi is

mapped by f into one or other of the open

sets U and V .
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Let x0 be some point of U ∩ V . Now the

sets U , V and U ∩ V are all path-connected.

Therefore we can choose paths αi: [0,1] →
X for i = 1,2, . . . , n such that αi(0) = x0,

αi(1) = f(zi), αi([0,1]) ⊂ U whenever f(zi) ∈
U , and αi([0,1]) ⊂ V whenever f(zi) ∈ V . For

convenience let α0 = αn.

Now, for each i, consider the sector Ti of the

closed unit disk bounded by the line segments

joining the centre of the disk to the points

zi−1 and zi and by the short arc joining zi−1

to zi. Now this sector is homeomorphic to

the closed unit disk, and therefore any con-

tinuous function mapping the boundary ∂Ti
of Ti into a simply-connected space can be

extended continuously over the whole of Ti.
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In particular, let Fi be the function on ∂Ti
defined by

Fi(z) =



f(z) if z ∈ Ti ∩ ∂D,

αi−1(t) if z = tzi−1

for some t ∈ [0,1],

αi(t) if z = tzi
for some t ∈ [0,1],

Note that Fi(∂Ti) ⊂ U whenever the short

arc joining zi−1 to zi is mapped by f into U ,

and Fi(∂Ti) ⊂ V whenever this short arc is

mapped into V . But U and V are both simply-

connected. It follows that each of the func-

tions Fi can be extended continuously over

the whole of the sector Ti. Moreover the

functions defined in this fashion on each of

the sectors Ti agree with one another wher-

ever the sectors intersect, and can there-

fore be pieced together to yield a continu-

ous map defined over the the whole of the

closed disk D which extends the map f , as

required.
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Example.

Let Sn be the n-dimensional sphere, defined

by

Sn = {x ∈ Rn+1 : |x| = 1}.

Then Sn is simply-connected for all n > 1.

Indeed let U = {x ∈ Sn : xn+1 > −1
2} and

V = {x ∈ Sn : xn+1 < 1
2}. Then U and V

are homeomorphic to an n-dimensional ball,

and are therefore simply-connected. More-

over U ∩ V is path-connected, provided that

n > 1. It follows that Sn is simply-connected

for all n > 1.
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Monodromy.

The Fundamental Group of the

Punctured Plane.

Let X be the punctured plane, defined such

that

X = {(x, y) ∈ R2 : (x, y) 6= (0,0)},

let X̃ be the helicoidal surface in R3, defined

such that

X̃ = {(x, y, z) ∈ R3 : x sin 2πz = y cos 2πz

and x cos 2πz + y sin 2πz > 0}.

and let pvert: X̃ → X be the covering map

with covering space X̃ and base space X de-

fined by vertical projection, so that

pvert(x, y, z) = (x, y)

for all (x, y) ∈ X̃.
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A point (x, y, z) of R3 lies on the helicoidal

surface X̃ if and only if there exists some

positive real number ρ such that

x = ρ cos 2πz and y = ρ sin 2πz,

in which case ρ =
√
x2 + y2 (see Lemma 4.1).

Let γ: [0,1] → X be a path in X, and let

(x0, y0, z0) be a point of the helicoidal surface

for which

pvert(x0, y0, z0) = (x0, y0) = γ(0).

It follows from the Path Lifting Theorem

(Theorem 4.5) that there exists a lift

γ̃: [0,1]→ X̃

of the path γ to the helicoidal surface X̃

starting at the point (x0, y0, z0). Then

γ̃(0) = (x0, y0, z0)

and

pvert(γ̃(t)) = γ(t)

for all t ∈ [0,1].
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Let

γ̃(t) = (x(t), y(t), z(t))

for all t ∈ [0,1], where x: [0,1]→ R, y: [0,1]→
R and z: [0,1] → R are maps expressing the

Cartesian coordinates of the point γ̃(t) as

functions of the parameter t. Then

γ(t) = (x(t), y(t)),

x(t) = ρ(t) cos 2πz(t),

y(t) = ρ(t) sin 2πz(t)

for all t ∈ [0,1], where

ρ(t) =
√
x(t)2 + y(t)2

for all t ∈ [0,1].

Now suppose that the path γ is a loop in the

punctured plane X, starting and ending at a

point (x0, y0). Then γ̃(0) = (x0, y0, z0) for

some z0 ∈ [0,1]. Also

pvert(γ̃(1)) = γ(1) = γ(0) = (x0, y0).
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It follows that

γ̃(1) = (x0, y0, z0 + n(γ))

for some integer n(γ). This integer n(γ) is

determined by the loop γ, but is indepen-

dent of the choice of the lift γ̃ of that loop.

Indeed suppose that η: [0,1] → X̃ is also a

lift of the loop γ to the helicoidal surface X̃.

Let η(0) = (x0, y0, z
′
0). Then z′0 = z0 +m for

some integer m. Now the map that sends

t ∈ [0,1] to γ̃(t) + m is a lift of the loop γ

starting at the point η(0). But the Path

Lifting Theorem (Theorem 4.5) guarantees

that any lift of the loop γ is uniquely de-

termined by its starting point. Therefore

η(t) = γ̃(t)+m for all t ∈ [0,1], and therefore

η(1) = γ̃(1)+m = z0 +n(γ)+m = z′0 +n(γ).

We refer to the integer n(γ) as the winding

number of the loop γ about the point (0,0)

of R2 \X.
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Now let α: [0,1] → X and β: [0,1] → X be

loops in X based at the point (x0, y0), so

that

α(0) = α(1) = β(0) = β(1) = (x0, y0).

Suppose that α ' β rel {0,1}. Then there

exists a continuous map F : [0,1] × [0,1] →
X from the unit square [0,1] × [0,1] to the

punctured plane X such that

F (t,0) = α(t) and F (t,1) = β(t)

for all t ∈ [0,1] and

F (0, τ) = F (1, τ) = (x0, y0)

for all τ ∈ [0,1]. It then follows from the

Monodromy Theorem (Theorem 4.6) that

there exists a continuous map

G: [0,1]× [0,1]→ X̃

from the unit square [0,1]× [0,1] to the he-

licoidal surface X̃ such that

pvert(G(t, τ)) = F (t, τ))

for all t, τ ∈ [0,1].
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Let

G(t, τ) = (u(t, τ), v(t, τ), w(t, τ))

for all t, τ ∈ [0,1], where u: [0,1]× [0,1]→ R,

v: [0,1]×[0,1]→ R and w: [0,1]×[0,1]→ R are

maps expressing the Cartesian coordinates of

the point G(t, τ) as functions of the parame-

ters t and τ . Then

F (t, τ) = (u(t, τ), v(t, τ)),

u(t, τ) = s(t, τ) cos 2πw(t, τ),

v(t, τ) = s(t, τ) sin 2πw(t, τ)

for all t, τ ∈ [0,1], where

s(t, τ) =
√
x(t, τ)2 + y(t, τ)2

for all t, τ ∈ [0,1].
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Let w0 = w(0,0). Now the map that sends

t ∈ [0,1] to G(t,0) is a lift of the loop α.

