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1. (a) [Bookwork.] If I = {0} then we can take f = 0. Otherwise choose
f ∈ I such that f 6= 0 and the degree of f does not exceed the
degree of any non-zero polynomial in I. Then, for each h ∈ I,
there exist polynomials q and r in K[x] such that h = fq + r and
either r = 0 or else deg r < deg f . But r ∈ I, since r = h − fq
and h and f both belong to I. The choice of f then ensures that
r = 0 and h = qf . Thus I = (f).

(b) [Bookwork.] Let I be the ideal in K[x] generated by f1, f2, . . . , fk.
It follows that the ideal I is generated by some polynomial d.
Then d divides all of f1, f2, . . . , fk and is therefore a constant
polynomial, since these polynomials are coprime. It follows that
I = K[x]. But the ideal I of K[x] generated by f1, f2, . . . , fk co-
incides with the subset of K[x] consisting of all polynomials that
may be represented as finite sums of the form

f1(x)g1(x) + f2(x)g2(x) + · · ·+ fk(x)gk(x)

for some polynomials g1, g2, . . . , gk. It follows that the constant
polynomial with value 1K may be expressed as a sum of this form,
as required.

(c) [Bookwork.] Suppose that f(x) = g(x)h(x), where g and h are
polynomials with integer coefficients. Let

g(x) = b0 + b1x+ b2x
2 + · · ·+ brx

r

and
h(x) = c0 + c1x+ c2x

2 + · · ·+ csx
s.

Then a0 = b0c0. Now a0 is divisible by p but is not divisible by p2.
Therefore exactly one of the coefficients b0 and c0 is divisible by
p. Suppose that p divides b0 but does not divide c0. Now p does
not divide all the coefficients of g(x), since it does not divide all
the coefficients of f(x). Let j be the smallest value of i for which
p does not divide bi. Then p divides aj − bjc0, since

aj − bjc0 =

j−1∑
i=0

bicj−i

and bi is divisible by p when i < j. But bjc0 is not divisible by p,
since p is prime and neither bj nor c0 is divisible by p. Therefore
aj is not divisible by p, and hence j = n and deg g ≥ n = deg f .
Thus deg g = deg f and deg h = 0. Thus the polynomial f does
not factor as a product of polynomials of lower degree with integer
coefficients.
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(d) [Not bookwork.] It follows from Eisenstein’c Criterion for irre-
ducibility that the polynomial sx2−p does not factor as a product
of polynomials of lower degree with integer coefficients (see (c)),
and is thus irreducible over the field Q[x] of rational numbers. If√
q were a rational number then this polynomial would factor over

Q as s(x+
√
q)(x−√q). Therefore

√
q must be irrational.
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2. (a) [Definitions.] A field extension L:K consists of two fields K and
L, where K is a subfield of L. This field extension is finite if L is
a finite-dimensional vector space over the subfield K. The degree
of a finite field extension [L:K] is the dimension of L as a vector
sapce over K. A field extension L:K is simple if there exists α ∈ L
such that L = K(α) (so that there is no proper subfield of L that
contains the set K ∪ {α}).

(b) [Bookwork.] Let z, w ∈ K[α]. Then there exist polynomials f and
g with coefficients in K such that z = f(α) and w = g(α). Then
z + w = (f + g)(α), z − w = (f − g)(α) and zw = (fg)(α). Thus
z + w ∈ K[α], z − w ∈ K[α] and zw ∈ K[α] for all z, w ∈ K[α].
Also K ⊂ K[α], because each element of K is the value, at α,
of the corresponding constant polynomial. Thus K[α] is a unital
ring. It is also commutative. It only remains to verify that the
inverse of every non-zero element of K[α] belongs to this ring.

Let z be a non-zero element of K[α]. Then z = f(α) for some
polynomial f with coefficients in K. Let mα denote the minimum
polynomial of α. Then f is not divisible by mα (because z 6= 0
and mα(α) = 0). Moreover mα is an irreducible polynomial. It
follows that the polynomials f and mα must be coprime, and
therefore there exist polynomials g, h ∈ K[X] such that f(x)g(x)+
mα(x)h(x) = 1K , where 1K denotes the multiplicative identity
element of the field K. But then

1K = f(α)g(α) +mα(α)h(α) = f(α)g(α),

because mα(α) = 0. This shows that z−1 = g(α). We conclude
that z−1 ∈ K[α] for all non-zero elements z of K[α]. It follows
that K[α] is a field, and is thus a subfield of L, as required.

