1. Use the Principle of Mathematical Induction to prove that
\[\sum_{i=0}^{n} x^i = \frac{1 - x^{n+1}}{1 - x} \]
for all positive integers \(n \) and real numbers \(x \) satisfying \(x \neq 1 \).

When \(n = 1 \) the left hand side equals \(1 + x \) and the right hand side equals \(\frac{1 - x^2}{1 - x} \). Now \(1 - x^2 = (1 + x)(1 - x) \). Thus the right hand side equals \(1 + x \), and thus equals the left hand side when \(n = 1 \). The result therefore holds when \(n = 1 \). (Alternatively one could not that the identity holds when \(n = 0 \), and use this as the basis for the induction proof.)

Suppose that
\[\sum_{i=0}^{k} x^i = \frac{1 - x^{k+1}}{1 - x} \]
for some positive (or non-negative) integer \(k \). Then
\[\sum_{i=0}^{k+1} x^i = \sum_{i=0}^{k} x^i + x^{k+1} = \frac{1 - x^{k+1}}{1 - x} + x^{k+1} \]
\[= \frac{1 - x^{k+1}}{1 - x} + \frac{x^{k+1}(1 - x)}{1 - x} \]
\[= \frac{1 - x^{k+1} + x^{k+1}(1 - x)}{1 - x} \]
\[= \frac{1 - x^{k+2}}{1 - x}. \]

Thus if the required identity holds when \(n = k \) then it holds when \(n = k + 1 \). The identity therefore holds for all positive integers \(n \) by the Principle of Mathematical Induction.
2. Let A, B and C be sets. Prove that
\[
(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C.
\]

We show that each element of $(A \setminus C) \cup (B \setminus C)$ is an element of $(A \cup B) \setminus C$, and that each element of $(A \cup B) \setminus C$ is an element of $(A \setminus C) \cup (B \setminus C)$.

Let $x \in (A \setminus C) \cup (B \setminus C)$. Then either $x \in A \setminus C$ or $x \in B \setminus C$. It follows that either $x \in A$ or $x \in B$, and therefore $x \in A \cup B$. But, in both cases just considered, $x \notin C$. Therefore $x \in (A \cup B) \setminus C$. This proves that
\[
(A \setminus C) \cup (B \setminus C) \subset (A \cup B) \setminus C.
\]

Now let $x \in (A \cup B) \setminus C$. Then $x \in A \cup B$ and $x \notin C$. But then either $x \in A$ and $x \in B$. If $x \in A$ then $x \in A \setminus C$, because $x \notin C$. Similarly, if $x \in B$ then $x \in B \setminus C$, because $x \notin C$. Thus $x \in (A \setminus C) \cup (B \setminus C)$. This proves that
\[
(A \setminus C) \cup (B \setminus C) \subset (A \cup B) \setminus C.
\]

Therefore
\[
(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C.
\]

3. Let Q be the relation on the set \mathbb{R}^* of non-zero real numbers, where non-zero real numbers x and y satisfy xQy if and only if $\frac{x^2}{y^2}$ is a rational number. Determine

(i) whether or not the relation Q is reflexive,
(ii) whether or not the relation Q is symmetric,
(iii) whether or not the relation Q is anti-symmetric,
(iv) whether or not the relation Q is transitive,
(v) whether or not the relation Q is an equivalence relation,
(vi) whether or not the relation Q is a partial order.

Note that a rational number is a number that can be expressed as a fraction n/d whose numerator n and denominator d are integers. Not all real numbers are rational numbers: both $\sqrt{2}$ and π are examples of real numbers that are not rational numbers.

[Justify your answers with short proofs and/or counterexamples.]
\[\frac{x^2}{y^2} = 1 \] whenever \(x = y \), and the number 1 is a rational number. It follows that \(xQx \) for all real numbers \(x \). Thus the relation \(Q \) is reflexive.

If \(x, y \in \mathbb{R}^* \) and \(xQy \) then \(\frac{x^2}{y^2} = q \) for some non-zero rational number \(q \).

But then \(\frac{y^2}{x^2} = \frac{1}{q} \), and \(1/q \) is also a rational number. It follows that \(yQx \). Thus the relation \(Q \) is symmetric.

Note that \(1Q2 + 2Q1 \), but \(1 \neq 2 \). This counter-example shows that the relation \(Q \) is not anti-symmetric.

If \(x, y, z \in \mathbb{R}^* \), \(xQy \) and \(yQz \) then \(\frac{x^2}{y^2} = q_1 \) and \(\frac{y^2}{z^2} = q_2 \) for some rational numbers \(q_1 \) and \(q_2 \). But then \(\frac{x^2}{z^2} = \frac{x^2}{y^2} \frac{y^2}{z^2} = q_1 q_2 \), and \(q_1 q_2 \) is a rational number. This shows that the relation \(Q \) is transitive.

The relation \(Q \) is an equivalence relation because it is reflexive, symmetric and transitive. Because this relation is not anti-symmetric, it is not a partial order.

4. Let \(f : [0, 4] \to [0, 10] \) be the function defined so that

\[
 f(x) = \begin{cases}
 x^3 & \text{if } 0 \leq x \leq 2; \\
 x + 6 & \text{if } 2 < x \leq 4.
 \end{cases}
\]

Determine whether or not this function is injective, and whether or not it is surjective, giving brief reasons for your answers.

Consider the behaviour of this function as \(x \) increases from 0 to 4. The value of the function increases continuously from 0 to 8 as \(x \) increases from 0 to 2. It then increases continuously from 8 to 10 as \(x \) increases from 2 to 4.

Let \(u, v \in [0, 10] \) satisfy \(u \leq v \) and \(f(u) = f(v) \). If \(f(u) \leq 8 \) then \(u, v \in [0, 2] \) and \(u = v = \sqrt[3]{f(u)} \). If \(f(u) > 8 \) then \(u, v \in (2, 4] \), and \(u = v = f(u) - 6 \). It follows that if \(u, v \in [0, 4] \) satisfy \(f(u) = f(v) \) then \(u = v \). Thus the function \(f \) is injective.

Let \(y \in [0, 10] \). If \(0 \leq y \leq 8 \) then \(y = f(x) \), where \(x = \sqrt[3]{y} \). If \(8 < y \leq 10 \) then \(y = f(x) \), where \(x = y - 6 \). Therefore each element \(y \) of \([0, 10] \) is in the range of the function. Thus the function is surjective.