It follows from the definition of the winding

number n(α) that w(1,0) = w0 + n(α). Also

the maps that send τ ∈ [0,1] to G(0, τ) and

G(1, τ) are lifts of constant loops based the

the point (0,0), and must therefore them-

selves be constant paths. It follows that

G(0,1) = w0 and G(1,1) = w0 + n(α). But

the map that sends t ∈ [0,1] to G(t,1) is a lift

of the loop β starting at the point w0, and

therefore G(1,1) = w0 + n(β). This shows

that n(α) = n(β).

169



We have now shown that each loop γ in the

punctured plane X based at the point (x0, y0)

determines an integer n(γ) that represents

the winding number of the loop about the

point (0,0) of R2 \X. Moreover if two loops

based at (x0, y0) represent the same element

of the fundamental group π1(X, (x0, y0)) then

they have the same winding number about

(0,0). It follows that there is a well-defined

function

λ:π1(X, (x0, y0))→ Z

defined such that λ([γ]) = n(γ) for all loops γ

based at the point (x0, y0).
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The function

λ:π1(X, (x0, y0))→ Z

is a homomorphism. Indeed let α: [0,1] →
X and β: [0,1] → X be loops in X based at

the point (x0, y0), and let α.β: [0,1] → X be

the concatenation of the two loops α and β,

defined such that

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2;

β(2t− 1) if 1
2 ≤ t ≤ 1.
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Let z0 be a real number for which (x0, y0, z0) ∈
X̃. Then there exists a lift of the loop α that

is a path in the helicoidal surface X̃ start-

ing at (x0, y0, z0) and finishing at (x0, y0, z1),

where z1 = z0 +n(α). Also there exists a lift

of the loop β that is a path in the helicoidal

surface X̃ starting at (x0, y0, z1) and finish-

ing at (x0, y0, z2), where z2 = z1 + n(β). But

then the concatenation of these two paths in

the helicoidal surface X̃ is a path in X̃ that

is a lift of the loop α.β starting at (x0, y0, z0)

and finishing at (x0, y0, z2). It follows that

n(α.β) = z2 − z0 = n(α) + n(β).

This shows that

λ:π1(X, (x0, y0))→ Z

is indeed a homomorphism.
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Now let α and β be loops in the punctured

plane X based at the point (x0, y0), and let

α̃ and β̃ be paths in the helicoidal surface X̃

starting at some point (x0, y0, z0) of that sur-

face, where α̃ and β̃ are lifts of the loops α

and β respectively. Suppose that

λ([α]) = λ([β]).

Then

α̃(1) = z0 + n(α) = z0 + λ([α])

= z0 + λ([β]) = z0 + n(β) = β̃(1).

Now there exist continuous maps

ρα: [0,1]→ R, ρβ: [0,1]→ R,

zα: [0,1]→ R and zβ: [0,1]→ R

such that ρα(t) > 0, ρβ(t) > 0,

α̃(t) = (ρα(t) cos 2πzα(t), ρα(t) sin 2πzα(t), zα(t))

and

β̃(t) = (ρβ(t) cos 2πzβ(t), ρβ(t) sin 2πzβ(t), zβ(t)).

173



Let

G(t, τ) = (ρ(t, τ) cos 2πz(t, τ),

ρ(t, τ) sin 2πz(t, τ), z(t, τ)),

where

ρ(t, τ) = (1− τ)ρα(t) + τρβ(t),

and

z(t, τ) = (1− τ)zα(t) + τzβ(t).

Then ρ(t, τ) > 0 for all t, τ ∈ [0,1], and there-
fore the function G is a homotopy in X̃ be-
tween the paths α̃ and β̃. Let

F (t, τ) = pvert(G(t, τ))

for all t, τ ∈ [0,1]. Then F (t,0) = α(t) and
F (t,1) = β(t) for all t ∈ [0,1], and thus the
map F : [0,1] × [0,1] → X is a homotopy be-
tween the loops α and β. Also

F (0, τ) = F (1, τ) = (x0, y0)

for all τ ∈ [0,1], because α̃(0) = β̃(0) and
α̃(1) = β̃(1). It follows that the loops α and
β represent the same element of the funda-
mental group π1(X, (x0, y0)).
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We have accordingly shown that if α and β

are loops in the punctured plane X based

at the point (x0, y0), and if λ([α]) = λ([β]),

then α ' β rel {0,1}, and therefore [α] = [β]

in π1(X, (x0, y0)). Thus the homomorphism

λ:π1(X, (x0, y0))→ Z

is injective.

Given any integer m, let η: [0,1] → Z̃ be a

path in helicoidal surface X̃ which starts at

the point (x0, y0, z0) and ends at (x0, y0, z0 +

m), and let γ = pvert ◦ η. Then γ: [0,1] → X

is a loop in the punctured plane X based at

the point (x0, y0), and moreover

λ[γ]) = n(γ) = m.

This shows that the homomorphism

λ:π1(X, (x0, y0))→ Z

is surjective.
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We have thus constructed an isomorphism

λ:π1(X, (x0, y0))→ Z between the fundamen-

tal group π1(X, (x0, y0)) of the punctured plane

X and the group Z of integers under addition.

Remark.

We showed that the fundamental group of

the punctured plane X is isomorphic to the

group of integers under addition by exploiting

properties of the covering map pvert: X̃ → X.

The methods used can be generalized so as

to find the fundamental group π1(Z, z0) of

the base space Z of a covering map p: Z̃ →
Z for which the covering space Z̃ is simply-

connected. In such cases, the elements of the

fundamental group π1(Z, z0) are in one-to-

one correspondence with the elements of the

preimage p−1({z0}) of the base point under

the covering map.
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The Fundamental Group of the Cir-

cle.

Theorem 6.1 π1(S1, b) ∼= Z for any b ∈ S1.

Proof.

We regard S1 as the unit circle in R2. With-

out loss of generality, we can take b = (1,0).

Now the map p:R → S1 which sends t ∈ R
to (cos 2πt, sin 2πt) is a covering map, and

b = p(0). Moreover p(t1) = p(t2) if and only

if t1 − t2 is an integer; in particular p(t) = b

if and only if t is an integer.

Let α: [0,1] → S1 be a loop in S1. It fol-

lows from the Path Lifting Theorem (Theo-

rem 4.5) that there exists a continuous func-

tion α̃: [0,1] → R such that p ◦ α̃ = α. Then

p(α̃(1)) = b = p(α̃(0)), and therefore α̃(1) −
α̃(0) is an integer. We show that the value

of this integer does not depend on the choice

of the function α̃.
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Let η: [0,1] → R be a map from [0,1] → R
that satisfies p ◦ η = α, and let

m = η(0)− α̃(0).