(c) [Bookwork.] Let mα denote the minimum polynomial of α over
K, and let n = degmα. Now K[α] is a subfield of K(α), where

K[α] = {f(α) : f ∈ K[x]}.

But K(α) has no proper subfield that contains K∪{α}. Therefore
K[α] = K(α), and thus, given any element z of K(α), there exists
some polynomial h with coefficients in K such that z = h(α). It
then follows from a standard result that there exist polynomials q
and f with coefficients in K such that h = qmα + f , where either
f = 0 or deg f < n (where n = degmα). But then

z = h(α) = q(α)mα(α) + f(α) = f(α),
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because α is a root of its minimum polynomial mα. We have
thus shown that every element of K(α) can be represented in the
form f(α), where f is a polynomial with coefficients in K, and
either f = 0 or else deg f < n. This polynomial f is uniquely
determined, for if f(α) = g(α), where f and g are polynomials of
degree less than n, then mα divides f−g, and therefore f−g = 0.
We conclude from this that, given any element z of K(α), there
exist uniquely determined elements c0, c1, . . . , cn−1 of K such that

z =
n−1∑
j=0

cjα
j. This shows that 1K , α, . . . , α

n−1 is a basis for K(α)

as a vector space over K, where n = degmα. Thus the extension
K(α):K is finite, and [K(α):K] = degmα, as required.

8



3. (a) [Definitions.] Let L:K be a field extension, and let f ∈ K[x] be a
polynomial with coefficients in K. The polynomial f splits over
L if there exist elements α1, α2, . . . , αd ∈ L and c ∈ K such that

f(x) = c(x− α1)(x− α2) · · · (x− αd).

The field L is said to be a splitting field for f overK if the following
conditions are satisfied:—

• the polynomial f splits over L;

• the polynomial f does not split over any proper subfield of L
that contains the field K.

(b) [Bookwork.] The Binomial Theorem tells us that (x + y)p =
p∑
j=0

(
p

j

)
xjyp−j, where

(
p

0

)
= 1 and

(
p

j

)
=
p(p− 1) · · · (p− j + 1)

j!

for j = 1, 2, . . . , p. The denominator of each binomial coefficient
must divide the numerator, since this coefficient is an integer.
Now the characteristic p of K is a prime number. Moreover if
0 < j < p then p is a factor of the numerator but is not a factor
of the denominator. It follows from the Fundamental Theorem of

Arithmetic that p divides

(
p

j

)
for all j satisfying 0 < j < p. But

px = 0 for all x ∈ K, since charK = p. Therefore (x+y)p = xp+yp

for all x, y ∈ K.

(c) [Bookwork.] Suppose that K has q elements, where q = pn. If
α ∈ K \ {0} then αq−1 = 1, since the set of non-zero elements
of K is a group of order q − 1 with respect to multiplication. It
follows that αq = α for all α ∈ K. Thus all elements of K are
roots of the polynomial xq − x. This polynomial must therefore
split over K, since its degree is q and K has q elements. Moreover
the polynomial cannot split over any proper subfield of K. Thus
K is a splitting field for this polynomial.

Conversely suppose that K is a splitting field for the polynomial f
over Fp, where f(x) = xq−x and q = pn. Let σ(α) = αq for all α ∈
K. Then σ:K → K is a monomorphism, being the composition
of n successive applications of the Frobenius monomorphism of K.
Moreover an element α of K is a root of f if and only if σ(α) = α.
It follows from this that the roots of f constitute a subfield of K.
This subfield is the whole of K, since K is a splitting field. Thus K
consists of the roots of f . Now q is divisible by the characteristic p
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of Fp, and therefore

Df(x) = q.1Kx
q−1 − 1K = −1K ,

where 1K denotes the identity element of the field K. It follows
from a standard result that the roots of f are distinct. Therefore
f has q roots, and thus K has q elements, as required.
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4. [Not bookwork — a similar problem was examined in the year 2000.]

(a) The roots of the polynomial x3−5 are ξ, ωξ, and ω2ξ, and therefore
the polynomial x3 − 5 splits over L, as

(x− ξ)(x− ωξ)(x− ω2ξ)

If the polynomial splits over any subfield of L, that subfield would
be an extension field of Q and would contain ξ and ωξ, and thus
would also contain ω, since ω = (ωξ)/ξ. The subfield would there-
fore be the whole of L. Thus L is a splitting field for x3 − 5 over
Q.

