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7 Möbius Transformations of the Riemann

Sphere

7.1 The Riemann Sphere

The Riemann sphere P1 may be defined as the set C ∪ {∞} obtained by
augmenting the system C of complex numbers with an additional element,
denoted by ∞, where ∞ is not itself a complex number, but is an additional
element added to the set, with the additional conventions that

z +∞ =∞, ∞×∞ =∞, z

∞
= 0 and

∞
z

=∞

for all complex numbers z, and

z ×∞ =∞, and
z

0
=∞

for all non-zero complex numbers z. The symbol ∞ cannot be added to, or
subtracted from, itself. Also 0 and ∞ cannot be divided by themselves.

Note that, because the sum of two elements of P1 is not defined for every
single pair of elements of P1, this set cannot be regarded as constituting a
group under the operation of addition. Similarly its non-zero elements cannot
be regarded as constituting a group under multiplication. In particular, the
Riemann sphere cannot be regarded as constituting a field.

The following proposition follows directly from Proposition 6.1.

Proposition 7.1 Let σ:P1 → R3 be the mapping from the Riemann sphere
P1 to R3 defined such that σ(∞) = (0, 0,−1) and

σ(x+ y
√
−1) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
1− x2 − y2

1 + x2 + y2

)
for all real numbers x and y. Then σ maps P1 injectively and surjectively
onto the unit sphere S2 in R3. Moreover if (u, v, w) is a point of S2 distinct
from (0, 0,−1) then (u, v, w) = σ(x+ y

√
−1), where

x =
u

w + 1
and y =

v

w + 1
.

7.2 Möbius Transformations

Definition Let a, b, c and d be complex numbers satisfying ad − bc 6= 0.
The Möbius transformation µa,b,c,d:P1 → P1 with coefficients a, b, c and d is
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defined to be the function from the Riemann sphere P1 to itself determined
by the following properties:

µa,b,c,d(z) =
az + b

cz + d

for all complex numbers z for which cz + d 6= 0; µa,b,c,d(−d/c) = ∞ and
µa,b,c,d(∞) = a/c if c 6= 0; µa,b,c,d(∞) =∞ if c = 0.

Note that the requirement in the above definition of a Möbius transfor-
mation that its coefficients a, b, c and d satisfy the condition ad − bc 6= 0
ensures that there is no complex number for which az+b and cz+d are both
zero.

Let A be a non-singular 2 × 2 matrix whose coefficients are complex
numbers, and let

A =

(
a b
c d

)
.

We denote by µA the Möbius transformation µa,b,c,d with coefficients a, b, c,
d, defined so that

µA(z) =


az + b

cz + d
if cz + d 6= 0;

∞ if c 6= 0 and z = −d/c;

µA(∞) =

{ a

c
if c 6= 0;

∞ if c = 0.

The following result exemplifies the reason for representing the coefficients
of a Möbius transformation in the form of a matrix.

Proposition 7.2 The composition of two Möbius transformations is a Möbius
transformation. Specifically let A and B be non-singular 2× 2 matrices with
complex coefficients, and let µA and µB be the corresponding Möbius trans-
formations of the Riemann sphere. Then the composition µA ◦ µB of these
Möbius transformations is the Möbius transformation µAB of the Riemann
sphere determined by the product AB of the matrices A and B.

Proof Let

A =

(
a1 b1
c1 d1

)
and B =

(
a2 b2
c2 d2

)
,

and let

AB =

(
a3 b3
c3 d3

)
.
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Then
a3 = a1a2 + b1c2, b3 = a1b2 + b1d2,

c3 = c1a2 + d1c2 and d3 = c1b2 + d1d2.

The definitions of Möbius transformations determined by non-singular
2× 2 matrices ensure that

µA(z) =
a1z + b1
c1z + d1

whenever c1z + d1 6= 0 and

µB(z) =
a2z + b2
c2z + d2

whenever c2z + d2 6= 0.
First suppose that z is a complex number for which c2z + d2 6= 0. Then

(a1µB(z) + b1)(c2z + d2) = a1(a2z + b2) + b1(c2z + d2)

= a3z + b3,

(c1µB(z) + d1)(c2z + d2) = c1(a2z + b2) + d1(c2z + d2)

= c3z + d3.

