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5 Vector Algebra and Spherical Trigonome-

try

5.1 Vectors in Three-Dimensional Euclidean Space

A 3-dimensional vector v in the vector space R3 can be represented as a triple
(v1, v2, v3) of real numbers. Vectors in R3 are added together, subtracted from
one another, and multiplied by real numbers by the usual rules, so that

(u1, u2, u3) + (v1, v2, v3) = (u1 + v1, u2 + v2, u3 + v3),

(u1, u2, u3)− (v1, v2, v3) = (u1 − v1, u2 − v2, u3 − v3),
t(u1, u2, u3) = (tu1, tu2, tu3)

for all vectors (u1, u2, u3) and (v1, v2, v3) in R3, and for all real numbers t.
The operation of vector addition is commutative and associative. Also

0+v = v for all v ∈ R3, where 0 = (0, 0, 0), and v+(−v) = 0 for all v ∈ R3,
where −(v1, v2, v3) = (−v1, v2, v3) for all (v1, v2, v3) ∈ R3. Moreover

u− v = u + (−v), t(u + v) = tu + tv, (s+ t)v = sv + tv,

s(tv) = (st)v, 1v = v

for all u,v ∈ R3 and s, t ∈ R.
The set of all vectors in three-dimensional space, with the usual operations

of vector addition and of scalar multiplication constitute a three-dimensional
real vector space.

The Euclidean norm |v| of a vector v is defined so that if v = (v1, v2, v3)
then

|v| =
√
v21 + v22 + v23.

The scalar product u . v and the vector product u× v of vectors u and v are
defined such that

(u1, u2, u3) . (v1, v2, v3) = u1v1 + u2v2 + u3v3,

(u1, u2, u3)× (v1, v2, v3) = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

for all vectors (u1, u2, u3) and (v1, v2, v3) in R3. Then

(u + v) .w = u .w + v .w, u . (v + w) = u . v + u .w,

(u + v)×w = u×w + v ×w,

(tu) . v = u . (tv) = t(u . v), (tu)× v = u× (tv) = t(u× v)
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u . v = v . u, u . u = |u|2, u× v = −v × u

for all u,v,w ∈ R3 and t ∈ R.
The unit vectors i, j,k of the standard basis of R3 are defined so that

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Then
i . i = j . j = k . k = 1,

i . j = j . i = j . k = k . j = k . i = i . k = 0,

i× i = j× j = k× k = 0,

i× j = −j× i = k, j× k = −k× j = i, i× j = −j× i = k.

Let A and B be points in three-dimensional Euclidean space. These
points may be represented in Cartesian coordinates so that

A = (a1, a2, a3), B = (b1, b2, b3).

The displacement vector
−→
AB from A to B is defined such that

−→
AB = (b1 − a1, b2 − a2, b3 − a3).

If A, B and C are points in three-dimensional Euclidean space then

−→
AB +

−→
BC =

−→
AC.

Points A, B, C and D of three-dimensional Euclidean space are the vertices
of a parallelogram (labelled in clockwise or anticlockwise) order if and only

if
−→
AB =

−→
DC and

−→
AD =

−→
BC.

Let the origin O be the point with Cartesian coordinates. The position
vector of a point A (with respect to the chosen origin) is defined to be the

displacement vector
−→
OA.

5.2 Geometrical Interpretation of the Scalar Product

Let u and v be vectors in three-dimensional space, represented in some Carte-
sian coordinate system by the ordered triples (u1, u2, u3) and (v1, v2, v3) re-
spectively. The scalar product u . v of the vectors u and v is then given by
the formula

u . v = u1v1 + u2v2 + u3v3.
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Proposition 5.1 Let u and v be non-zero vectors in three-dimensional space.
Then their scalar product u . v is given by the formula

u . v = |u| |v| cos θ,

where θ denotes the angle between the vectors u and v.

Proof Suppose first that the angle θ between the vectors u and v is an acute

angle, so that 0 < θ < 1
2
π. Let us consider a triangle ABC, where

−→
AB = u

and
−→
BC = v, and thus

−→
AC = u + v. Let ADC be the right-angled triangle

constructed as depicted in the figure below, so that the line AD extends AB
and the angle at D is a right angle. Then the lengths of the line segments

A

B

C

D

u

v
u+ v

θ

AB, BC, AC, BD and CD may be expressed in terms of the lengths |u|,
|v| and |u + v| of the displacement vectors u, v and u + v and the angle θ
between the vectors u and v by means of the following equations:

AB = |u|, BC = |v|, AC = |u + v|,

BD = |v| cos θ and DC = |v| sin θ.