Then the function that sends t ∈ [0,1] to

α̃(t) + m is a continuous function on the in-

terval [0,1], and

p(η(t)) = α(t) = p(α̃(t) +m)

for all t ∈ [0,1]. It follows from this that

η(t) = α̃(t) +m

for all t ∈ [0,1]. This result is a consequence

of the fact that lifts of paths from a base

space to a covering space are uniquely de-

termined by their starting point (see Theo-

rem 4.5). Note also that the function that

maps t ∈ [0,1] to η(t)− α̃(t)−m is a contin-

uous integer-valued function on the interval

[0,1], and the connectedness of the interval

[0,1] ensures that every continuous integer-

valued function [0,1] must be constant. Thus

η(1)− η(0) = α̃(1)− α̃(0).
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Given any loop α in S1 based at the point b,

we define the winding number n(α) of the

loop α to be the unique integer with the prop-

erty that

n(α) = α̃(1)− α̃(0)

for all paths α̃: [0,1]→ R in R satisfying

p ◦ α̃ = α.

Now let α and β be loops in S1 based at b

that represent the same element of π1(S1, b).

Then there exists a homotopy

F : [0,1]× [0,1]→ S1

such that F (t,0) = α(t) and F (t,1) = β(t)

for all t ∈ [0,1], and F (0, τ) = F (1, τ) = b for

all τ ∈ [0,1]. It follows from the Monodromy

Theorem (Theorem 4.6) that this homotopy

lifts to a continuous map

G: [0,1]× [0,1]→ R

satisfying p ◦G = F .
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Now the functions that send τ ∈ [0,1] to

G(0, τ) and G(1, τ) are constant functions on

the interval [0,1], because they are continu-

ous functions of τ that satisfy

p(G(0, τ)) = b = p(G(1, τ))

for all τ ∈ [0,1]. Thus G(0,0) = G(0,1) and

G(1,0) = G(1,1). Let

α̃(t) = G(t,0)

and

β̃(t) = G(t,1)

for all t ∈ [0,1], and let

b̃0 = G(0,0) = G(0,1)

and

b̃1 = G(1,0) = G(1,1).

Then p ◦ α̃ = α and p ◦ β̃ = β, and thus the

paths α̃ and β̃ are lifts of the loops α and β

respectively that start at b̃0 and end at b̃1.
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It follows that

n(α) = b̃1 − b̃0 = n(β).

Thus there is a well-defined function

λ:π1(S1, b)→ Z

with the property that λ([α]) = n(α) for all

loops α based at the point b.

Next we show that λ is a homomorphism. Let

α and β be any loops based at b, and let α̃ and

β̃ be lifts of α and β. The element [α][β] of

π1(S1, b) is represented by the product path

α.β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2;

β(2t− 1) if 1
2 ≤ t ≤ 1.

Define a continuous path σ: [0,1]→ R by

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2;

β̃(2t− 1) + α̃(1)− β̃(0) if 1
2 ≤ t ≤ 1.

(Note that σ(t) is well-defined when t = 1
2.)
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Then p ◦ σ = α.β and thus

λ([α][β]) = λ([α.β]) = σ(1)− σ(0)

= α̃(1)− α̃(0) + β̃(1)− β̃(0)

= λ([α]) + λ([β]).

Thus λ:π1(S1, b)→ Z is a homomorphism.

Now suppose that λ([α]) = λ([β]). Let

F : [0,1]× [0,1]→ S1

be the homotopy between α and β defined by

F (t, τ) = p
(
(1− τ)α̃(t) + τ β̃(t)

)
,

where α̃ and β̃ are the lifts of α and β respec-

tively starting at 0. Now

β̃(1) = λ([β]) = λ([α]) = α̃(1),

and β̃(0) = α̃(0) = 0. Therefore

F (0, τ) = b = p(α̃(1)) = F (1, τ)

for all τ ∈ [0,1]. Thus α ' β rel {0,1},
and therefore [α] = [β]. This shows that

λ:π1(S1, b)→ Z is injective.
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The homomorphism λ is surjective, since

n = λ([γn])

for all n ∈ Z, where the loop γn: [0,1]→ S1 is

given by

γn(t) = p(nt) = (cos 2πnt, sin 2πnt)

for all t ∈ [0,1]. We conclude that

λ:π1(S1, b)→ Z

is an isomorphism.

Remark.

Let S1 be the unit circle in the punctured

plane X, let i:S1 → X be the inclusion map,

and let r:X → S1 be the radial projection

map, defined such that

r(x, y) =

 x√
x2 + y2

,
y√

x2 + y2


for all (x, y) ∈ X. Now the composition map

r ◦ i is the identity map of S1.
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Let

u(x, y, τ) =
1− τ√
x2 + y2

+ τ

for all (x, y) ∈ X and τ ∈ [0,1]. Then the

function F :X × [0,1]→ X that sends

((x, y), τ) ∈ X × [0,1]

to

(u(x, y, τ)x, u(x, y, τ)y)

is a homotopy between the composition map

i ◦ r and the identity map of the punctured

plane X. It follows that the homomorphism

i#:π1(S1, (1,0))→ π1(X, (1,0))

of fundamental groups induced by the inclu-

sion map i:S1 → X is an isomorphism whose

inverse is the homomorphism

r#:π1(X, (1,0))→ π1(S1, (1,0))

of fundamental groups induced by the radial

projection map r:X → S1. Therefore

π1(S1, (1,0)) ∼= π1(X, (1,0)) ∼= Z.
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Indeed the function that sends each loop in

S1 based at the point (1,0) to its winding

number about the origin (0,0) induces an

isomorphism from π1(S1, (1,0)) to Z. Thus

the result of Theorem 6.1 can be deduced

as a corollary of the previous discussion con-

cerning the fundamental group of the punc-

tured plane. Indeed the proof of Theorem 6.1

utilizes the same basic methods and results

used to find the fundamental group of the

punctured plane. We shall develop the theory

of the relationship between covering spaces

and the fundamental group in order to find

the fundamental groups of other topological

spaces that are base spaces of covering maps

for which the corresponding covering spaces

are simply-connected.
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Covering Maps and Induced Ho-

momorphisms of the Fundamental

Group.

Let p: X̃ → X be a covering map and let

α: [0,1] → X and β: [0,1] → X be paths in

the base space X which both start at some

point x0 of X and finish at some point x1 of

X, so that

α(0) = β(0) = x0 and α(1) = β(1) = x1.

Let x̃0 be some point of the covering space X̃

that projects down to x0, so that p(x̃0) =

x0. It follows from the Path Lifting The-

orem (Theorem 4.5) that there exist paths

α̃: [0,1] → X̃ and β̃: [0,1] → X̃ in the cover-

ing space X̃ that both start at x̃0 and that

are lifts of the paths α and β respectively.
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Thus

α̃(0) = β̃(0) = x̃0,

p(α̃(t)) = α(t)

and

p(β̃(t)) = β(t)

for all t ∈ [0,1]. These lifts α̃ and β̃ of the

paths α and β are uniquely determined by

their starting point x̃0 (see Proposition 4.3).