It follows that if c2z + d2 6= 0 and c1µB(z) + d1 6= 0 then

µA(µB(z)) =
a1µB(z) + b1
c1µB(z) + d1

=
a3z + b3
c3z + d3

= µAB(z).

If c2z + d2 6= 0 but c1µB(z) + d1 = 0 then c3z + d3 = 0 and

µA(µB(z)) =∞ = µAB(z).

We conclude that µA(µB(z)) = µAB(z) for all complex numbers z satisfying
c2z + d2 6= 0.

Next suppose that z is a complex number for which c2z + d2 = 0. Now
the definition of Möbius transformations requires that a2d2 − b2c2 6= 0. It
follows that c2 and d2 cannot both be equal to zero. Thus if c2z+d2 = 0 then
either z = d2 = 0 and c2 6= 0 or else z, c2 and d2 are all non-zero. Thus, in all
cases where c2z + d2 = 0, the coefficient c2 of the Möbius transformation is
non-zero and z = −d2/c2. Also the equations a2z + b2 = 0 and c2z + d2 = 0
cannot both be satisfied, because a2d2− b2c2 6= 0, and therefore a2z+ b2 6= 0.
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Now the equations determining a3, b3, c3 and d3 ensure that if c2z + d2 = 0
then

c2(a3z + b3) = −d2a3 + c2b3

= c2(a1b2 + b1d2)− d2(a1a2 + b1c2)

= a1(b2c2 − a2d2)
= a1c2(a2z + b2)

c2(c3z + d3) = −d2c3 + c2d3

= c2(c1b2 + d1d2)− d2(c1a2 + d1c2)

= c1(b2c2 − a2d2)
= c1c2(a2z + b2),

and therefore

a3z + b3 = a1(a2z + b2) and c3z + d3 = c1(a2z + b2),

Thus if c2z + d2 = 0 and c1 6= 0 then c3z + d3 6= 0 and

µAB(z) =
a3z + b3
c3z + d3

=
a1
c1

= µA(∞) = µA(µB(z)).

And if c2z + d2 = 0 and c1 = 0 then c3z + d3 = 0 and

µAB(z) =∞ = µA(∞) = µA(µB(z)).

Thus µAB(z) = µA(µB(z)) in all cases for which c2z + d2 = 0.
It remains to show that µAB(∞) = µA(µB(∞)). If c2 6= 0 (so that

µB(∞) = a2/c2) and c1µB(∞) + d2 6= 0 then

µA(µB(∞)) =
a1µB(∞) + b1
c1µB(∞) + d1

=
a1a2 + b1c2
c1a2 + d1c2

=
a3
c3

= µAB(∞).

If c2 6= 0 and c1µB(∞) + d2 = 0 then c3 = c1a2 + d1c2 = 0, because µB(∞) =
a2/c2, and therefore

µA(µB(∞)) =∞ = µAB(∞).

If c1 = c2 = 0 then µB(∞) =∞ and therefore

µA(µB(∞)) = µA(∞) =∞ = µAB(∞).

If c2 = 0 and c1 6= 0 then a3 = a1a2, c3 = c1a2 and a2 6= 0 (because
a2d2 − b2c2 6= 0), and therefore

µA(µB(∞)) = µA(∞) =
a1
c1

=
a3
c3

= µAB(∞).

We conclude that µA(µB(∞)) = µAB(∞) in all cases. This completes the
proof.
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Corollary 7.3 Let a, b, c and d be complex numbers satisfying ad− bc 6= 0,
and let µa,b,c,d:P1 → P1 denote the Möbius transformation of the Riemann

sphere P1 defined such that µa,b,c,d(z) =
az + b

cz + d
if z ∈ C and cz + d 6= 0,

µa,b,c,d(−d/c) = ∞ and µa,b,c,d(∞) = a/c if c 6= 0, and µa,b,c,d(∞) = ∞ if
c = 0. Then the mapping µa,b,c,d:P1 → P1 is invertible, and its inverse is

the Möbius transformation µd,−b,−c,a:P1 → P1, where µd,−b,−c,a(z) =
dz − b
a− cz

if z ∈ C and a − cz 6= 0, µd,−b,−c,a(a/c) = ∞ and µd,−b,−c,a(∞) = −d/c if
c 6= 0, and µd,−b,−c,a(∞) =∞ if c = 0.

