40. Introduction to Harmonic Analysis

40.1. Basic Trigonometrical Identities and Integrals

The following trigonometric identities satisfied by the sine and cosine functions are basic and well-known:

\[
\begin{align*}
\cos^2 A + \sin^2 A &= 1, \\
\cos(A + B) &= \cos A \cos B - \sin A \sin B, \\
\cos 2A &= \cos^2 A - \sin^2 A, \\
\sin(A + B) &= \sin A \cos B + \cos A \sin B, \\
\sin 2A &= 2 \sin A \cos A, \\
\cos^2 A &= \frac{1}{2} (1 + \cos 2A), \\
\sin^2 A &= \frac{1}{2} (1 - \cos 2A), \\
2 \cos A \cos B &= \cos(A + B) + \cos(A - B), \\
2 \sin A \cos B &= \sin(A + B) + \sin(A - B), \\
2 \sin A \sin B &= \cos(A - B) - \cos(A + B),
\end{align*}
\]
On differentiating the sine and cosine function, we find that

\[
\frac{d}{dx} \sin qx = q \cos qx \\
\frac{d}{dx} \cos qx = -q \sin qx.
\]

for all real numbers \(q\).

It follows that

\[
\int \sin qx = -\frac{1}{q} \cos qx + C \\
\int \cos qx = \frac{1}{q} \sin qx + C,
\]

for all non-zero real numbers \(q\), where \(C\) is a constant of integration.
Proposition 40.1

Let j and k be positive integers. Then

\[
\begin{align*}
\int_0^{2\pi} \cos jx \, dx &= 0, \\
\int_0^{2\pi} \sin jx \, dx &= 0, \\
\int_0^{2\pi} \cos jx \cos kx \, dx &= \begin{cases}
\pi & \text{if } j = k, \\
0 & \text{if } j \neq k,
\end{cases} \\
\int_0^{2\pi} \sin jx \sin kx \, dx &= \begin{cases}
\pi & \text{if } j = k, \\
0 & \text{if } j \neq k,
\end{cases} \\
\int_0^{2\pi} \sin jx \cos kx \, dx &= 0.
\end{align*}
\]
Proof

First we note that

\[
\int_0^{2\pi} \cos jx \, dx = \left[\frac{1}{j} \sin jx \right]_0^{2\pi} = \frac{1}{j} (\sin 2j\pi - 0) = 0
\]

and

\[
\int_0^{2\pi} \sin jx \, dx = \left[-\frac{1}{j} \cos jx \right]_0^{2\pi} = -\frac{1}{j} (\cos 2j\pi - 1) = 0
\]

for all non-zero integers \(j \), since \(\cos 2j\pi = 1 \) and \(\sin 2j\pi = 0 \) for all integers \(j \).
Let j and k be positive integers. It follows from basic trigonometrical identities that

$$\int_0^{2\pi} \cos jx \cos kx \, dx = \frac{1}{2} \int_0^{2\pi} (\cos((j - k)x) + \cos((j + k)x)) \, dx.$$

and

$$\int_0^{2\pi} \sin jx \sin kx \, dx = \frac{1}{2} \int_0^{2\pi} (\cos((j - k)x) - \cos((j + k)x)) \, dx$$

But

$$\int_0^{2\pi} \cos((j + k)x) \, dx = 0$$

(since $j + k$ is a positive integer, and is thus non-zero).
Also
\[\int_{0}^{2\pi} \cos((j - k)x) \, dx = 0 \text{ if } j \neq k, \]
and
\[\int_{0}^{2\pi} \cos((j - k)x) \, dx = 2\pi \text{ if } j = k \]
(since \(\cos((j - k)x) = 1 \) when \(j = k \)). It follows that
\[\int_{0}^{2\pi} \cos jx \cos kx \, dx = \int_{0}^{2\pi} \sin jx \sin kx \, dx = \frac{1}{2} \int_{0}^{2\pi} \cos((j - k)x) \, dx \]
\[= \begin{cases} \pi & \text{if } j = k, \\ 0 & \text{if } j \neq k, \end{cases} \]
Also
\[\int_{0}^{2\pi} \sin jx \cos kx \, dx = \frac{1}{2} \int_{0}^{2\pi} (\sin((j + k)x) + \sin((j - k)x)) \, dx = 0 \]
for all positive integers \(m \) and \(n \). (Note that \(\sin((j - k)x) = 0 \) in the case when \(j = k \)).
40.2. Fourier Coefficients