Then
AD = AB +BD = |u|+ |v| cos θ.

The triangle ADC is a right-angled triangle with hypotenuse AC. It follows
from Pythagoras’ Theorem that

|u + v|2 = AC2 = AD2 +DC2 = (|u|+ |v| cos θ)2 + |v| sin2 θ

= |u|2 + 2|u| |v| cos θ + |v| cos2 θ + |v| sin2 θ

= |u|2 + |v|2 + 2|u| |v| cos θ,
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because cos2 θ + sin2 θ = 1.
Let u = (u1, u2, u3) and v = (v1, v2, v3). Then

u + v = (u1 + v1, u2 + v2, u3 + v3),

and therefore

|u + v|2 = (u1 + v1)
2 + (u2 + v2)

2 + (u3 + v3)
2

= u21 + 2u1v1 + v21 + u22 + 2u2v2 + v22 + u23 + 2u3v3 + v23
= |u|2 + |v|2 + 2(u1v1 + u2v2 + u3v3)

= |u|2 + |v|2 + 2u . v.

On comparing the expressions for |u + v|2 given by the above equations, we
see that u . v = |u| |v| cos θ when 0 < θ < 1

2
π.

The identity u . v = |u| |v| cos θ clearly holds when θ = 0 and θ = π.
Pythagoras’ Theorem ensures that it also holds when the angle θ is a right
angle (so that θ = 1

2
π. Suppose that 1

2
π < θ < π, so that the angle θ is

obtuse. Then the angle between the vectors u and −v is acute, and is equal
to π − θ. Moreover cos(π − θ) = − cos θ for all angles θ. It follows that

u . v = −u . (−v) = −|u| |v| cos(π − θ) = |u| |v| cos θ

when 1
2
π < θ < π. We have therefore verified that the identity u . v =

|u| |v| cos θ holds for all non-zero vectors u and v, as required.

Corollary 5.2 Two non-zero vectors u and v in three-dimensional space are
perpendicular if and only if u . v = 0.

Proof It follows directly from Proposition 5.1 that u . v = 0 if and only if
cos θ = 0, where θ denotes the angle between the vectors u and v. This is
the case if and only if the vectors u and v are perpendicular.

5.3 Geometrical Interpretation of the Vector Product

Let a and b be vectors in three-dimensional space, with Cartesian compo-
nents given by the formulae a = (a1, a2, a3) and b = (b1, b2, b3). The vector
product a× b is then determined by the formula

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Proposition 5.3 Let a and b be vectors in three-dimensional space R3.
Then their vector product a × b is a vector of length |a| |b| | sin θ|, where
θ denotes the angle between the vectors a and b. Moreover the vector a× b
is perpendicular to the vectors a and b.
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Proof Let a = (a1, a2, a3) and b = (b1, b2, b3), and let l denote the length
|a× b| of the vector a× b. Then

l2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

= a22b
2
3 + a23b

2
2 − 2a2a3b2b3

+ a23b
2
1 + a21b

2
3 − 2a3a1b3b1

+ a21b
2
2 + a22b

2
1 − 2a1a2b1b2

= a21(b
2
2 + b23) + a22(b

2
1 + b23) + a23(b

2
1 + b22)

− 2a2a3b2b3 − 2a3a1b3b1 − 2a1a2b1b2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)

− a21b21 − a22b22 − a23b23 − 2a2b2a3b3 − 2a3b3a1b1 − 2a1b1a2b2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)

2

= |a|2|b|2 − (a . b)2

since

|a|2 = a21 + a22 + a23, |b|2 = b21 + b22 + b23, a . b = a1b1 + a2b2 + a3b3

But a . b = |a| |b| cos θ (Proposition 5.1). Therefore

l2 = |a|2|b|2(1− cos2 θ) = |a|2|b|2 sin2 θ

(since sin2 θ + cos2 θ = 1 for all angles θ) and thus l = |a| |b| | sin θ|. Also

a . (a× b) = a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1) = 0

and

b . (a× b) = b1(a2b3 − a3b2) + b2(a3b1 − a1b3) + b3(a1b2 − a2b1) = 0

and therefore the vector a × b is perpendicular to both a and b (Corol-
lary 5.2), as required.