Proof If the coefficients a, b, c and d of a Möbius transformation are all
multiplied by a non-zero complex number then this does not change the
Möbius transformation represented by those coefficients. It follows that we
may assume, without loss of generality, that ad− bc = 1. Let

A =

(
a b
c d

)
,

where ad− bc = 1. Then

A−1 =

(
d −b
−c a

)
.

The result therefore follows directly on applying Proposition 7.2.

7.3 Inversions of the Riemann Sphere

Let S2 denote the unit sphere in R3, defined so that

S2 = {(u, v, w) ∈ R3 : u2 + v2 + w2 = 1},

and let us refer to the points (0, 0, 1) and (0, 0,−1) as the North Pole and
South Pole respectively. Let E denote the Equatorial Plane in R3, consisting
of those points whose Cartesian coordinates are of the form (x, y, 0), where
x and y are real numbers.

Stereographic projection from the South Pole maps each point (u, v, w)
of the unit sphere S2 distinct from the South Pole to the point (x, y, 0) of
the equatorial plane E for which

x =
u

w + 1
and y =

v

w + 1
.

80



Moreover a point (x, y, 0) of the Equatorial Plane E is the image under
stereographic projection from the South Pole of the point (u, v, w) of the
unit sphere S2 for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
, w =

1− x2 − y2

1 + x2 + y2
.

We can also stereographically project from the North Pole. Note that,
given a point in the Equatorial Plane, reflection in that Equatorial Plane will
interchange the points of the sphere corresponding to it under stereographic
projection from the North and South Poles. Thus a point (u, v, w) of the
unit sphere S2 distinct from the North Pole corresponds under stereographic
projection to the point (x, y, 0) of the Equatorial Plane E for which

x =
u

1− w
and y =

v

1− w
.

In the other direction, a point (x, y, 0) of the Equatorial Plane E corresponds
under stereographic projection from the North Pole to the point (u, v, w) of
the unit sphere S2 for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
, w =

x2 + y2 − 1

1 + x2 + y2
.

Proposition 7.4 Let O denote the origin (0, 0, 0) of the Equatorial Plane E,
where

E = {(x, y, z) ∈ R3 : z = 0},
and let A be a point (x, y, 0) of E distinct from the origin O. Let C be the
point on the unit sphere S2 that corresponds to A under stereographic pro-
jection from the North Pole (0, 0, 1), and let B be the point of the Equatorial
Plane E that corresponds to C under stereographic projection from the South
Pole. Then B = (p, q, 0), where

p =
x

x2 + y2
and q =

y

x2 + y2
.

Thus the points O, A and B are collinear, and the points A and B lie on the
same side of the origin O. Also the distances |OA| and |OB| of the points A
and B from the origin satisfy |OA| × |OB| = 1.

Proof Let (x, y, 0) be a point of the Equatorial plane E distinct from the
origin. This point is the image, under stereographic projection from the
North Pole (0, 0, 1) of the point (u, v, w) of the unit sphere S2 for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
, w =

x2 + y2 − 1

1 + x2 + y2
.
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This point then gets mapped under stereographic projection from the South
Pole to the point (p, q, 0) of the Equatorial Plane E for which

p =
u

w + 1
and q =

v

w + 1
.

Now

w + 1 =
2(x2 + y2)

1 + x2 + y2
.

It follows that
p =

x

x2 + y2
and q =

y

x2 + y2
.

Finally we note that O, A and B are collinear, where 0 = (0, 0, 0), A =
(x, y, 0) and B = (p, q, 0), and the points A and B lie on the same side of the
origin O. Also

|OA| =
√
x2 + y2, and |OB| = 1√

x2 + y2
,

and therefore |OA| × |OB| = 1, as required.