We consider the theory of harmonic analysis, in which functions are approximated by sums of trigonometric functions. Let p and q be real numbers satisfying $p < q$. Let us denote by $I(p, q)$ the set whose elements are those real-valued functions on the interval

$$\{x \in \mathbb{R} : p \leq x \leq q\}$$

that are integrable and that have finitely many points of discontinuity in the interval.
We restrict attention to the case where $p = 0$ and $q = 2\pi$. Given $f, g \in \mathcal{I}(0, 2\pi)$, we define

$$(f, g) = \frac{1}{\pi} \int_{0}^{2\pi} f(x)g(x) \, dx$$

Note that

$$(f + h, g) = (f, g) + (h, g) \quad \text{and} \quad (f, g + h) = (f, g) + (f, h)$$

for all $f, g, h \in \mathcal{I}(0, 2\pi)$. Moreover $(f, g) = (g, f)$, and

$$(cf, g) = (f, cg) = c(f, g)$$

for all $f, g \in \mathcal{I}(0, 2\pi)$ and for all real numbers c. Also let

$$\|f\| = \sqrt{(f, f)} = \left(\frac{1}{\pi} \int_{0}^{2\pi} f(x)^2 \, dx\right)^{\frac{1}{2}}.$$
If \(f \in \mathcal{I}(0, 2\pi) \), and if \(\|f\| = 0 \) then either \(f(x) = 0 \) for all real numbers \(x \) satisfying \(0 \leq x \leq l \) or else the set of values of \(x \) for which \(f(x) \neq 0 \) is a finite set whose elements are points of discontinuity of the function \(f \). It follows that if \(f, g \in \mathcal{I}(0, 2\pi) \) and if \(\|f - g\| = 0 \) then either \(f(x) = g(x) \) for all real numbers \(x \) satisfying \(0 \leq x \leq l \) or else the set of values of \(x \) for which \(f(x) \neq g(x) \) is a finite set whose elements are points of discontinuity either of the function \(f \) or else of the function \(g \).

In general \(\|f - g\| \) can be regarded as a measure of the “closeness” of the functions \(f \) and \(g \). It is but one of many such measures of closeness in widespread use by mathematicians.
let $c_j(x) = \cos jx$ for all non-negative integers j, and let $s_j(x) = \sin jx$ for all positive integers j. Then $c_0(x) = 1$ for all x, and therefore

\[
(c_0, c_0) = \frac{1}{\pi} \int_0^{2\pi} (c_0(x))^2 \, dx = 2.
\]

Also if j is a positive integer then

\[
(c_0, c_j) = (c_j, c_0) = \frac{1}{\pi} \int_0^{2\pi} \cos jx \, dx = 0,
\]

\[
(c_0, s_j) = (s_j, c_0) = \frac{1}{\pi} \int_0^{2\pi} \sin jx \, dx = 0.
\]
Next let j and k be positive integers. It follows from Proposition 40.1 that

$$(c_j, c_k) = \frac{1}{\pi} \int_0^{2\pi} \cos jx \cos kx \, dx = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k, \end{cases}$$

$$(s_j, s_k) = \frac{1}{\pi} \int_0^{2\pi} \sin jx \sin kx \, dx = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k, \end{cases}$$

$$(s_j, c_k) = (c_j, s_k) = 0$$
Proposition 40.2

Let $f(x)$ be a real-valued function of the real variable x defined for $0 \leq x \leq 2\pi$. Suppose that there exist constants a_0, a_1, \ldots, a_N and b_1, b_2, \ldots, b_N such that

$$f(x) = \frac{1}{2} a_0 + \sum_{j=1}^{N} a_j \cos jx + \sum_{j=1}^{N} b_j \sin jx$$

for all x. Then

$$a_j = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos jx \, dx$$

for $j = 0, 1, \ldots, N$ and

$$b_j = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin jx \, dx$$

for $j = 1, 2, \ldots, N$.
Proof
The function f satisfies

$$f(x) = \frac{1}{2} a_0 c_0 + \sum_{k=1}^{N} a_k c_k(x) + \sum_{k=1}^{N} b_k s_k(x),$$

where the functions c_0, c_1, \ldots, c_N and s_1, s_2, \ldots, s_N are defined as described above. It follows that

$$(f(x), c_0) = \frac{1}{2} a_0 (c_0, c_0) + \sum_{k=1}^{N} a_j (c_k, c_0) + \sum_{k=1}^{N} b_k (s_k, c_0).$$