5.4 Scalar Triple Products

Given three vectors u, v and w in three-dimensional space, we can form
the scalar triple product u . (v ×w). This quantity can be expressed as the
determinant of a 3× 3 matrix whose rows contain the Cartesian components
of the vectors u, v and w. Indeed

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1),
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and thus

u . (v ×w) = u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1).

The quantity on the right hand side of this equality defines the determinant
of the 3× 3 matrix  u1 u2 u3

v1 v2 v3
w1 w2 w3

 .

We have therefore obtained the following result.

Proposition 5.4 Let u, v and w be vectors in three-dimensional space.
Then

u . (v ×w) =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
Corollary 5.5 Let u, v and w be vectors in three-dimensional space. Then

u . (v ×w) = v . (w × u) = w . (u× v)

= −u . (w × v) = −v . (u×w) = −w . (v × u).

Proof The basic theory of determinants ensures that 3 × 3 determinants
are unchanged under cyclic permutations of their rows by change sign under
transpositions of their rows. These identities therefore follow directly from
Proposition 5.4.

5.5 The Vector Triple Product Identity

Proposition 5.6 (Vector Triple Product Identity) Let u, v and w be
vectors in three-dimensional space. Then

u× (v ×w) = (u .w)v − (u . v)w

and
(u× v)×w = (u .w)v − (v .w)u.

Proof Let q = u × (v × w), and let u = (u1, u2, u3), v = (v1, v2, v3),
w = (w1, w2, w3), and q = (q1, q2, q3). Then

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).
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and hence u× (v ×w) = q = (q1, q2, q3), where

q1 = u2(v1w2 − v2w1)− u3(v3w1 − v1w3)

= (u2w2 + u3w3)v1 − (u2v2 + u3v3)w1

= (u1w1 + u2w2 + u3w3)v1 − (u1v1 + u2v2 + u3v3)w1

= (u .w)v1 − (u . v)w1

Similarly
q2 = (u .w)v2 − (u . v)w2

and
q3 = (u .w)v3 − (u . v)w3

(In order to verify the formula for q2 with an minimum of calculation, take
the formulae above involving q1, and cyclicly permute the subcripts 1, 2 and
3, replacing 1 by 2, 2 by 3, and 3 by 1. A further cyclic permutation of these
subscripts yields the formula for q3.) It follows that

q = (u .w)v − (u . v)w,

as required, since we have shown that the Cartesian components of the vec-
tors on either side of this identity are equal. Thus

u× (v ×w) = (u .w)v − (u . v)w.

On replacing u, v and w by w, u and v respectively, we find that

w × (u× v) = (w . v)u− (w . u)v.

It follows that

(u× v)×w = −w × (u× v) = (u .w)v − (v .w)u,

as required.

Remark When recalling these identities for use in applications, it is often
helpful to check that the summands on the right hand side have the correct
sign by substituting, for example, i, j and i for u, v and w, where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Thus, for example, (i × j) × i = k × i = j and (i.i)j − (j.i)i = j. This helps
check that the summands on the right hand side of the identity (u×v)×w =
(u .w)v − (v .w)u have been chosen with the correct sign (assuming that
these summands have opposite signs).
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We present below a second proof making use of the following standard
identity.

Proposition 5.7 Let εi,j,k and δi,j be defined for i, j, k ∈ {1, 2, 3} such that

εi,j,k =


1 if (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)};
−1 if (i, j, k) ∈ {(1, 3, 2), (2, 1, 3), (3, 2, 1)};

0 otherwise.

and

δi,j =

{
1 if i = j;
0 otherwise.

Then
3∑

i=1

εi,j,k εi,m,n = δj,mδk,n − δj,nδk,m

for all i, j,m ∈ {1, 2, 3}.

Proof Suppose that j = k. Then εi,j,k = 0 for i = 1, 2, 3 and thus the left
hand side is zero. The right hand side is also zero in this case, because

δj,mδk,n − δj,nδk,m = δj,mδk,n − δk,nδj,m = 0

when j = k. Thus
3∑

i=1

εi,j,k εi,m,n = δj,mδk,n − δj,nδk,m = 0 when j = k.