7.4 Möbius Transformations representing Rotations

Let a and b be complex numbers satisfying the equation |a|2 + |b|2 = 1, and
let µ:P1 → P1 be the Möbius Transformation of the Riemann sphere defined
such that

µ(z) =
az + b

−bz + a

when z 6= a/b, µ(a/b) = ∞ and µ(∞) = −a/b. (Here a and b denote the
complex conjugates of the complex numbers a and b respectively.) We denote
the complex number

√
−1 by i, as is customary.

Let u0, v0 and w0 are real numbers satisfying u20 + v20 + w2
0 = 1 and

w0 6= −1. Then the point (u0, v0, w0) of the unit sphere in R3 corresponds,
under stereographic projection from (0, 0,−1), to the complex number z0 for
which

z0 =
u0 + iv0
w0 + 1

.

Let z1 = µ(z0). Then

z1 =
a(u0 + iv0) + b(w0 + 1)

−b(u0 + iv0) + a(w0 + 1)
.
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Now there exists a point (u1, v1, w1) of the unit sphere in R3 which corre-
sponds under stereographic projection from the point (0, 0,−1) to the com-
plex number z1. The Cartesian coordinates u1, v1 and w1 of this point satisfy
the equation u21+v21+w2

1 = 1 and their relationship to the complex number z1
is expressed by the following equations:

z1 =
u1 + iv1
w1 + 1

,

u1 =
2Re[z1]

|z1|2 + 1
, v1 =

2Im[z1]

|z1|2 + 1
, w1 =

2

|z1|2 + 1
− 1.

We seek to express the values of u1, v1 and w1 in terms of u0, v0 and w0.
Now

|a(u0 + iv0) + b(w0 + 1)|2

= (a(u0 + iv0) + b(w0 + 1))(a(u0 − iv0) + b(w0 + 1))

= |a|2(u20 + v20) + |b|2(w0 + 1)2 + 2Re[ab(u0 + iv0)] (w0 + 1).

But u20 + v20 = 1− w2
0 = (w0 + 1)(1− w0). It follows that

|a(u0 + iv0) + b(w0 + 1)|2

= (|a|2(1− w0) + |b|2(w0 + 1) + 2Re[ab(u0 + iv0)]) (w0 + 1)

= (1− (|a|2 − |b|2)w0 + 2Re[ab(u0 + iv0)]) (w0 + 1).

Similarly

| − b(u0 + iv0) + a(w0 + 1)|2

= (1 + (|a|2 − |b|2)w0 − 2Re[ab(u0 + iv0)]) (w0 + 1).

It follows from these identities that

|z1|2 =
1− (|a|2 − |b|2)w0 + 2Re[ab(u0 + iv0)]

1 + (|a|2 − |b|2)w0 − 2Re[ab(u0 + iv0)]
,

and thus

|z1|2 + 1 =
2

1 + (|a|2 − |b|2)w0 − 2Re[ab(u0 + iv0)]
.

Also

z1 =
a(u0 + iv0) + b(w0 + 1)

−b(u0 + iv0) + a(w0 + 1)

=
(a(u0 + iv0) + b(w0 + 1))(−b(u0 − iv0) + a(w0 + 1))

| − b(u0 + iv0) + a(w0 + 1)|2
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Moreover

(a(u0 + iv0) + b(w0 + 1))(−b(u0 − iv0) + a(w0 + 1))

= (a2(u0 + iv0)− b2(u0 − iv0))(w0 + 1)

+ ab((w0 + 1)2 − u20 − v20)

= ((a2 − b2)u0 + i(a2 + b2)v0 + 2abw0)(w0 + 1)

It follows that

z1 =
(a2 − b2)u0 + i(a2 + b2)v0 + 2abw0

1 + (|a|2 − |b|2)w0 − 2Re[ab(u0 + iv0)]
,

and thus

u1 + iv1 =
2z1

|z1|2 + 1

= (a2 − b2)u0 + i(a2 + b2)v0 + 2abw0

and

w1 =
2

|z1|2 + 1
− 1

= (|a|2 − |b|2)w0 − 2Re[ab(u0 + iv0)]

Now |a|2 + |b|2 = 1 and b 6= 0. It follows that |a| < 1, and thus Re[a] = cos 1
2
θ

for some real number θ satisfying 0 < θ < 2π. Let `, m and n be real numbers
determined so that

a = cos 1
2
θ + in sin 1

2
θ and b = (m− i`) sin 1

2
θ.