But $(c_k, c_0) = 0$ and $(s_k, c_0) = 0$ for all positive integers k. It follows that

$$(f(x), c_0) = \frac{1}{2} a_0 (c_0, c_0) = a_0.$$
Next let j be a positive integer. Then

$$(f(x), c_j) = \frac{1}{2} a_0(c_0, c_j) + \sum_{k=1}^{N} a_k(c_k, c_j) + \sum_{k=1}^{N} b_k(s_k, c_j).$$

But $(c_0, c_j) = 0$, $(s_k, c_j) = 0$ for all integers k, and $(c_k, c_j) = 0$ unless $j = k$. It follows that

$$(f(x), c_j) = a_j.$$

Similarly

$$(f(x), s_j) = \frac{1}{2} a_0(c_0, s_j) + \sum_{k=1}^{N} a_k(c_k, s_j) + \sum_{k=1}^{N} b_k(s_k, s_j) = b_j.$$

The result follows.
Now let $f(x)$ be an integrable function, defined for values of the real variable x satisfying $0 \leq x \leq 2\pi$, that is either continuous throughout its domain or else has at most finitely many points of discontinuity there. Let

$$p(x) = \frac{1}{2} a_0 + \sum_{k=1}^{N} a_k c_k(x) + \sum_{k=1}^{N} b_k s_k(x),$$

where a_0, a_1, \ldots, a_N and b_1, b_2, \ldots, b_N are the Fourier coefficients of f, determined so that $a_0 = \langle f, c_0 \rangle$, $a_k = \langle f, c_k \rangle$ and $b_k = \langle f, s_k \rangle$ for $k = 1, 2, \ldots, N$. Then

$$\langle f - p, c_0 \rangle = \langle f, c_0 \rangle - \frac{1}{2} a_0 (c_0, c_0) = \langle f, c_0 \rangle - a_0 = 0,$$
$$\langle f - p, c_j \rangle = \langle f, c_j \rangle - \langle p, c_j \rangle = \langle f, c_j \rangle - a_j = 0,$$
$$\langle f - p, s_j \rangle = \langle f, s_j \rangle - \langle p, s_j \rangle = \langle f, s_j \rangle - b_j = 0.$$
Let u_0, u_1, \ldots, u_N and v_1, \ldots, v_N be arbitrary real numbers, and let

$$q(x) = \frac{1}{2}u_0 + \sum_{k=1}^{N} u_k c_k(x) + \sum_{k=1}^{N} v_k s_k(x).$$

Then

$$(f - p, q) = \frac{1}{2}u_0(f - p, c_0) + \sum_{k=1}^{N} u_k (f - p, c_k) + \sum_{k=1}^{N} v_k (f - p, s_k) = 0,$$

and $(q, f - p) = (f - p, q) = 0$. It follows that

$$(f - p - q, f - p - q)$$

$$= (f - p, f - p) - (f - p, q) - (q, f - p) + (q, q)$$

$$= (f - p, f - p) + (q, q).$$
Thus

$$\|f - p - q\|^2 = \|f - p\|^2 + \|q\|^2.$$

Now, taking $\|f - p - q\|$ as a measure of the closeness of the function $p + q$ to the function f, we see that the function $p + q$ is closest to f with respect to this measure when $q = 0$.

Thus if we seek to approximate \(f \) by a function of the form

\[
p(x) = \frac{1}{2} a_0 + \sum_{j=1}^{N} a_j \cos jx + \sum_{j=1}^{N} b_j \sin jx,
\]

where coefficients \(a_0, a_1, \ldots, a_N \) and \(b_1, b_2, \ldots, b_N \) are to be determined to as to achieve a good fit, we see that the values of these coefficients that result in an approximating function that is closest to the function \(f \), where distance from \(f \) is measured by the quantity \(\| f - p \| \), precisely when the coefficients \(a_0, a_1, \ldots, a_N \) and \(b_1, b_2, \ldots, b_N \) are the Fourier coefficients of \(f \), defined such that

\[
a_j = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos jx \, dx
\]

for \(j = 0, 1, \ldots, N \) and

\[
b_j = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin jx \, dx
\]

for \(j = 1, 2, \ldots, N \).