(b) The polynomial x3 − 5 is irreducible over Q, by Eisenstein’s cri-
terion. Therefore [Q(ξ):Q] = 3. Also ω is a root of the irre-
ducible polynomial x2 + x + 1 and therefore [Q(ω):Q] = 2. It
follows that [L:Q] is divisible by 2 and 3, and thus by 6. But
[Q(ξ, ω):Q(ξ)] = 1 or 2. It follows from the above and from the
Tower Law that [L:Q] = 6, [L:Q(ω)] = 3, [L:Q(ξ)] = 2. Using a
standard result, we see that x3− 5 is the minimum polynomial of
ξ over Q(ω), and x2 +x+ 1 is the minumum polynomial of ω over
Q(ξ). It now follows from a standard theorem that there exists
an automorphism σ of L which fixes Q(ω) and maps the root ξ
of x3 − 5 to the root ωξ of the same polynomial. Similarly there
exists an automorphism τ of L that fixes Q(ξ) and sends the root
ω of x2 + x+ 1 to the other root ω2 of this polynomial.

(c)

σ2(ξ) = σ(ωξ) = ωσ(ξ) = ω2ξ,

σ2(ω) = ω,

σ3(ξ) = σ(ω2ξ) = ω2σ(ξ) = ω3ξ = ξ,

σ3(ω) = ω

τ 2(ξ) = ξ

τ 2(ω) = τ(ω2) = ω4 = ω,

στ(ξ) = σ(ξ) = ωξ,

στ(ω) = σ(ω2) = ω2,

σ2τ(ξ) = σ(ωξ) = ω2ξ,

σ2τ(ω) = σ(ω2) = ω2.
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(d)
τστ(ξ) = τ(ωξ) = ω2ξ = σ2(ξ),

τστ(ω) = τ(ω2) = ω = σ2(ω).

Thus the fixed field of σ−2τστ contains Q and the elements ξ and
ω, and is thus the whole of L. Thus τστ = σ2.

(e) Γ(L:Q) = [L:K] = 6, by the Galois correspondence. Alterna-
tively note that ι, σ, σ2, τ, στ, σ2τ are distinct, and the set of these
elements is closed under composition and is thus a group. All
possibilities for the images of ξ and ω are obtained by elements of
this set, and thus this group is the whole Galois group.
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5. (a) [From course notes.] Let R be a unital commutative ring. A set
M is said to be a module over R (or R-module) if

(i) given any x, y ∈M and r ∈ R, there are well-defined elements
x+ y and rx of M ,

(ii) M is an Abelian group with respect to the operation + of
addition,

(iii) the identities

r(x+ y) = rx+ ry, (r + s)x = rx+ sx,

(rs)x = r(sx), 1x = x

are satisfied for all x, y ∈M and r, s ∈ R.

(b) [From course notes.] Suppose that M satisfies the Ascending
Chain Condition. Let C be a non-empty collection of submod-
ules of M . Choose L1 ∈ C. If C were to contain no maximal
element then we could choose, by induction on n, an ascending
chain L1 ⊂ L2 ⊂ L3 ⊂ · · · of submodules belonging to C such that
Ln 6= Ln+1 for all n, which would contradict the Ascending Chain
Condition. Thus M must satisfy the Maximal Condition.

Next suppose that M satisfies the Maximal Condition. Let L be
an submodule of M , and let C be the collection of all finitely-
generated submodules of M that are contained in L. Now the
zero submodule {0} belongs to C, hence C contains a maximal
element J , and J is generated by some finite subset {a1, a2, . . . , ak}
of M . Let x ∈ L, and let K be the submodule generated by
{x, a1, a2, . . . , ak}. Then K ∈ C, and J ⊂ K. It follows from the
maximality of J that J = K, and thus x ∈ J . Therefore J = L,
and thus L is finitely-generated. Thus M must satisfy the Finite
Basis Condition.

Finally suppose that M satisfies the Finite Basis Condition. Let
L1 ⊂ L2 ⊂ L3 ⊂ · · · be an ascending chain of submodules of

M , and let L be the union
+∞⋃
n=1

Ln of the submodules Ln. Then

L is itself an submodule of M . Indeed if a and b are elements
of L then a and b both belong to Ln for some sufficiently large
n, and hence a + b, −a and ra belong to Ln, and thus to L,
for all r ∈ M . But the submodule L is finitely-generated. Let
{a1, a2, . . . , ak} be a generating set of L. Choose N large enough
to ensure that ai ∈ LN for i = 1, 2, . . . , k. Then L ⊂ LN , and
hence LN = Ln = L for all n ≥ N . Thus M must satisfy the
Ascending Chain Condition, as required.
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(c) [Not bookwork — not in course notes.] Let L be a submodule of
N , and let K = ϕ−1(L). Now every submodule of M is finitely-
generated, because M is Noetherian. Therefore K is a finitely-
generated submodule of M . Let g1, g2, . . . , gm be a generating set
for K. Then ϕ(g1), ϕ(g2), . . . , ϕ(gm) is a generating set for L.