Now, though the lifts α̃ and β̃ of the paths α

and β have been chosen such that they start

at the same point x̃0 of the covering space

X̃, they need not in general end at the same

point of X̃. However we shall prove that if

α ' β rel {0,1}, then the lifts α̃ and β̃ of α and

β respectively that both start at some point

x̃0 of X̃ will both finish at some point x̃1 of

x̃, so that α̃(1) = β̃(1) = x̃1. This result is

established in Proposition 6.2 below.
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Proposition 6.2 Let p: X̃ → X be a cov-

ering map over a topological space X, let

α: [0,1]→ X and β: [0,1]→ X be paths in X,

where α(0) = β(0) and α(1) = β(1), and let

α̃: [0,1]→ X̃ and β̃: [0,1]→ X̃ be paths in X̃

such that p ◦ α̃ = α and p ◦ β̃ = β. Suppose

that α̃(0) = β̃(0) and that α ' β rel {0,1}.
Then α̃(1) = β̃(1) and α̃ ' β̃ rel {0,1}.

Proof.

Let x0 and x1 be the points of X given by

x0 = α(0) = β(0), x1 = α(1) = β(1).

Now α ' β rel {0,1}, and therefore there ex-

ists a homotopy F : [0,1] × [0,1] → X such

that

F (t,0) = α(t) and F (t,1) = β(t)

for all t ∈ [0,1], and

F (0, τ) = x0 and F (1, τ) = x1

for all τ ∈ [0,1].
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It then follows from the Monodromy Theo-
rem (Theorem 4.6) that there exists a con-
tinuous map G: [0,1] × [0,1] → X̃ such that
p ◦G = F and G(0,0) = α̃(0). Then

p(G(0, τ)) = x0

and

p(G(1, τ)) = x1

for all τ ∈ [0,1]. A straightforward applica-
tion of Proposition 4.3 shows that any con-
tinuous lift of a constant path must itself be
a constant path. Therefore G(0, τ) = x̃0 and
G(1, τ) = x̃1 for all τ ∈ [0,1], where

x̃0 = G(0,0) = α̃(0), x̃1 = G(1,0).

However

G(0,0) = G(0,1) = x̃0 = α̃(0) = β̃(0),

p(G(t,0)) = F (t,0) = α(t) = p(α̃(t))

and

p(G(t,1)) = F (t,1) = β(t) = p(β̃(t))

for all t ∈ [0,1].
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It follows that the map that sends t ∈ [0,1]

to G(t,0) is a lift of the path α that starts

at x̃0, and the map that sends t ∈ [0,1] to

G(t,1) is a lift of the path β that also starts at

x̃0. However Proposition 4.3 ensures that the

lifts α̃ and β̃ of the paths α and β are uniquely

determined by their starting points. It follows

that G(t,0) = α̃(t) and G(t,1) = β̃(t) for all

t ∈ [0,1]. In particular,

α̃(1) = G(1,0) = x̃1 = G(1,1) = β̃(1).

Moreover the map G: [0,1] × [0,1] → X̃ is a

homotopy between the paths α̃ and β̃ which

satisfies G(0, τ) = x̃0 and G(1, τ) = x̃1 for all

τ ∈ [0,1]. It follows that α̃ ' β̃ rel {0,1}, as

required.
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Homomorphisms of Fundamental

Groups induced by Covering Maps.

Proposition 6.3 Let p: X̃ → X be a covering

map, and let x̃0 be a point of the covering

space X̃. Then the homomorphism

p#:π1(X̃, x̃0)→ π1(X, p(x̃0))

of fundamental groups induced by the cover-

ing map p is injective.

Proof.

Let σ0 and σ1 be loops in X̃ based at the

point x̃0, representing elements [σ0] and [σ1]

of π1(X̃, x̃0). Suppose that p#[σ0] = p#[σ1].

Then p ◦ σ0 ' p ◦ σ1 rel {0,1}. Also σ0(0) =

x̃0 = σ1(0). Therefore σ0 ' σ1 rel {0,1}, by

Proposition 6.2, and thus [σ0] = [σ1]. We

conclude that the homomorphism

p#:π1(X̃, x̃0)→ π1(X, p(x̃0))

is injective.
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Proposition 6.4 Let p: X̃ → X be a cover-

ing map, let x̃0 be a point of the covering

space X̃, and let γ be a loop in X based at

p(x̃0). Then [γ] ∈ p#(π1(X̃, x̃0)) if and only

if there exists a loop γ̃ in X̃, based at the

point x̃0, such that p ◦ γ̃ = γ.

Proof.

If γ = p ◦ γ̃ for some loop γ̃ in X̃ based

at x̃0 then [γ] = p#[γ̃], and therefore [γ] ∈
p#(π1(X̃, x̃0)).

Conversely suppose that [γ] ∈ p#(π1(X̃, x̃0)).

We must show that there exists some loop γ̃

in X̃ based at x̃0 such that γ = p ◦ γ̃. Now

there exists a loop σ in X̃ based at the point x̃0

such that [γ] = p#([σ]) in π1(X, p(x̃0)). Then

γ ' p ◦ σ rel {0,1}. It follows from the Path

Lifting Theorem for covering maps (Theo-

rem 4.5) that there exists a unique path

γ̃: [0,1]→ X̃

in X̃ for which γ̃(0) = x̃0 and p ◦ γ̃ = γ.
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It then follows from Proposition 6.2 that γ̃(1) =
σ(1) and γ̃ ' σ rel {0,1}. But σ(1) = x̃0.
Therefore the path γ̃ is the required loop
in X̃ based the point x̃0 which satisfies p◦γ̃ =
γ.

Corollary 6.5 Let p: X̃ → X be a covering
map over a topological space X, let w0 and
w1 be points of X̃ satisfying p(w0) = p(w1),
and let α: [0,1]→ X̃ be a path in X̃ from w0
to w1. Suppose that [p ◦ α] ∈ p#(π1(X̃, w0)).
Then the path α is a loop in X̃, and thus
w0 = w1.

Proof.

It follows from Proposition 6.4 that there ex-
ists a loop β based at w0 satisfying p◦β = p◦α.
Then α(0) = β(0). Now Proposition 4.3 en-
sures that the lift to X̃ of any path in X is
uniquely determined by its starting point. It
follows that α = β. But then the path α

must be a loop in X̃, and therefore w0 = w1,
as required.
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Corollary 6.6 Let p: X̃ → X be a covering
map over a topological space X. Let α: [0,1]→
X and β: [0,1]→ X be paths in X such that

α(0) = β(0) and α(1) = β(1),

and let α.β−1 be the loop in X defined such
that

(α.β−1)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2;

β(2− 2t) if 1
2 ≤ t ≤ 1.

Let α̃: [0,1] → X̃ and β̃: [0,1] → X̃ be paths
in X̃ such that p ◦ α̃ = α, and p ◦ β̃ = β.
Suppose that α̃(0) = β̃(0). Then

α̃(1) = β̃(1)

if and only if

[α.β−1] ∈ p#(π1(X̃, x̃0)),

where x̃0 = α̃(0) = β̃(0).

Proof.

Suppose that α̃(1) = β̃(1). Then the con-
catenation α̃.β̃−1 is a loop in X̃ based at x̃0,
and [α.β−1] = p#([α̃.β̃−1]), and therefore

[α.β−1] ∈ p#(π1(X̃, x̃0)).
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Conversely suppose that α̃ and β̃ are paths

in X̃ satisfying p ◦ α̃ = α, p ◦ β̃ = β and

α̃(0) = β̃(0) = x̃0,

and that

[α.β−1] ∈ p#(π1(X̃, x̃0)).

