Course MA2C03: Michaelmas Term 2013.

Assignment I—Worked Solutions.

1. Use the Principle of Mathematical Induction to prove that

\[\sum_{k=1}^{n} 7^k k = \frac{7}{36} \left((6n - 1)7^n + 1 \right) \]

for all positive integers \(n \).

The required equality holds when \(n = 1 \), since both sides are then equal to 7. Suppose that the equality holds when \(n = m \) for some natural number \(m \), so that

\[\sum_{k=1}^{m} 7^k k = \frac{7}{36} \left((6m - 1)7^m + 1 \right) \]

Then

\[\sum_{k=1}^{m+1} 7^k k = \sum_{k=1}^{m} 7^k k + 7^{m+1}(m+1) \]

\[= \frac{7}{36} \left((6m - 1)7^m + 1 \right) + 7^{m+1}(m+1) \]

\[= \frac{7}{36} \left((6m - 1)7^m + 1 + 36(m + 1)7^m \right) \]

\[= \frac{7}{36} \left(42m + 35 \right)7^m + 1 \]

\[= \frac{7}{36} \left(6m + 5 \right) \]

\[= \frac{7}{36} \left(6(m + 1) - 1 \right)5^{m+1} + 1 \]

and thus the equality holds when \(n = m + 1 \). It follows from the Principle of Mathematical Induction that the equality holds for all natural numbers \(n \).

2. Let \(A \) and \(B \) be sets. Prove that

\[(A \cup B) \setminus (A \setminus B) = B. \]

We prove that every element of the set on the left hand side is an element of the set on the right hand side, and vice versa. Let \(x \in (A \cup B) \setminus (A \setminus B) \). Then \(x \in A \cup B \) and \(x \notin A \setminus B \). Now \(x \notin A \setminus B \)
implies that either \(x \notin A \) or else \(x \in A \cap B \). Thus \(x \in A \) and \(x \notin A \setminus B \) together imply that \(x \in A \cap B \) and thus \(x \in B \). Thus if \(x \in A \cup B \) and \(x \notin A \setminus B \) then \(x \in B \). We have thus shown that \((A \cup B) \setminus (A \setminus B) \) is a subset of \(B \).

Now let \(x \in B \). Then \(x \in A \cup B \) and \(x \notin A \setminus B \), and thus \(x \in (A \cup B) \setminus (A \setminus B) \). We have thus shown that \(B \) is a subset of \((A \cup B) \setminus (A \setminus B) \). Therefore \((A \cup B) \setminus (A \setminus B) = B \), as required.

3. Let \(S \) be the relation on the set \(\mathbb{Z} \) of integers, where integers \(x \) and \(y \) satisfy \(xSy \) if and only if \(x^3 - x \geq y^3 - y \). Determine

 (i) whether or not the relation \(S \) is reflexive,
 (ii) whether or not the relation \(S \) is symmetric,
 (iii) whether or not the relation \(S \) is anti-symmetric,
 (iv) whether or not the relation \(S \) is transitive,
 (v) whether or not the relation \(S \) is an equivalence relation,
 (vi) whether or not the relation \(S \) is a partial order.

[Justify your answers with short proofs and/or counterexamples.]

If integers \(x \) and \(y \) satisfy \(x = y \) then \(x^3 - x = y^3 - y \), and therefore \(xSy \). Thus \(xSx \) for all integers \(x \). We conclude that the relation \(S \) on the set \(\mathbb{Z} \) of integers is reflexive.

The relation \(S \) on \(\mathbb{Z} \) is not symmetric. Indeed if \(x = 3 \) and \(y = 2 \) then \(x^3 - x = 24 \) and \(y^3 - y = 6 \). Thus \(xSy \), but \(y \not\in Sx \).

The relation \(S \) is not anti-symmetric. Note that \(x^3 - x = 0 \) when \(x = 0 \) and \(x = 1 \) (and also when \(x = -1 \)). It follows that 0S1 and 1S0 but 0 \(\neq 1 \).

The relation \(S \) is transitive. Indeed let \(x, y \) and \(z \) be integers satisfying \(xSy \) and \(ySz \). Then \(x^3 - x \geq y^3 - y \geq z^3 - z \), and therefore \(x^3 - x \geq z^3 - z \), and thus \(xSz \).

The relation \(S \) on \(\mathbb{Z} \) is not an equivalence relation because it is not symmetric.

The relation \(S \) on \(\mathbb{Z} \) is not a partial order relation because it is not anti-symmetric.
4. Let \(f : [1, 4] \rightarrow [0, 6] \) be the function defined so that \(f(x) = x^2 - 4x + 4 \) for all \(x \in [1, 4] \). Determine whether or not this function is injective, and whether or not it is surjective, giving brief reasons for your answers. (Note that \([1, 4]\) denotes the set of all real numbers between 1 and 4 inclusive, and therefore includes fractions such as \(\frac{3}{2} \) and irrational numbers like \(\sqrt{2} \) and \(\pi \).)

We consider the behaviour of the function \(f \) on the interval \([1, 4]\). Now \(f'(x) = 2x - 4 \) (where \(f'(x) \) denotes the derivative of the function \(f \) at \(x \) for all \(x \in [1, 4] \)). It follows that \(f'(x) < 0 \) when \(1 \leq x < 2 \) and \(f'(x) > 0 \) when \(2 < x \leq 4 \). Thus the function \(f \) is strictly decreasing on the interval \([1, 2]\) and is strictly increasing on the function \([2, 4]\). Also \(f(1) = 1 \), \(f(2) = 0 \) and \(f(4) = 4 \). The function \(f \) therefore will not be injective, and indeed \(f(1) = f(3) = 1 \).

Now the range of the function is the interval \([0, 4]\), since \(f \) maps the interval \([1, 2]\) onto the whole of the interval \([0, 1]\), and maps the interval \([2, 4]\) onto the whole of the interval \([0, 4]\). Therefore there does not exist any \(x \in [1, 4] \) satisfying \(f(x) = 5 \), though 5 is an element of the codomain \([0, 6]\) of the function. Therefore the function \(f : [1, 4] \rightarrow [0, 6] \) is not surjective.