Then
1 = |a|2 + |b|2 = cos2 1

2
θ + (`2 +m2 + n2) sin2 1

2
θ,

and therefore
`2 +m2 + n2 = 1.

Then

|a|2 − |b|2 = cos2 1
2
θ + (n2 − `2 −m2) sin2 1

2
θ

= cos θ + n2(1− cos θ),

a2 − b2 = cos2 1
2
θ + (`2 −m2 − n2 + 2i`m) sin2 1

2
θ + 2in sin 1

2
θ cos 1

2
θ

= cos θ + (`2 + i`m) (1− cos θ) + in sin θ

a2 + b2 = cos2 1
2
θ + (m2 − `2 − n2 − 2i`m) sin2 1

2
θ + 2in sin 1

2
θ cos 1

2
θ
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= cos θ + (m2 − i`m)(1− cos θ) + in sin θ

2ab = 2(m+ i`) sin 1
2
θ cos 1

2
θ − 2(`− im)n sin2 1

2
θ

= (m+ i`) sin θ − (`− im)n(1− cos θ)

2ab = 2(m− i`) sin 1
2
θ cos 1

2
θ + 2(`+ im)n sin2 1

2
θ

= (m− i`) sin θ + (`+ im)n(1− cos θ)

It follows that

u1 = Re[a2 − b2]u0 − Im[a2 + b2]v0 + 2Re[ab]w0

= (mw0 − nv0) sin θ + u0 cos θ + (`u0 +mv0 + nw0)`(1− cos θ)

v1 = Im[a2 − b2]u0 + Re[a2 + b2]v0 + 2Im[ab]w0

= (nu0 − `w0) sin θ + v0 cos θ + (`u0 +mv0 + nw0)m(1− cos θ)

w1 = (|a|2 − |b|2)w0 − 2Re[ab(u0 + iv0)]

= (`v0 −mu0) sin θ + w0 cos θ + (`u0 +mv0 + nw0)n (1− cos θ).

Let

r0 = (u0, v0, w0), r1 = (u1, v1, w1) and L = (`,m, n).

Then the vectors r0, r1 and L are of unit length, and

r1 = cos θ r0 + (r0 . L)(1− cos θ) L + sin θL× r0

= (r0 . L)L + cos θ (r0 − (r0 . L)L + sin θL× r0.

Interpreting this formula geometrically, we see that the point (u1, v1, w1) of
the unit sphere in R3 is the image of the point (u0, v0, w0) under a rotation
through an angle θ about the axis passing through the origin in the direction
of the vector L.

Proposition 7.5 Let a, b, c and d be complex numbers satisfying ad−bc = 1,
and let µ:P1 → P1 be the Möbius transformation of the Riemann sphere
defined such that

µ(z) =
az + b

cz + d
when cz + d 6= 0,.

µ(−d/c) = ∞ and µ(∞) = a/c in the case c 6= 0 and µ(∞) = ∞ in the
case c = 0. Then the Möbius transformation represents a rotation of the unit
sphere in R3 if and only if d = a and c = −b.
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Proof The calculations undertaken in this subsection show that if b 6= 0,
d = a and c = −b then the Möbius transformation µ:P1 → P1 corresponds
to a rotation of the unit sphere in R3. The same is true in the case when b = 0.
Indeed in that case the conditions d = a and c = −b ensure that b = c = 0,
|a| = 1, and these conditions ensure that the Möbius µ implements a rotation
of the unit sphere about the direction (0, 0, 1) through an angle θ, where

a = cos 1
2
θ +
√
−1 sin 1

2
θ.

Thus, in all cases where d = a, c = −b and |a|2 + |b|2 = 1, the Möbius
transformation µ of the Riemann sphere corresponds to a rotation of the
unit sphere in R3.