We must show that α̃(1) = β̃(1). Let

γ: [0,1]→ X

be the loop based at p(x̃0) given by γ =

α.β−1. Thus

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2;

β(2− 2t) if 1
2 ≤ t ≤ 1.

Then [γ] ∈ p#(π1(X̃, x̃0)). It follows from

Proposition 6.4 that there exists a loop γ̃

in X̃ based at x̃0 such that p ◦ γ̃ = γ. Let

α̂: [0,1] → X̃ and Let β̂: [0,1] → X̃ be the

paths in X̃ defined such that α̂(t) = γ̃(1
2t)

and β̂(t) = γ̃(1− 1
2t) for all t ∈ [0,1]. Then

α̃(0) = α̂(0) = β̃(0) = β̂(0) = x̃0,

p ◦ α̂ = α = p ◦ α̃ and p ◦ β̂ = β = p ◦ β̃.
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But Proposition 4.3 ensures that the lift to

X̃ of any path in X is uniquely determined

by its starting point. Therefore α̃ = α̂ and

β̃ = β̂. It follows that

α̃(1) = α̂(1) = γ̃(1
2) = β̂(1) = β̃(1),

as required.

Theorem 6.7 Let p: X̃ → X be a covering

map over a topological space X. Suppose

that X̃ is path-connected and that X is simply-

connected. Then the covering map p: X̃ → X

is a homeomorphism.

Proof.

We show that the map p: X̃ → X is a bijec-

tion. This map is surjective (since covering

maps are by definition surjective). We must

show that it is injective.
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Let w0 and w1 be points of X̃ with the prop-

erty that p(w0) = p(w1). Then there exists a

path α: [0,1]→ X̃ with α(0) = w0 and α(1) =

w1, since X̃ is path-connected. Then p ◦ α
is a loop in X based at the point x0, where

x0 = p(w0). However π1(X, p(w0)) is the triv-

ial group, since X is simply-connected. It

follows from Corollary 6.5 that the path α

is a loop in X̃ based at w0, and therefore

w0 = w1. This shows that the the covering

map p: X̃ → X is injective. Thus the map

p: X̃ → X is a bijection, and thus has a well-

defined inverse p−1:X → X̃. It now follows

from Lemma 4.2 that p: X̃ → X is a homeo-

morphism, as required.
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Let p: X̃ → X be a covering map over some

topological space X, and let x0 be some cho-

sen basepoint of X. We shall investigate the

dependence of the subgroup p#(π1(X̃, x̃)) of

π1(X,x0) on the choice of the point x̃ in X̃,

where x̃ is chosen such that p(x̃) = x0. We

first introduce some concepts from group the-

ory.

Let G be a group, and let H be a subgroup

of G. Given any g ∈ G, let gHg−1 denote the

subset of G defined by

gHg−1 = {g′ ∈ G : g′ = ghg−1 for some h ∈ H}.

It is easy to verify that gHg−1 is a subgroup

of G.

Definition.

Let G be a group, and let H and H ′ be sub-

groups of G. We say that H and H ′ are con-

jugate if and only if there exists some g ∈ G
for which H ′ = gHg−1.
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Note that if H ′ = gHg−1 then H = g−1H ′g.

The relation of conjugacy is an equivalence

relation on the set of all subgroups of the

group G. Moreover conjugate subgroups of G

are isomorphic, since the homomorphism send-

ing h ∈ H to ghg−1 is an isomorphism from

H to gHg−1 whose inverse is the homorphism

sending h′ ∈ gHg−1 to g−1h′g.

A subgroup H of a group G is said to be a

normal subgroup of G if ghg−1 ∈ H for all

h ∈ H and g ∈ G. If H is a normal subgroup

of G then gHg−1 ⊂ H for all g ∈ G. But then

g−1Hg ⊂ H and H = g(g−1Hg)g−1 for all

g ∈ G, and therefore H ⊂ gHg−1 for all g ∈ G.

It follows from this that a subgroup H of G is

a normal subgroup if and only if gHg−1 = H

for all g ∈ G. Thus a subgroup H of G is

a normal subgroup if and only if there is no

other subgroup of G conjugate to H.
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Lemma 6.8 Let p: X̃ → X be a covering

map over a topological space X. Let x0 be

a point of X, and let w0 and w1 be points

of X̃ for which

p(w0) = x0 = p(w1).

Let H0 and H1 be the subgroups of π1(X,x0)

defined by

H0 = p#(π1(X̃, w0)), H1 = p#(π1(X̃, w1)).

Suppose that the covering space X̃ is path-

connected. Then the subgroups H0 and H1

of π1(X,x0) are conjugate. Moreover if H is

any subgroup of π1(X,x0) which is conjugate

to H0 then there exists an element w of X̃

for which p(w) = x and p#(π1(X̃, w)) = H.
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Proof.

Let α: [0,1] → X̃ be a path in X̃ for which

α(0) = w0 and α(1) = w1. (Such a path ex-

ists since X̃ is path-connected.) Then each

loop σ in X̃ based at w1 determines a cor-

responding loop α.σ.α−1 in X̃ based at w0,

where

(α.σ.α−1)(t) ≡


α(3t) if 0 ≤ t ≤ 1

3;

σ(3t− 1) if 1
3 ≤ t ≤

2
3;

α(3− 3t) if 2
3 ≤ t ≤ 1.

(This loop traverses the path α from w0 to

w1, then continues round the loop σ, and

traverses the path α in the reverse direc-

tion in order to return from w1 to w0.) Let

η: [0,1] → X be the loop in X based at the

point x0 given by η = p ◦ α, and let

ϕ:π1(X,x0)→ π1(X,x0)

be the automorphism of the group π1(X,x0)

defined such that ϕ([γ]) = [η][γ][η]−1 for all

loops γ in X based at the point x0.
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Then p ◦ (α.σ.α−1) = η.(p ◦σ).η−1, and there-

fore

p#([α.σ.α−1]) = [η]p#([σ])[η]−1 = ϕ(p#([σ]))

in π1(X,x0). It follows that ϕ(H1) ⊂ H0.

Similarly ϕ−1(H0) ⊂ H1, where

ϕ−1([γ]) = [η]−1[γ][η]

for all loops γ in X based at the point x0.

It follows that ϕ(H1) = H0, and thus the

subgroups H0 and H1 are conjugate

Now let H be a subgroup of π1(X,x0) which

is conjugate to H0. Then H0 = [η]H[η]−1 for

some loop η in X based at the point x0. It fol-

lows from the Path Lifting Theorem for cov-

ering maps (Theorem 4.5) that there exists

a path α: [0,1]→ X̃ in X̃ for which α(0) = w0

and p ◦ α = η. Let w = α(1). Then

p#(π1(X̃, w)) = [η]−1H0[η] = H,

as required.
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The Brouwer Fixed Point Theo-

rem in Two Dimensions.

Theorem 6.9 Let f :D → D be a continuous

map which maps the closed disk D into itself.

Then f(x0) = x0 for some x0 ∈ D.

Proof.