14



6. (a) [Definitions.] Let M be a module over an integral domain R. The
module M is torsion-free if rm 6= 0M for all r ∈ R and m ∈ M
satisfying r 6= 0R and m 6= 0M (where 0R and 0M denote the zero
elements ofR andM respectively). The moduleM is a free module
of finite rank if there exists a finite set b1, b2, . . . , bk over elements
of M that is a free basis of M , so that, given any element m ∈M ,
there exist uniquely-determined elements r1, r2, . . . , rk of R such
that

m = r1b1 + r2b2 + · · ·+ rkbk.

The integral domain R is a principal ideal domain if, given any
ideal of R, there exists some element of R that generates the ideal.

(b) [Bookwork.] It follows from a standard result stated on the ex-
amination paper that if M is generated by a finite set with k el-
ements, then no linearly independent subset of M can have more
than k elements. Therefore there exists a linearly independent
subset of M which has at least as many elements as any other
linearly independent subset of M . Let the elements of this sub-
set be b1, b2, . . . , bp, where bi 6= bj whenever i 6= j, and let F be
the submodule of M generated by b1, b2, . . . , bp. The linear inde-
pendence of b1, b2, . . . , bp ensures that every element of F may be
represented uniquely as a linear combination of b1, b2, . . . , bp. It
follows that F is a free module over R with basis b1, b2, . . . , bp.

Let m ∈ M . The choice of b1, b2, . . . , bp so as to maximize the
number of members in a list of linearly-independent elements of M
ensures that the elements b1, b2, . . . , bp,m are linearly dependent.
Therefore there exist elements s1, s2, . . . , sp and r of R, not all
zero, such that

s1b1 + s2b2 + · · ·+ spbp − rm = 0M

(where 0M denotes the zero element of M). If it were the case that
r = 0R, where 0R denotes the zero element of R, then the elements
b1, b2, . . . , bp would be linearly dependent. The fact that these
elements are chosen to be linearly independent therefore ensures
that r 6= 0R. It follows from this that, given any element m of M ,
there exists a non-zero element r of R such that rm ∈ F . Then
r(m+F ) = F in the quotient module M/F . We have thus shown
that the quotient module M/F is a torsion module. It is also
finitely-generated, since M is finitely generated. It follows from a
standard result that there exists some non-zero element t of the
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integral domain R such that t(m + F ) = F for all m ∈ M . Then
tm ∈ F for all m ∈M .

Let ϕ:M → F be the function defined such that ϕ(m) = tm
for all m ∈ M . Then ϕ is a homomorphism of R-modules, and
its image is a submodule of F . Now the requirement that the
module M be torsion-free ensures that tm 6= 0M whenever m 6=
0M . Therefore ϕ:M → F is injective. It follows that ϕ(M) ∼= M .
Now R is a principal ideal domain, and any submodule of a free
module of finite rank over a principal ideal domain is itself a free
module of finite rank. Therefore ϕ(M) is a free module. But this
free module is isomorphic to M . Therefore the finitely-generated
torsion-free module M must itself be a free module of finite rank,
as required.
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7. The result is immediate if s = 1. Suppose that s > 1. Let vi =
∏
j 6=i

p
kj
j

for i = 1, 2, . . . , s (so that vi is the product of the factors p
kj
j of t for

j 6= i). Then, for each integer i between 1 and s, the elements pi and
vi of R are coprime, and t = vip

ki
i . Moreover any prime element of

R that that is a common divisor v1, v2, . . . , vs must be an associate
of one the prime elements p1, p2, . . . , . . . , ps of R. But pi does not
divide vi for i = 1, 2, . . . , s. It follows that no prime element of R is a
common divisor of v1, v2, . . . , vs, and therefore any common divisor of
these elements of R must be a unit of R (i.e., the elements v1, v2, . . . , vs
of R are coprime). It follows from a standard result that there exist
elements w1, w2, . . . , ws of R such that

v1w1 + v2w2 + · · ·+ vsws = 1R,

where 1R denotes the multiplicative identity element of R.

Let qi = viwi for i = 1, 2, . . . , s. Then q1 + q2 + · · ·+ qs, and therefore

m =
s∑
i=1

qim

for all m ∈ M . Now t is the product of the elements pkii for i =

1, 2, . . . , s. Also p
kj
j divides vi and therefore divides qi whenever j 6= i.

