38.2. The Scalar Product

Let \(\mathbf{u} \) and \(\mathbf{v} \) be vectors in three-dimensional space, represented in some Cartesian coordinate system by the ordered triples \((u_1, u_2, u_3)\) and \((v_1, v_2, v_3)\) respectively. The scalar product of the vectors \(\mathbf{u} \) and \(\mathbf{v} \) is defined to be the real number \(\mathbf{u} \cdot \mathbf{v} \) defined by the formula

\[
\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.
\]

In particular,

\[
\mathbf{u} \cdot \mathbf{u} = u_1^2 + u_2^2 + u_3^2 = |\mathbf{u}|^2,
\]

for any vector \(\mathbf{u} \), where \(|\mathbf{u}|\) denotes the length of the vector \(\mathbf{u} \).
Note that $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ for all vectors \mathbf{u} and \mathbf{v}. Also

$$(\mathbf{s}\mathbf{u} + \mathbf{t}\mathbf{v}) \cdot \mathbf{w} = \mathbf{s}\mathbf{u} \cdot \mathbf{w} + \mathbf{t}\mathbf{v} \cdot \mathbf{w},$$

$\mathbf{u} \cdot (\mathbf{s}\mathbf{v} + \mathbf{t}\mathbf{w}) = \mathbf{s}\mathbf{u} \cdot \mathbf{v} + \mathbf{t}\mathbf{u} \cdot \mathbf{w}$

for all vectors \mathbf{u}, \mathbf{v} and \mathbf{w} and real numbers s and t.
Proposition 38.1

Let \(\mathbf{u} \) and \(\mathbf{v} \) be non-zero vectors in three-dimensional space. Then their scalar product \(\mathbf{u} \cdot \mathbf{v} \) is given by the formula

\[
\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta,
\]

where \(\theta \) denotes the angle between the vectors \(\mathbf{u} \) and \(\mathbf{v} \).

Proof

Suppose first that the angle \(\theta \) between the vectors \(\mathbf{u} \) and \(\mathbf{v} \) is an acute angle, so that \(0 < \theta < \frac{1}{2} \pi \). Let us consider a triangle \(ABC \), where \(\overrightarrow{AB} = \mathbf{u} \) and \(\overrightarrow{BC} = \mathbf{v} \), and thus \(\overrightarrow{AC} = \mathbf{u} + \mathbf{v} \). Let \(ADC \) be the right-angled triangle constructed as depicted in the figure below, so that the line \(AD \) extends \(AB \) and the angle at \(D \) is a right angle.
Note:

\[AD = |u| + |v| \cos \theta, \]
\[CD = |v| \sin \theta, \]
\[|u + v|^2 = AC^2 = AD^2 + CD^2 \quad \text{(Pythagoras).} \]
Then the lengths of the line segments AB, BC, AC, BD and CD may be expressed in terms of the lengths $|u|$, $|v|$ and $|u + v|$ of the displacement vectors u, v and $u + v$ and the angle θ between the vectors u and v by means of the following equations:

$$AB = |u|, \quad BC = |v|, \quad AC = |u + v|,$$

$$BD = |v| \cos \theta \quad \text{and} \quad DC = |v| \sin \theta.$$

Then

$$AD = AB + BD = |u| + |v| \cos \theta.$$

The triangle ADC is a right-angled triangle with hypotenuse AC. It follows from Pythagoras’ Theorem that

$$|u + v|^2 = AC^2 = AD^2 + DC^2 = (|u| + |v| \cos \theta)^2 + |v| \sin^2 \theta$$

$$= |u|^2 + 2|u||v| \cos \theta + |v|^2 \cos^2 \theta + |v|^2 \sin^2 \theta$$

$$= |u|^2 + |v|^2 + 2|u||v| \cos \theta,$$

because $\cos^2 \theta + \sin^2 \theta = 1$.

Let $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$. Then

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3),$$

and therefore

$$|\mathbf{u} + \mathbf{v}|^2 = (u_1 + v_1)^2 + (u_2 + v_2)^2 + (u_3 + v_3)^2$$
$$= u_1^2 + 2u_1v_1 + v_1^2 + u_2^2 + 2u_2v_2 + v_2^2 + u_3^2 + 2u_3v_3 + v_3^2$$
$$= |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2(u_1v_1 + u_2v_2 + u_3v_3)$$
$$= |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2\mathbf{u} \cdot \mathbf{v}.$$