Let ∂D denote the boundary circle of D. The

inclusion map i: ∂D ↪→ D induces a corre-

sponding homomorphism

i#:π1(∂D,b)→ π1(D,b)

of fundamental groups for any b ∈ ∂D.
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Suppose that it were the case that the map f

has no fixed point in D. Then one could de-
fine a continuous map r:D → ∂D as follows:
for each x ∈ D, let r(x) be the point on the
boundary ∂D of D obtained by continuing the
line segment joining f(x) to x beyond x until
it intersects ∂D at the point r(x). Note that
r|∂D is the identity map of ∂D.

Let r#:π1(D,b) → π1(∂D,b) be the homo-
morphism of fundamental groups induced by
r:D → ∂D. Now

(r ◦ i)#:π1(∂D,b)→ π1(∂D,b)

is the identity isomorphism of π1(∂D,b), since
r ◦ i: ∂D → ∂D is the identity map. But
it follows directly from the definition of in-
duced homomorphisms that (r◦i)# = r#◦i#.
Therefore i#:π1(∂D,b) → π1(D,b) is injec-
tive, and r#:π1(D,b) → π1(∂D,b) is surjec-
tive. But this is impossible, since π1(∂D,b) ∼=
Z (Theorem 6.1) and π1(D,b) is the triv-
ial group. This contradiction shows that the
continuous map f :D → D must have at least
one fixed point.

204



Free Discontinuous Group Ac-

tions on Topological Spaces.

Discontinuous Group Actions.

Definition.

Let G be a group, and let X be a set. The

group G is said to act on the set X (on the

left) if each element g of G determines a

corresponding function θg:X → X from the

set X to itself, where

(i) θgh = θg ◦ θh for all g, h ∈ G;

(ii) the function θe determined by the iden-

tity element e of G is the identity function

of X.
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Let G be a group acting on a set X. Given

any element x of X, the orbit [x]G of x (un-

der the group action) is defined to be the

subset {θg(x) : g ∈ G} of X, and the sta-

bilizer of x is defined to the the subgroup

{g ∈ G : θg(x) = x} of the group G. Thus

the orbit of an element x of X is the set

consisting of all points of X to which x gets

mapped under the action of elements of the

group G. The stabilizer of x is the subgroup

of G consisting of all elements of this group

that fix the point x. The group G is said to

act freely on X if θg(x) 6= x for all x ∈ X and

g ∈ G satisfying g 6= e. Thus the group G

acts freely on X if and only if the stabilizer

of every element of X is the trivial subgroup

of G.

Let e be the identity element of G. Then

x = θe(x) for all x ∈ X, and therefore x ∈ [x]G
for all x ∈ X, where [x]G = {θg(x) : g ∈ G}.
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Let x and y be elements of G for which

[x]G ∩ [y]G

is non-empty, and let z ∈ [x]G ∩ [y]G. Then

there exist elements h and k of G such that

z = θh(x) = θk(y).

Then

θg(z) = θgh(x) = θgk(y),

θg(x) = θgh−1(z)

and

θg(y) = θgk−1(z)

for all g ∈ G, and therefore

[x]G = [z]G = [y]G.

It follows from this that the group action par-

titions the set X into orbits, so that each

element of X determines an orbit which is

the unique orbit for the action of G on X to

which it belongs. We denote by X/G the set

of orbits for the action of G on X.
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Now suppose that the group G acts on a

topological space X. Then there is a surjec-

tive function q:X → X/G, where q(x) = [x]G
for all x ∈ X. This surjective function induces

a quotient topology on the set of orbits: a

subset U of X/G is open in this quotient

topology if and only if q−1(U) is an open set

in X (see Lemma 3.16). We define the orbit

space X/G for the action of G on X to be

the topological space whose underlying set is

the set of orbits for the action of G on X, the

topology on X/G being the quotient topology

induced by the function q:X → X/G. This

function q:X → X/G is then an identification

map: we shall refer to it as the quotient map

from X to X/G.

We shall be concerned here with situations in

which a group action on a topological space

gives rise to a covering map. The relevant

group actions are those where the group acts

freely and properly discontinuously on the

topological space.
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Definition.

Let G be a group with identity element e, and

let X be a topological space. The group G

is said to act freely and properly discontinu-

ously on X if each element g of G determines

a corresponding continuous map θg:X → X,

where the following conditions are satisfied:

(i) θgh = θg ◦ θh for all g, h ∈ G;

(ii) the continuous map θe determined by the

identity element e of G is the identity map

of X;

(iii) given any point x of X, there exists an

open set U in X such that x ∈ U and

θg(U)∩U = ∅ for all g ∈ G satisfying g 6= e.
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Let G be a group which acts freely and prop-
erly discontinuously on a topological space X.
Given any element g of G, the corresponding
continuous function θg:X → X determined
by X is a homeomorphism. Indeed it fol-
lows from conditions (i) and (ii) in the above
definition that θg−1 ◦ θg and θg ◦ θg−1 are both
equal to the identity map of X, and therefore
θg:X → X is a homeomorphism with inverse
θg−1:X → X.

Remark.

The terminology ‘freely and properly discon-
tinuously’ is traditional, but is hardly ideal.
The adverb ‘freely’ refers to the requirement
that θg(x) 6= x for all x ∈ X and for all
g ∈ G satisfying g 6= e. The adverb ‘discon-
tinuously’ refers to the fact that, given any
point x of G, the elements of the orbit

{θg(x) : g ∈ G}

of x are separated; it does not signify that
the functions defining the action are in any
way discontinuous or badly-behaved.
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The adverb ‘properly’ refers to the fact that,

given any compact subset K of X, the num-

ber of elements of g for which K ∩ θg(K) 6= ∅
is finite. Moreover the definitions of prop-

erly discontinuous actions in textbooks and

in sources of reference are not always in agree-

ment: some say that an action of a group G

on a topological space X (where each group

element determines a corresponding homeo-

morphism of the topological space) is prop-

erly discontinuous if, given any x ∈ X, there

exists an open set U in X such that the num-

ber of elements g of the group for which

g(U) ∩ U 6= ∅ is finite; others say that the

action is properly discontinuous if it satisfies

the conditions given in the definition above

for a group acting freely and properly discon-

tinuously on the set. William Fulton, in his

textbook Algebraic topology: a first course

(Springer, 1995), introduced the term ‘evenly’

in place of ‘freely and properly discontinu-

ously’, but this change in terminology does

not appear to have been generally adopted.
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Proposition 7.1 Let G be a group acting

freely and properly discontinuously on a topo-

logical space X. Then the quotient map

q:X → X/G from X to the corresponding

orbit space X/G is a covering map.

Proof.

The quotient map q:X → X/G is surjective.

Let V be an open set in X. Then q−1(q(V )) is

the union
⋃
g∈G θg(V ) of the open sets θg(V )

as g ranges over the group G, since q−1(q(V ))

is the subset of X consisting of all elements

of X that belong to the orbit of some ele-

ment of V . But any union of open sets in

a topological space is an open set. We con-

clude therefore that if V is an open set in X

then q(V ) is an open set in X/G.
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Let x be a point of X. Then there exists

an open set U in X such that x ∈ U and

θg(U) ∩ U = ∅ for all g ∈ G satisfying g 6= e.