Similarly
3∑

i=1

εi,j,k εi,m,n = δj,mδk,n − δj,nδk,m = 0 when m = n.

Next suppose that j 6= k and m 6= n but {j, k} 6= {m,n}. In this case
the single value of i in {1, 2, 3} for which εi,j,k 6= 0 does not coincide with

the single value of i for which εi,m,n 6= 0, and therefore
3∑

i=1

εi,j,k εi,m,n =

0. Moreover either j 6∈ {m,n}, in which case δj,m = δj,n = 0 and thus
δj,mδk,n − δj,nδk,m = 0, or else k 6∈ {m,n}, in which case δk,m = δk,n = 0 and
thus δj,mδk,n−δj,nδk,m = 0. It follows from all the cases considered above that
3∑

i=1

εi,j,k εi,m,n = δj,mδk,n− δj,nδk,m = 0 unless both j 6= k and {j, k} = {m,n}.

Suppose then that j 6= k and {j, k} = {m,n}. Then there is a single value
of i for which εi,j,k 6= 0. For this particular value of i we find that

εi,j,k εi,m,n =

{
1 if j 6= k, j = m and k = n;
−1 if j 6= k, j = n and k = m.
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It follows that, in the cases where j 6= k and {j, k} = {m,n},

3∑
i=1

εi,j,k εi,m,n =


1 if j 6= k, j = m and k = n,
−1 if j 6= k, j = n and k = m,

0 otherwise,

= δj,mδk,n − δj,nδk,m,

as required.

Second Proof of Proposition 5.6 Let p = v × w and q = u × p =
u× (v ×w), and let

u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3),

p = (p1, p2, p3) and q = (q1, q2, q3).

The definition of the vector product ensures that pi =
3∑

j,k=1

εi,j,kvjwk for

i = 1, 2, 3, where εi,j,k and δi,j are defined for i, j, k ∈ {1, 2, 3} as described
in the statement of Proposition 5.7. It follows that

qm =
3∑

n,i=1

εm,n,i unpi =
3∑

n,i,j,k=1

εm,n,iεi,j,k unvjwk

=
3∑

n,j,k=1

3∑
i=1

εi,m,nεi,j,k unvjwk

=
3∑

n,j,k=1

(δj,mδk,n − δj,nδk,m)unvjwk

=
3∑

n,k=1

δk,n vmunwk −
3∑

n,j=1

δj,n unvjwm

= vm

3∑
k=1

ukwk − wm

3∑
j=1

ujvj

= (u .w)vm − (u . v)wm

for m = 1, 2, 3, and therefore

u× (v ×w) = q = (u .w)v − (u . v)w,

as required.
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Remark The identity

αS . α′α′′ − α′S.α′′α = V(V . αα′ . α′′)

occurs as equation (12) in article 22 of William Rowan Hamilton’s On Quater-
nions, or on a new System of Imaginaries in Algebra, published in the Philo-
sophical Magazine in August 1846. Hamilton noted in that paper that this
identity “will be found to have extensive applications.”

In Hamilton’s quaternion algebra, vectors in three-dimensional space are
represented as pure imaginary quaternions and are denoted by Greek letters.
Thus α, α′ and α′′ denote (in Hamilton’s notation) three arbitrary vectors.
The product of two vectors α′ and α′′ in Hamilton’s system is a quaternion
which is the sum of a scalar part S . αα′ and a vector part V.αα′. (The scalar
and vector parts of a quaternion are the analogues, in Hamilton’s quaternion
algebra, of the real and imaginary parts of a complex number.)

Now a quaternion can be represented in the form s + u1i + u2j + u3k
where s, u1, u2, u3 are real numbers. The operations of quaternion addition,
quaternion subtraction and scalar multiplication by real numbers are defined
so that the space H of quaternions is a four-dimensional vector space over the
real numbers with basis 1, i, j, k. The operation of quaternion multiplication
is defined so that quaternion multiplication is distributive over addition and
is determined by the identities

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j

that Hamilton formulated in 1843. It then transpires that the operation of
quaternion multiplication is associative.