Now every rotation about the origin in R3 is a rotation about a fixed axis
through a given angle. It follows that, given any rotation of the sphere, there
are values of the complex numbers a and b for which the Möbius transfor-
mation µ implements the given rotation with d = a and c = −b. Moreover
a Möbius transformation with coefficients a′, b′, c′, d′ implements the same
transformation of the sphere as the Möbius transformation µ if and only if
either a′, b′, c′ and d′ are respectively equal to a, b, c and d or else a′, b′, c′

and d′ are respectively equal to −a, −b, −c and −d. The result follows.

Let

SU(2) =

{(
a b

−b a

)
: a, b ∈ C and |a|2 + |b|2 = 1

}
.

Then the 2× 2 matrices belonging to the set SU(2) constitute a group with
respect to the operation of matrix multiplication. Morever a 2 × 2 matrix
with complex coefficients belongs to the group SU(2) if and only if it is a
unitary matrix whose determinant is equal to one. Proposition 7.5 ensures
that every 2 × 2 unitary matrix with determinant equal to one determines
a corresponding rotation of three-dimensional space R3. We obtain in this
way a two-to-one homomorphism from the group SU(2) to the rotation group
SO(3) of 3-dimensional space.

Remark The homomorphism from SU(2) to SO(3) whose existence is guar-
anteed by Proposition 7.5 can also be described using properties of quater-
nions. Independently of one another, Arthur Cayley and Sir William Rowan
Hamilton discovered how to represent rotations of three-dimensional space
using quaternions. (Cayley’s account appeared in print in 1845 before Hamil-
ton’s account, read at a meeting of the Royal Irish Academy in 1844 but
published in 1847.)

The homomorphism between these matrix groups gives rise to the fun-
damental properties of spin in quantum mechanics, where the traditional
account is expressed in terms of Pauli matrices.
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7.5 The Action of Möbius Transformations on the Rie-
mann Sphere

Proposition 7.6 Let ζ1, ζ2, ζ3 be distinct points of the Riemann sphere P1,
and let ω1, ω2, ω3 also be distinct points of P1. Then there exists a Möbius
transformation µ:P1 → P1 of the Riemann sphere with the property that
µ(ζj) = ωj for j = 1, 2, 3.

Proof The composition of two Möbius transformations of the Riemann sphere
is itself a Möbius transformation of the Riemann sphere (Proposition 7.2).
Also the inverse of any Möbius transformation of the Riemann sphere is itself
a Möbius transformation (Corollary 7.3). It follows that the Möbius trans-
formations of the Riemann sphere constitute a group under the operation of
composition of transformations.

Next we note that permution of the elements 0, 1 and∞ of the Riemann
sphere can be effected by a suitable Möbius transformation. Indeed the
Möbius transformation z 7→ 1 − z transposes 0 and 1 whilst fixing ∞, and
the Möbius transformation z 7→ −1/(z− 1) cyclicly permutes 0, 1 and∞. It
follows that any permutation of 0, 1 and ∞ may be effected by the action of
some Möbius transformation.

Next we show that there exists a Möbius transformation µ1:P1 → P2 with
the property that µ1(ζ1) = 0, µ1(ζ2) = 1 and µ1(ζ3) =∞. Suppose first that
at least one of the distinct points ζ1, ζ2, ζ3 of P1 is the point ∞. Because we
have shown that there exist Möbius transformations permuting 0, 1 and ∞
amongst themselves, we may assume in this case, without loss of generality,
that ζ3 =∞. Let ζ0 = z0 and ζ1 = z1, where z0 and z1 are complex numbers,
and let

µ1(z) =
z − z0
z1 − z0

.

Then µ1(ζ0) = µ1(z0) = 0, µ1(ζ1) = µ1(z1) = 1 and µ1(∞) = ∞. The
existence of the Möbius transformation µ1 has thus been verified in the case
where at least one of ζ1, ζ2, ζ3 is the point ∞ of the Riemann sphere.