It follows that t divides pkii qi for i = 1, 2, . . . , t, and therefore pkii qim =
0M for all m ∈M . Thus qim ∈Mi for i = 1, 2, . . . , s, where

Mi = {m ∈M : pkii m = 0M .}

It follows that the homomorphism

ϕ:M1 ⊕M2 ⊕ · · · ⊕Ms →M

from M1⊕M2⊕· · ·⊕Ms to M that sends (m1,m2, . . . ,ms) to m1+m2+
· · · + ms is surjective. Let (m1,m2, . . . ,ms) ∈ kerϕ. Then pkii mi = 0
for i = 1, 2, . . . , s, and

m1 +m2 + · · ·+ms = 0M

Now vimj = 0 when i 6= j because p
kj
j divides vi. It follows that

qimj = 0 whenever i 6= j, and therefore

mj = q1mj + q2mj + · · ·+ qsmj = qjmj
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for j = 1, 2, . . . , s. But then

0M = qi(m1 +m2 + · · ·+ms) = qimi = mi.

Thus kerϕ = {(0M , 0M , . . . , 0m)}. We conclude that the homomor-
phism

ϕ:M1 ⊕M2 ⊕ · · · ⊕Ms →M

is thus both injective and surjective, and is thus an isomorphism.

Moreover Mi is finitely-generated for i = 1, 2, . . . , s. Indeed Mi =
{qim : m ∈ M}. Thus if the elements f1, f2, . . . , fn generate M then
the elements qif1, qif2, . . . , qifn generate Mi. The result follows.
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8. (a) [Definition.] A complex number θ is an algebraic integer if it is a
root of a monic polynomial with integer coefficients.

(b) [Examples. Not intended as bookwork - similar if not identical
examples may be discussed in class.] The algebraic numbers

√
7,

1√
2
, −1

2
+
√
3
2
i and 1

2
+ 1

2
i are roots of the following polynomials:

(i) x2− 7; (ii) x2− 1
2
; (iii) x2 + x+ 1; (iv) x2− x+ 1

2
. These poly-

nomials have rational coefficients and are irreducible over the field
Q of rational numbers. These polynomials are thus the minimum
polynomials of the respective algebraic numbers. It follows from
Gauss’ Lemma that an algebraic number is an algebraic integer if
and only if its minimum polynomial has integer coefficients. On
that basis (i) and (iii) are algebraic numbers, and (ii) and (iv) are
not.

(c) [Based on lecture notes.] The ring R is a torsion-free Abelian
group, because it is a contained in the field of complex num-
bers. Therefore R is both finitely-generated and torsion-free, and
is therefore a free Abelian group of finite rank. It follows that
there exist elements b1, b2, . . . , bm of R such that every element z
of R can be represented in the form

z = n1b1 + n2b2 + · · ·+ nmbm

for some uniquely-determined (rational) integers n1, n2, . . . , nm.
Let θ ∈ R. Then there exist (rational) integers Mjk(θ) for 1 ≤
j, k ≤ m such that

θbk =
n∑
j=1

Mjk(θ)bj

for k = 1, 2, . . . ,m. It follows that

n∑
j=1

(θIjk −Mjk(θ)) = 0,

where

Ijk =

{
1 if j = k;
0 if j 6= k.

Let θI−M(θ) be the n×n matrix with integer coefficients whose
entry in the jth row and kth column is θIjk − Mjk(θ), and let
b be the row-vector of complex numbers defined such that b =
(b1, b2, . . . , bk). Then b(θI −M(θ)) = 0. It follows that the trans-
pose of b is an eigenvector of the transpose of the matrix θI−M(θ),
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and therefore θ is an eigenvalue of the matrix M(θ). But then
det(θI −M(θ)) = 0, since every eigenvalue of a square matrix is
a root of its characteristic equation. Moreover

det(θI −M(θ)) = θn + an−1θ
n−1 + · · ·+ a1θ + a0,

and thus fθ(θ) = 0, where

fθ(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

Moreover each of the coefficients a0, a1, . . . , an−1 can be expressed
as the sum of the determinants of matrices obtained from M by
omitting appropriate rows and columns, multiplied by ±1. It fol-
lows that each of the coefficients a0, a1, . . . , an−1 is a (rational)
integer. Thus each element θ of R is the root of a monic polyno-
mial fθ with (rational) integer coefficients, and is thus an algebraic
integer, as required.
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