Hamilton described his discovery of the quaternion algebra in a letter to
P.G. Tait dated October 15, 1858 as follows:—

. . . P.S.—To-morrow will be the 15th birthday of the Quater-
nions. They started into life, or light, full grown, on [Monday] the
16th of October, 1843, as I was walking with Lady Hamilton to
Dublin, and came up to Brougham Bridge, which my boys have
since called the Quaternion Bridge. That is to say, I then and
there felt the galvanic circuit of thought close; and the sparks
which fell from it were the fundamental equations between i, j,
k; exactly such as I have used them ever since. I pulled out on
the spot a pocket-book, which still exists, and made an entry, on
which, at the very moment, I felt that it might be worth my while
to expend the labour of at least ten (or it might be fifteen) years
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to come. But then it is fair to say that this was because I felt
a problem to have been at that moment solved—an intellectual
want relieved—which had haunted me for at least fifteen years
before.

Let quaternions q and r be defined such that q = s+ u1i+ u2j + u3k and
r = t + v1i + v2j + v3k, where s, t, u1, u2, u3, v1, v2, v3 are real numbers. We
can then write q = s+ α and r = t+ β, where

α = u1i+ u2j + u3k, β = v1i+ v2j + v3k.

Hamilton then defined the scalar part of the quaternion q to be the real
number s, and the vector part of the quaternion q to be the quaternion α
determined as described above. The Distributive Law for quaternion multi-
plication and the identities for the products of i, j and k then ensure that

qr = st+ S . αβ + sβ + tα + V . αβ,

where
S . αβ = −(u1v1 + u2v2 + u3v3)

and
V . αβ = (u2v3 − u3v2)i+ (u3v1 − u1v3)j + (u1v2 − u2v1)k.

Thus the scalar part S . α′α′′ of the quaternion product α′α′′ represents the
negative of the scalar product of the vectors α′ and α′′, and the vector part
V.α′α′′ represents the vector product of the quaternion αα′. Thus Hamilton’s
identity can be represented, using the now customary notation for the scalar
and vector products, as follows:—

−α(α′ . α′′) + α′(α′′ . α) = (α× α′)× α′′.

Hamilton’s identity of 1846 (i.e., equation (12) in article 22 of On quater-
nions) is thus the Vector Triple Product Identity stated in Proposition 5.6.

Corollary 5.8 Let u, v and w be vectors in R3. Then

(u× v)× (u×w) = (u.(v ×w))u.

Proof Using the Vector Triple Product Identity (Proposition 5.6) and basic
properties of the scalar triple product Corollary 5.5, we find that

(u× v)× (u×w) = (u.(u×w))v − (v.(u×w))u

= (u.(v ×w))u,

as required.
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5.6 Lagrange’s Quadruple Product Identity

Proposition 5.9 (Lagrange’s Quadruple Product Identity) Let u, v,
w and z be vectors in R3. Then

(u× v) . (w × z) = (u .w)(v . z)− (u . z)(v .w).

Proof Using the Vector Triple Product Identity (Proposition 5.6) and basic
properties of the scalar triple product Corollary 5.5, we find that

(u× v) . (w × z) = z.((u× v)×w)

= z.((u .w)v − (v .w)u)

= (u .w)(v . z)− (u . z)(v .w),

as required.

Remark Substituting i, j, i and j for u, v, w and z respectively, where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1),

we find that (i×j).(i×j) = k.k = 1 and (i.i)(j.j)−(i.j)(j.i) = 1−0 = 1. This
helps check that the summands on the right hand side have been allocated
the correct sign.

Second Proof of Proposition 5.9 Let

u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3), z = (z1, z2, z3),

and let εi,j,k and δi,j be defined for i, j, k ∈ {1, 2, 3} as described in the
statement of Proposition 5.7. Then the components of u× v are the values

of
3∑

j,k=1

εi,j,kujvk for i = 1, 2, 3. It follows from Proposition 5.7 that

(u× v) . (w × z) =
∑

i,j,k,m,n

εi,j,k εi,m,n ujvkwmzn

=
∑

j,k,m,n

(δj,mδk,n − δj,nδk,m)ujvkwmzn

=
∑
j,k

(ujvkwjzk − ujvkwkzj)

= (u .w)(v . z)− (u . z)(v .w),

as required.
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5.7 Some Applications of Vector Algebra to Spherical
Trigometry

Let S2 be the unit sphere

{(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

in three-dimensional Euclidean space R3. Each point of S2 may be repre-
sented in the form

(sin θ cosϕ, sin θ sinϕ, cos θ).