Now

q−1(q(U)) =
⋃
g∈G θg(U).

We claim that the sets θg(U) are disjoint. Let

g and h be elements of G. Suppose that

θg(U) ∩ θh(U) 6= ∅.

Then

θh−1(θg(U) ∩ θh(U)) 6= ∅.

But θh−1:X → X is a bijection, and therefore

θh−1(θg(U) ∩ θh(U))

= θh−1(θg(U)) ∩ θh−1(θh(U))

= θh−1g(U) ∩ U,

and therefore θh−1g(U) ∩ U 6= ∅. It follows

that h−1g = e, where e denotes the identity

element of G, and therefore g = h. Thus if g

and h are elements of g, and if g 6= h, then

θg(U) ∩ θh(U) = ∅.
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We conclude therefore that the preimage

q−1(q(U))

of q(U) is the disjoint union of the sets θg(U)
as g ranges over the group G. Moreover each
these sets θg(U) is an open set in X.

Now U ∩ [u]G = {u} for all u ∈ U , since

[u]G = {θg(u) : g ∈ G}

and U ∩ θg(U) = ∅ when g 6= e. Thus if u and
v are elements of U , and if q(u) = q(v) then
[u]G = [v]G and therefore u = v. It follows
that the restriction q|U :U → X/G of the quo-
tient map q to U is injective, and therefore
q maps U bijectively onto q(U). But q maps
open sets onto open sets, and any continuous
bijection that maps open sets onto open sets
is a homeomorphism. We conclude therefore
that the restriction of q:X → X/G to the
open set U maps U homeomorphically onto
q(U). Moreover, given any element g of G,
the quotient map q satisfies q = q ◦ θg−1, and
the homeomorphism θg−1 maps θg(U) home-
omorphically onto U .
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It follows that the quotient map q maps θg(U)

homeomorphically onto q(U) for all g ∈ U .

We conclude therefore that q(U) is an evenly

covered open set in X/G whose preimage

q−1(q(U)) is the disjoint union of the open

sets θg(U) as g ranges over the group G. It

follows that the quotient map q:X → X/G is

a covering map, as required.
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Theorem 7.2 Let G be a group acting freely

and properly discontinuously on a path-con-

nected topological space X, let q:X → X/G

be the quotient map from X to the orbit

space X/G, and let x0 be a point of X. Then

there exists a surjective homomorphism

λ:π1(X/G, q(x0))→ G

with the property that

γ̃(1) = θλ([γ])(x0)

for any loop γ in X/G based at q(x0), where

γ̃ denotes the unique path in X for which

γ̃(0) = x0 and q ◦ γ̃ = γ. The kernel of this

homomorphism is the subgroup

q#(π1(X,x0))

of π1(X/G, q(x0)).
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Proof.

Let γ: [0,1] → X/G be a loop in the orbit

space with γ(0) = γ(1) = q(x0). It follows

from the Path Lifting Theorem for cover-

ing maps (Theorem 4.5) that there exists a

unique path γ̃: [0,1]→ X for which γ̃(0) = x0

and q◦γ̃ = γ. Now γ̃(0) and γ̃(1) must belong

to the same orbit, since

q(γ̃(0)) = γ(0) = γ(1) = q(γ̃(1)).

Therefore there exists some element g of G

such that γ̃(1) = θg(x0). This element g is

uniquely determined, since the group G acts

freely on X. Moreover the value of g is de-

termined by the based homotopy class [γ] of

γ in π1(X/G, q(x0)). Indeed it follows from

Proposition 6.2 that if σ is a loop in X/G

based at q(x0), if σ̃ is the lift of σ starting

at x0 (so that q ◦ σ̃ = σ and σ̃(0) = x0),

and if [γ] = [σ] in π1(X/G, q(x0)) (so that

γ ' σ rel {0,1}), then γ̃(1) = σ̃(1).
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We conclude therefore that there exists a

well-defined function

λ:π1(X/G, q(x0))→ G,

which is characterized by the property that

γ̃(1) = θλ([γ])(x0) for any loop γ in X/G

based at q(x0), where γ̃ denotes the unique

path in X for which γ̃(0) = x0 and q ◦ γ̃ = γ.

Now let α: [0,1] → X/G and β: [0,1] → X/G

be loops in X/G based at x0, and let α̃: [0,1]→
X and β̃: [0,1] → X be the lifts of α and β

respectively starting at x0, so that q ◦ α̃ = α,

q ◦ β̃ = β and α̃(0) = β̃(0) = x0. Then

α̃(1) = θλ([α])(x0) and β̃(1) = θλ([β])(x0).

Then the path θλ([α]) ◦ β̃ is also a lift of the

loop β, and is the unique lift of β starting at

α̃(1).
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Let α.β be the concatenation of the loops α

and β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2;

β(2t− 1) if 1
2 ≤ t ≤ 1.

Then the unique lift of α.β to X starting at x0

is the path σ: [0,1]→ X, where

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2;

θλ([α])(β̃(2t− 1)) if 1
2 ≤ t ≤ 1.

It follows that

θλ([α][β])(x0) = θλ([α.β])(x0)

= σ(1)

= θλ([α])(β̃(1))

= θλ([α])(θλ([β])(x0))

= θλ([α])λ([β])(x0)

and therefore

λ([α][β]) = λ([α])λ([β]).

Therefore the function

λ:π1(X/G, q(x0))→ G

is a homomorphism.
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Let g ∈ G. Then there exists a path α in X

from x0 to θg(x0), since the space X is path-
connected. Then q◦α is a loop in X/G based
at q(x0), and g = λ([q ◦ α]). This shows that
the homomorphism λ is surjective.

Let γ: [0,1] → X/G be a loop in X/G based
at q(x0). Suppose that [γ] ∈ ker λ. Then

γ̃(1) = θe(x0) = x0,

and therefore γ̃ is a loop in X based at x0.
Moreover [γ] = q#[γ̃], and therefore

[γ] ∈ q#(π1(X,x0)).

On the other hand, if

[γ] ∈ q#(π1(X,x0))

then γ = q ◦ γ̃ for some loop γ̃ in X based at
x0 (see Proposition 6.4). But then

x0 = γ̃(1) = θλ([γ])(x0),

and therefore λ([γ]) = e, where e is the iden-
tity element of G. Thus

ker λ = q#(π1(X,x0)),

as required.
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Corollary 7.3 Let G be a group acting freely

and properly discontinuously on a path-con-

nected topological space X, let q:X → X/G

be the quotient map from X to the orbit

space X/G, and let x0 be a point of X. Then

q#(π1(X,x0)) is a normal subgroup of the

fundamental group π1(X/G, q(x0)) of the or-

bit space, and

π1(X/G, q(x0))

q#(π1(X,x0))
∼= G.

Proof.

The subgroup q#(π1(X,x0)) is the kernel of

the homomorphism

λ:π1(X/G, q(x0))→ G

described in the statement of Theorem 7.2.

It is therefore a normal subgroup of

π1(X/G, q(x0)),

since the kernel of any homomorphism is a

normal subgroup.
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The homomorphism λ is surjective, and the

image of any group homomorphism is iso-

morphism of the quotient of its domain by

its kernel. The result follows.