Next we consider the case where ζj = zj for j = 1, 2, 3, where z1, z2, z3 are
complex numbers. In this case let µ1 be the Möbius transformation defined
so that

µ1(z) =
(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

for all complex numbers z. Then µ1(ζ1) = µ1(z1) = 0, µ1(ζ2) = µ1(z2) = 1
and µ1(ζ3) = µ1(z3) = ∞. We conclude therefore that, given any distinct
points ζ1, ζ2, ζ3 of the Riemann sphere, there exists a Möbius transformation
µ1 of the Riemann sphere for which µ1(ζ1) = 0, µ1(ζ2) = 1 and µ1(ζ3) =∞.
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Let ω1, ω2, ω3 also be distinct points of the Riemann sphere. Then there
exists a Möbius transformation µ2 with the property that µ2(ω1) = 0, µ2(ω2) =
1 and µ2(ω3) =∞. Let µ:P1 → P1 be the Möbius transformation of the Rie-
mann sphere that is the composition µ−12 ◦ µ1 of µ1 followed by the inverse
of µ2. Then µ(ζj) = ωj for j = 1, 2, 3, as required.

Proposition 7.7 Let ρ:P1 → P1 denote the Möbius transformation defined
so that ρ(z) = 1/z for all non-zero complex numbers z. Then the mapping ρ
preserves the angles between circles and straight lines. contained in the set
C \ {0}.

Proof Let z be a non-zero complex number, and let h be a non-zero complex
number satisfying |h| < |z|, and let t be a real number satisfying −1 ≤ t ≤ 1.
Then z + th 6= 0, and(

1 +
th

z

)(
1− th

z

)
= 1− t2h2

z2
.

It follows that
1

z
− th

z2
=

1

z + th
− t2h2

z2(z + th)
,

and thus
1

z + th
=

1

z
− th

z2
+

t2h2

z2(z + th)

Let θ be a real number, let k = h(cosθ + i sin θ). Then the directions
represented by the complex numbers h and k are at an angle θ to each other.
Let α: (−1, 1)→ C and β: (−1, 1)→ C be the curves defined such that

α(t) = ρ(z + th) =
1

z + th

and

β(t) = ρ(z + tk) =
1

z + tk
for all real numbers t satisfying −1 < t < 1. Then the tangent directions to
the curve t 7→ α(t) and t 7→ β(t) at t = 0 are in the directions determined
by the complex numbers

− h
z2

and − k

z2
.

Moreover

− k

z2
= − h

z2
(cos θ + i sin θ)

and therefore the tangent directions to the curves t 7→ α(t) and t 7→ β(t) at
t = 0 are also at an angle θ to each other. The result follows.
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Proposition 7.8 Any Möbius transformation of the Riemann sphere maps
straight lines and circles to straight lines and circles, and also preserves angles
between lines and circles.

Proof Proposition 7.7 ensures that the Möbius transformation that sends z
to 1/z for all non-zero complex numbers z is angle-preserving.

The equation of a line or circle in the complex plane can be expressed in
the form

g|z|2 + 2Re[bz] + h = 0,

where g and h are real numbers, and b is a complex number. Moreover a
locus of points in the complex plane satisfying an equation of this form is a
circle if g 6= 0 and is a line if g = 0.

Let g and h be real constants, let b be a complex constant, and let z =
1/w, where w 6= 0 and w satisfies the equation

g|w|2 + 2Re[bw] + h = 0,

Then
g|w|2 + bw + bw + h = 0,

Then

g + 2Re[bz] + h|z|2 = g + bz + bz + h|z|2

=
1

|w|2
(
g|w|2 + bw + bw + h

)
= 0.

We deduce from this that the Möbius transformation that sends z to 1/z for
all non-zero complex numbers z maps lines and circles to lines and circles.

Let µ:P1 → P1 be a Möbius transformation of the Riemann sphere. Then
there exist complex numbers a, b, c and d satisfying ad− bc 6= 0 such that

µ(z) =
az + b

cz + d

for all complex numbers z for which cz + d 6= 0. The result is immediate
when c = 0. We therefore suppose that c 6= 0. Then

µ(z) =
az + b

cz + d
=
a

c
− ad− bc

c
× 1

cz + d

when cz + d 6= 0. The Möbius transformation µ is thus the composition of
three maps that each send circles and straight lines to circles and straight
lines and preserve angles between lines and circles, namely the maps

z 7→ cz + d, z 7→ 1

z
and z 7→ a

c
− (ad− bc)z

c
.
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Thus the Möbius transformation µ must itself map circles and straight line
to circles and straight lines and also preserve angles between lines and circles,
as required.
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