Let I, J and K denote the points of S2 defined such that

I = (1, 0, 0), J = (0, 1, 0), K = (0, 0, 1).

We take the origin O of Cartesian coordinates to be located at the centre
of the sphere. The position vectors of the points I, J and K are then the
standard unit vectors i, j and k.

It may be helpful to regard the point K as representing the “north pole”
of the sphere. The “equator” is then the great circle consisting of those
points (x, y, z) of S2 for which z = 0. Every point P of S2 is the pole of a
great circle on S2 consisting of those points of S2 whose position vectors are
orthogonal to the position vector p of the point P .

Let A and B be distinct points of S2 with position vectors u and v
respectively. We denote by sinAB and cosAB the sine and cosine of the
angles between the lines joining the centre of the sphere to the points A and
B.

Lemma 5.10 Let A and B be points on the unit sphere S2 in R3, and let u
and v denote the displacement vectors of those points from the centre of the
sphere. Then

u . v = cosAB

and
u× v = sinAB nA,B,

where nA,B is a unit vector orthogonal to the plane through the centre of the
sphere that contains the points A and B.

Proof The displacement vectors u and v of the points A and B from the
centre of the sphere satisfy |u| = 1 and |v| = 1 (because the sphere has unit
radius). The required identities therefore follows from basic properties of the
scalar and vector products stated in Proposition 5.1 and Proposition 5.3.
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Lemma 5.11 Let V and W be planes in R3 that are not parallel, and let nV

and vW be the unit vectors orthogonal to the planes V and W , and let α be
the angle between those planes. Then

nV . nW = cosα,

and
nV × nW = sinαu,

where u is a unit vector in the direction of the line of intersection of the
planes V and W .

Proof The vectors nV and nW are not parallel, because the planes are not
parallel, and therefore nV × nW is a non-zero vector. Let t = |nV × nW |.
Then nV × nW = tu, where u is a unit vector orthogonal to both nV and
nW . This vector u must be parallel to both V and W , and must therefore be
parallel to the line of intersection of these two planes. Let v = u × nV and
w = u × nW . Then the vectors v and w are parallel to the planes V and
W respectively, and both vectors are orthogonal to the line of intersection
of these planes. It follows that angle between the vectors v and w is the
angle α between the planes V and W .

Now the vectors v, w, nV and nW are all parallel to the plane that is
orthogonal to u, the angle between the vectors v and nV is a right angle, and
the angle between the vectors w and nW is also a right angle. It follows that
the angle between the vectors nV and nW is equal to the angle α between
the vectors v and w, and therefore

nV . nW = v .w = cosα,

nV × nW = v ×w = sinαu.

These identities can also be verified by vector algebra. Indeed, using
Lagrange’s Quadruple Product Identity, we see that

v .w = (nV × u) . (nW × u)

= (nV . nW )(u . u)− (nV . u)(u . nW )

= nV . nW ,

because u . u = |u|2 = 1 nV . u = 0 and nW . u = 0. Thus nV . nW = cosα.
Also nV × nW is parallel to the unit vector u, and therefore

v ×w = (nV × u)× (nW × u) = (u× nV )× (u× nW )

= (u.(nV × nW ))u = nV × nW .
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(see Corollary 5.8). It follows that

|nV × nW | = |v ×w| = sinα,

and therefore
nV × nW = sinαu,

as required.

Proposition 5.12 (Cosine Rule of Spherical Trigonometry) Let A, B
and C be distinct points on the unit sphere in R3, let α be the angle at A
between the great circle through A and B and the great circle through A and
C. Then

cosBC = cosAB cosAC + sinAB sinAC cosα.

Proof The angle α at A between the great circle AB and the great circle
AC is equal to the angle between the planes through the origin that intersect
the unit sphere in those great circles, and this angle is in turn equal to
the angle between the normal vectors nA,B and nA,C to those planes, and
therefore nA,B . nA,C = cosα (see Lemma 5.11). Let u, v and w denote the
displacement vectors of the points A, B and C respectively from the centre
of the sphere. Then

u× v = sinAB nA,B, u×w = sinAC nA,C .