On comparing the expressions for $|\mathbf{u} + \mathbf{v}|^2$ given by the above equations, we see that $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ when $0 < \theta < \frac{1}{2} \pi$.
The identity \(\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta \) clearly holds when \(\theta = 0 \) and \(\theta = \pi \). Pythagoras’ Theorem ensures that it also holds when the angle \(\theta \) is a right angle (so that \(\theta = \frac{1}{2} \pi \)). Suppose that \(\frac{1}{2} \pi < \theta < \pi \), so that the angle \(\theta \) is obtuse. Then the angle between the vectors \(\mathbf{u} \) and \(-\mathbf{v} \) is acute, and is equal to \(\pi - \theta \). Moreover \(\cos(\pi - \theta) = -\cos \theta \) for all angles \(\theta \). It follows that

\[
\mathbf{u} \cdot \mathbf{v} = -\mathbf{u} \cdot (-\mathbf{v}) = -|\mathbf{u}| |\mathbf{v}| \cos(\pi - \theta) = |\mathbf{u}| |\mathbf{v}| \cos \theta
\]

when \(\frac{1}{2} \pi < \theta < \pi \). We have therefore verified that the identity \(\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta \) holds for all non-zero vectors \(\mathbf{u} \) and \(\mathbf{v} \), as required. \(\blacksquare \)
Corollary 38.1

Two non-zero vectors \(\mathbf{u} \) and \(\mathbf{v} \) in three-dimensional space are perpendicular if and only if \(\mathbf{u} \cdot \mathbf{v} = 0 \).

Proof
It follows directly from Proposition 38.1 that \(\mathbf{u} \cdot \mathbf{v} = 0 \) if and only if \(\cos \theta = 0 \), where \(\theta \) denotes the angle between the vectors \(\mathbf{u} \) and \(\mathbf{v} \). This is the case if and only if the vectors \(\mathbf{u} \) and \(\mathbf{v} \) are perpendicular.
Example
We can use the scalar product to calculate the angle θ between the vectors $(2, 2, 0)$ and $(0, 3, 3)$ in three-dimensional space. Let $\mathbf{u} = (2, 2, 0)$ and $\mathbf{v} = (0, 3, 3)$. Then $|\mathbf{u}|^2 = 2^2 + 2^2 = 8$ and $|\mathbf{v}|^2 = 3^2 + 3^2 = 18$. It follows that $(|\mathbf{u}| |\mathbf{v}|)^2 = 8 \times 18 = 144$, and thus $|\mathbf{u}| |\mathbf{v}| = 12$. Now $\mathbf{u} \cdot \mathbf{v} = 6$. It follows that

$$6 = |\mathbf{u}| |\mathbf{v}| \cos \theta = 12 \cos \theta.$$

Therefore $\cos \theta = \frac{1}{2}$, and thus $\theta = \frac{1}{3} \pi$.

Example
We can use the scalar product to find the distance between points on a sphere. Now the Cartesian coordinates of a point P on the unit sphere about the origin O in three-dimensional space may be expressed in terms of angles θ and φ as follows:

$$P = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta).$$

The angle θ is that between the displacement vector \overrightarrow{OP} and the vectical vector $(0, 0, 1)$. Thus the angle $\frac{1}{2} \pi - \theta$ represents the ‘latitude’ of the point P, when we regard the point $(0, 0, 1)$ as the ‘north pole’ of the sphere. The angle φ measures the ‘longitude’ of the point P.
Now let P_1 and P_2 be points on the unit sphere, where

$$P_1 = (\sin \theta_1 \cos \varphi_1, \sin \theta_1 \sin \varphi_1, \cos \theta_1),$$

$$P_2 = (\sin \theta_2 \cos \varphi_2, \sin \theta_2 \sin \varphi_2, \cos \theta_2).$$

We wish to find the angle ψ between the displacement vectors $\overrightarrow{OP_1}$ and $\overrightarrow{OP_2}$ of the points P_1 and P_2 from the origin. Now $|\overrightarrow{OP_1}| = 1$ and $|\overrightarrow{OP_2}| = 1$. On applying Proposition 38.1, we see that

$$\cos \psi = \overrightarrow{OP_1} \cdot \overrightarrow{OP_2}$$

$$= \sin \theta_1 \sin \theta_2 \cos \varphi_1 \cos \varphi_2 + \sin \theta_1 \sin \theta_2 \sin \varphi_1 \sin \varphi_2$$

$$+ \cos \theta_1 \cos \theta_2$$

$$= \sin \theta_1 \sin \theta_2 \left(\cos \varphi_1 \cos \varphi_2 + \sin \varphi_1 \sin \varphi_2\right) + \cos \theta_1 \cos \theta_2$$

$$= \sin \theta_1 \sin \theta_2 \cos(\varphi_1 - \varphi_2) + \cos \theta_1 \cos \theta_2.$$
Example
Let X be a plane in three-dimensional space, and let \mathbf{p} be a vector that is perpendicular to the plane X. Let O be the origin of a Cartesian coordinate system in three-dimensional space, and let \mathbf{v} and \mathbf{w} be the position vectors \overrightarrow{OV} and \overrightarrow{OW} of points V and W respectively lying in the plane X. Then the vector \mathbf{p} is perpendicular to the displacement vector \overrightarrow{VW}. Now $\overrightarrow{VW} = \mathbf{w} - \mathbf{v}$. It follows that