Corollary 7.4 Let G be a group acting freely

and properly discontinuously on a simply-con-

nected topological space X, let q:X → X/G

be the quotient map from X to the orbit

space X/G, and let x0 be a point of X. Then

π1(X/G, q(x0)) ∼= G.

Proof.

This is a special case of Corollary 7.3.
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Example.

The group Z of integers under addition acts

freely and properly discontinuously on the real

line R. Indeed each integer n determines

a corresponding homeomorphism θn:R → R,

where

θn(x) = x+ n

for all x ∈ R. Moreover

θm ◦ θn = θm+n

for all m,n ∈ Z, and θ0 is the identity map of

R. If U = (−1
2,

1
2) then θn(U) ∩ U = ∅ for all

non-zero integers n. The real line R is simply-

connected. It follows from Corollary 7.4 that

π1(R/Z, b) ∼= Z

for any point b of R/Z.
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Now the orbit space R/Z is homeomorphic to
a circle. Indeed let

q:R→ R/Z

be the quotient map. Then the surjective
function p:R→ S1 which sends t ∈ R to

(cos 2πt, sin 2πt)

induces a continuous map

h:R/Z→ S1

defined on the orbit space which satisfies

h ◦ q = p,

since the quotient map q is an identification
map. Moreover real numbers t1 and t2 satisfy
p(t1) = p(t2) if and only if q(t1) = q(t2). It
follows that the induced map

h:R/Z→ S1

is a bijection. This map also maps open sets
to open sets, for if W is any open set in the
orbit space R/Z then q−1(W ) is an open set
in R, and therefore p(q−1(W )) is an open set
in S1, since the covering map p:R→ S1 maps
open sets to open sets (Lemma 4.2).
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But

p(q−1(W )) = h(W )

for all open sets W in R/Z. Thus the contin-

uous bijection

h:R/Z→ S1

maps open sets to open sets, and is therefore

a homeomorphism. It follows from Corol-

lary 7.4 that π1(S1, b) ∼= Z for any point b

of the circle S1. This shows that Theo-

rem 6.1 concerning the fundamental group

of the circle can be obtained as a special case

of the more general result Corollary 7.4 con-

cerning fundamental groups of orbit spaces

obtained via discontinuous group actions on

simply connected topological spaces.
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Example.

The group Zn of ordered n-tuples of integers

under addition acts freely and properly dis-

continuously on Rn, where

θ(m1,m2,...,mn)(x1, x2, . . . , xn)

= (x1 +m1, x2 +m2, . . . , xn +mn)

for all

(m1,m2, . . . ,mn) ∈ Zn

and

(x1, x2, . . . , xn) ∈ Rn.

The orbit space Rn/Zn is an n-dimensional

torus, homeomorphic to the product of n

circles. It follows from Corollary 7.4 that

the fundamental group of this n-dimensional

torus is isomorphic to the group Zn.
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Example.

Let C2 be the cyclic group of order 2. Then

C2 = {e, a} where e is the identity element,

a 6= e, a2 = e. Then the group C2 acts

freely and properly discontinuously on the n-

dimensional sphere Sn for each non-negative

integer n. We represent Sn as the unit sphere

centred on the origin in Rn+1. The homeo-

morphism θe determined by the identity ele-

ment e of C2 is the identity map of Sn; the

homeomorphism θa determined by the ele-

ment a of C2 is the antipodal map that sends

each point x of Sn to −x. The orbit space

Sn/C2 is homeomorphic to real projective n-

dimensional space RPn. The n-dimensional

sphere is simply-connected if n > 1. It fol-

lows from Corollary 7.4 that the fundamen-

tal group of RPn is isomorphic to the cyclic

group C2 when n > 1.
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Note that S0 is a pair of points, and RP0 is a
single point. Also S1 is a circle (which is not
simply-connected) and RP1 is homeomorphic
to a circle. Moreover, for any b ∈ S1, the
homomorphism

q#:π1(S1, b)→ π1(RP1, q(b))

corresponds to the homomorphism from Z
to Z that sends each integer n to 2n. This
is consistent with the conclusions of Corol-
lary 7.3 in this example.

Example.

Given a pair (m,n) of integers, let

θm,n:R2 → R2

be the homeomorphism of the plane R2 de-
fined such that

θm,n(x, y) = (x+m, (−1)my + n)

for all (x, y) ∈ R2. Let (m1, n1) and (m2, n2)
be ordered pairs of integers. Then

θm1,n1 ◦ θm2,n2 = θm1+m2,n1+(−1)m1n2
.
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Let Γ be the group whose elements are rep-

resented as ordered pairs of integers, where

the group operation # on Γ is defined such

that

(m1, n1)#(m2, n2) = (m1+m2, n1+(−1)m1n2)

for all (m1, n1), (m2, n2) ∈ Γ. The group Γ

is non-Abelian, and its identity element is

(0,0). This group acts on the plane R2:

given (m,n) ∈ Γ the corresponding symme-

try θm,n is a translation if m is even, and is

a glide reflection if m is odd. Given a pair

(m,n) of integers, the corresponding homeo-

morphism θm,n maps an open disk about the

point (x, y) onto an open disk of the same

radius about the point θ(m,n)(x, y). It fol-

lows that if D is the open disk of radius 1
2

about the point (x, y), and if D ∩ θm,n(D) is

non-empty, then (m,n) = (0,0). Thus the

group Γ maps freely and properly discontin-

uously on the plane R2.
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Now each orbit intersects the closed unit square
S, where S = [0,1] × [0,1]. If 0 < x < 1
and 0 < y < 1 then the orbit of (x, y) in-
tersects the square S in one point, namely
the point (x, y). If 0 < x < 1, then the orbit
of (x,0) intersects the square in two points
(x,0) and (x,1). If 0 < y < 1 then the or-
bit of (0, y) intersects the square S in the
two points (0, y) and (1,1 − y). (Note that
(1,1 − y) = θ1,1(0, y).) And the orbit of any
corner of the square S intersects the square
in the four corners of the square. The restric-
tion q|S of the quotient map q:R2 → R2/Γ to
the square S is a continuous surjection de-
fined on the square: one can readily verify
that it is an identification map. It follows
that the orbit space R2/Γ is homeomorphic
to the identification space obtained from the
closed square S by identifying together the
points (x,0) and (x,1) where the real num-
ber x satisfies 0 < x < 1, identifying together
the points (0, y) and (1,1− y) where the real
number y satisfies 0 < y < 1, and identifying
together the four corners of the square.
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The identification space obtained in this fash-

ion is a closed non-orientable surface, first

described by Felix Klein in 1882, and now

known as the Klein bottle. Apparently the

surface was initially referred to as the Klein-

sche Fläche (Klein’s Surface), but this name

was incorrectly translated into English, and,

as a result the surface is now referred to as

the Klein Bottle (Kleinsche Flasche).

The plane R2 is simply-connected. It fol-

lows from Corollary 7.4 that the fundamental

group of the Klein bottle is isomorphic to the

group Γ defined above.
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