It follows that

(u× v).(u×w) = sinAB sinAC cosα.

But it follows from Lagrange’s Quadruple Product Identity that Proposi-
tion 5.9 that

(u× v) . (u×w) = (u . u)(v .w)− (u .w)(v . u).

But u.u = |u|2 = 1, because the point u lies on the unit sphere. Therefore

(u× v) . (u×w) = (v .w)− (u . v)(u .w) = cosBC − cosAB cosAC.

Equating the two formulae for (u× v) . (u×w), we find that

cosBC = cosAB cosAC + sinAB sinAC cosα,

as required.
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Second Proof Let u, v and w denote the displacement vectors of the points
A, B and C respectively from the centre O of the sphere. Without loss of
generality, we may assume that the Cartesian coordinate system with origin
at the centre O of the sphere has been oriented so that

u = (0, 0, 1),

v = (sinAB, 0, cosAB),

w = (sinAC cosα, sinAC sinα, cosAC).

Then |u| = 1 and |v| = 1. It follows that

cosBC = v .w = cosAB cosAC + sinAB sinAC cosα,

as required.

Proposition 5.13 (Gauss) If A, B, C and D denote four points on the
sphere, and η the angle which the arcs AB, CD make at their point of inter-
section, then we shall have

cosAC cosBD − cosAD cosBC = sinAB sinCD cos η.

Proof Let u, v, w and z denote the displacement vectors of the points A, B,
C and D from the centre of the sphere. It follows from Lagrange’s Quadruple
Product Identity (Proposition 5.9) that

(u .w)(v . z)− (u . z)(v .w) = (u× v) . (w × z).

Now it follows from the standard properties of the scalar and vector products
recorded in the statement of Lemma 5.10 that u .w = cosAC etc., u× v =
sinAB nA,B and w×z = sinCD nC,D, where nA,B is a unit vector orthogonal
to the plane through the origin containing the points A and B, and nC,D is a
unit vector orthogonal to the plane through the origin containing the points
C and D. Now nA,B . nC,D = cos η, where cos η is the cosine of the angle η
between these two planes (see Lemma 5.11). This angle is also the angle,
at the points of intersection, between the great circles on the sphere that
represent the intersection of those planes with the sphere. It follows that

cosAC cosBD − cosAD cosBC

= (u .w)(v . z)− (u . z)(v .w)

= (u× v) . (w × z)

= sinAB sinCD (nA,B . nC,D)

= sinAB sinCD cos η,

as required.
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Second Proof (This proof follows fairly closely the proof given by Gauss
in the Disquisitiones Generales circa Superficies Curvas, published in 1828.)
Let the point O be the centre of the sphere, and let P be the point where the
great circle passing through AB intersects the great circle passing through
CD. The angle η is then the angle between these great circles at the point P .
Let the angles between the line OP and the lines OA, OB, OC and OD be
denoted by α, β, γ, δ respectively (so that cosPA = cosα etc.). It then
follows from the Cosine Rule of Spherical Trigonometry (Proposition 5.12)
that

cosAC = cosα cos γ + sinα sin γ cos η,

cosAD = cosα cos δ + sinα sin δ cos η,

cosBC = cos β cos γ + sin β sin γ cos η,

cosBD = cos β cos δ + sin β sin δ cos η.

From these equations it follows that

cosAC cosBD − cosAD cosBC

= cos η (cosα cos γ sin β sin δ + cos β cos δ sinα sin γ

− cosα cos δ sin β sin γ − cos β cos γ sinα sin δ)

= cos η (cosα sin β − sinα cos β)(cos γ sin δ − sin γ cos δ)

= cos η sin(β − α) sin(δ − γ)

= cos η sinAB sinCD,

as required.

Remark In his Disquisitiones Generales circa Superficies Curvas, published
in 1828, Gauss proved Proposition 5.13, using the method of the second of
the proofs of that theorem given above.