$$(\mathbf{w} - \mathbf{v}) \cdot \mathbf{p} = 0$$

(see Corollary 38.1), and therefore $\mathbf{v} \cdot \mathbf{p} = \mathbf{w} \cdot \mathbf{p}$. Identifying the points of the plane X with their position vectors \mathbf{r} with respect to the origin O of the Cartesian coordinate system, we find that it follows from this that there exists a real number k such that

$$X = \{ \mathbf{r} \in \mathbb{R}^3 : \mathbf{r} \cdot \mathbf{p} = k \}.$$
Let \(\mathbf{r} = (x, y, z) \) and \(\mathbf{p} = (a, b, c) \). The point \(\mathbf{r} \) belongs to the plane \(X \) if and only if \(\mathbf{r} \cdot \mathbf{p} = k \). It follows that

\[
X = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = k\}.
\]

Suppose that the vector \(\mathbf{r} \) is the position vector of an arbitrary point \(R \) of three-dimensional space. We wish to determine the distance from this point to the plane \(X \). Now the line through the point \(\mathbf{r} \) parallel to the vector \(\mathbf{p} \) cuts the plane \(X \) in a single point. Therefore there exists a unique real number \(t \) for which \(\mathbf{r} + tp \in X \). For this value of \(t \) the equation

\[(\mathbf{r} + tp) \cdot \mathbf{p} = k\]

is satisfied. Then

\[
\mathbf{r} \cdot \mathbf{p} = t|\mathbf{p}|^2 = k,
\]

and therefore

\[
t = \frac{1}{|\mathbf{p}|^2}(k - \mathbf{r} \cdot \mathbf{p}).
\]
Let \(\mathbf{w} = \mathbf{r} + t\mathbf{p} \), where \(t \) has the value determined above that ensures that \(\mathbf{w} \in X \). Let \(\mathbf{v} \) be an arbitrary point that lies on the plane \(X \). Then the displacement vector \(\mathbf{v} - \mathbf{w} \) from \(W \) to \(V \) is perpendicular to the vector \(\mathbf{p} \). Now

\[
\mathbf{v} - \mathbf{r} = t\mathbf{p} + (\mathbf{v} - \mathbf{w}).
\]

It follows, either directly from Pythagoras’ Theorem, or else from an equivalent calculation using scalar products (using the result of Corollary 38.1) that

\[
|\mathbf{v} - \mathbf{r}|^2 = t^2|\mathbf{p}|^2 + |\mathbf{v} - \mathbf{w}|^2.
\]

It follows that

\[
|\mathbf{v} - \mathbf{r}| \geq t|\mathbf{p}|
\]

and that

\[
|\mathbf{v} - \mathbf{r}| = t|\mathbf{p}| \iff \mathbf{v} = \mathbf{w}.
\]
Thus the point \(w \) is the closest point of the plane \(X \) to the point \(R \) with position vector \(r \). It follows that the distance \(d(r, X) \) from the point \(R \) to the plane \(X \) is the length \(|w - r| \) of the vector \(w - r \). Thus

\[
d(r, X) = t|p| = \frac{1}{|p|} |k - r \cdot p|.
\]

Let \(r = (x, y, z) \) and \(p = (a, b, c) \). Then

\[
d(r, X) = \frac{|k - ax - by - cz|}{\sqrt{a^2 + b^2 + c^2}}.
\]
Example

Suppose that we wish to determine the equation of a cone in three-dimensional space. Let O be the origin of a Cartesian coordinate system, let V be the apex of the cone, let v be the position vector of V, so that $v = \overrightarrow{OV}$, and let b be a vector pointed into the axis of the cone. Let θ be a fixed angle between zero and a right angle. The cone consists of those points R for which the displacement vector \overrightarrow{VR} makes an angle θ with the vector b. It follows from Proposition 38.1 that r is the position vector of a point lying on the cone if and only if

$$(r - v) \cdot b = |r - v| |b| \cos \theta.$$
Squaring both sides of this identity, we find that

\[((r - v) \cdot b)^2 = \|r - v\|^2 \|b\|^2 \cos^2 \theta. \]

Let

\[r = (x, y, z), \quad v = (v_x, v_y, v_z) \quad \text{and} \quad b = (b_x, b_y, b_z). \]

Then the equation of the cone becomes

\[
((x - v_x)b_x + (y - v_y)b_y + (z - v_z)b_z)^2 = C \left((x - v_x)^2 + (y - v_y)^2 + (z - v_z)^2 \right),
\]

where \(C = \|b\|^2 \cos^2 \theta \). Note that this constant \(C \) must satisfy the inequalities \(0 \leq C < \|b\|^2 \).