Proposition 5.14 (Gauss) Let A, B and C be three distinct points on the
unit sphere that do not all lie on any one great circle of the sphere, and let p
be the angle which the line from the centre of the sphere to the point C makes
with the plane through the centre of the sphere that contains the points A and
B. Then

sin p = sinA sinAC = sinB sinBC,

where sinA denotes the sine of the angle between the arcs AB and AC at A
and sinB denotes the sine of the angle between the arcs BC and AB at B.
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Proof Let u, v and w denote the displacement vectors of the points A, B
and C from the centre of the sphere. A straightforward application of the
Vector Triple Product Identity shows that

(u× v)× (u×w) = (u.(v ×w))u.

(see Corollary 5.8). Now u × v = sinAB nA,B, where nA,B is a unit vector
orthogonal to the plane spanned by A and B. Similarly u×w = sinAC nA,C ,
where nA,C is a unit vector orthogonal to the plane spanned by A and B.
Moreover the vector nA,B ×nA,C is orthogonal to the vectors nA,B and nA,C ,
and therefore is parallel to the line of intersection of the plane through the
centre of the sphere containing A and B and the plane through the centre
of the sphere containing A and C. Moreover the magnitude of this vector is
the sine of the angle between them. It follows that nA,B × nA,C = ± sinAu.
We note also that u.(v×w) = w.(u×v). (see Corollary 5.5.) Putting these
identities together, we see that we see that

sinAB sinAC sinA = ±u . (v ×w) = ±w . (u× v) = ± sinABw . nA,B.

Now the cosine of the angle between the unit vector v and the unit vector
nA,C is the sine sin p of the angle between the vector w and the plane through
the centre of the sphere that contains the points A and B. It follows that
w . nA,B = sin p, and therefore

sinAB sinAC sinA = ± sinAB sin p.

Now the angles concerned are all between 0 and π, and therefore their sines
are non-negative. Also sinAB 6= 0, because A and B are distinct and are
not antipodal points on opposite sides of the sphere. Dividing by sinAB, we
find that

sinA sinAC = sin p.

Interchanging A and B, we find that

sinB sinBC = sin p,

as required.

Corollary 5.15 (Sine Rule of Spherical Trigonometry) Let A, B and
C be three distinct points on the unit sphere that do not all lie on any one
great circle of the sphere. Then

sinBC

sinA
=

sinAC

sinB
=

sinAB

sinC
,

where sinA denotes the sine of the angle between the arcs AB and AC at A
and sinB denotes the sine of the angle between the arcs BC and AB at B.
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Proposition 5.16 (Gauss) Let A, B, C be points on the unit sphere in R3,
and let the point O be at the centre of that sphere. Then the volume V of the
tetrahedron with apex O and base ABC satisfies

V = 1
6

sinA sinAB sinAC,

where sinAB, sinAC and sinBC are the sines of the angles between the lines
joining the indicated points to the centre of the sphere, and where sinA, sinB
and sinC are the sines of angles of the geodesic triangle ABC whose vertices
are A and B and C and whose sides are the arcs of great circles joining its
vertices.

Proof This tetrahedron may be described as the tetrahedron with base OAB
and apex C. Now the area of the base of the tetrahedron is 1

2
sinAB, and the

height is sin p, where sin p is the perpendicular distance from the point C to
the plane passing through the centre of the sphere that contains the points A
and B. The volume V of the tetrahedron is one sixth of the area of the base
of the tetrahedron multiplied by the height of the tetrahedron. On applying
Proposition 5.14 we see that

V = 1
6

sin p sinAB = 1
6

sinA sinAB sinAC.

Proposition 5.17 Let Π1, Π2 and Π3 be planes in R3 that intersect at a
single point, let n1, n2 and n3 be vectors of unit length normal to Π1, Π2 and
Π3 respectively, let ϕ1 denote the angle between the planes Π1 and Π3, let ϕ2

denote the angle between the planes Π2 and Π3, and let θ denote the angle
between the lines along which the plane Π3 intersects the planes Π1 and Π2.
Then

± sinϕ1 sinϕ2 cos θ = n1 . n2 − (n3.n1)(n3 . n2).

Proof The vector n3 × n2 is of length sinϕ2 and is orthogonal to both n2

and n3, and therefore
n3 × n2 = sinϕ2m1.

where m1 is a vector of unit length parallel to the line of intersection of the
planes Π2 and Π3. Similarly

n3 × n1 = sinϕ1m2.

where m2 is a vector of unit length parallel to the line of intersection of the
planes Π1 and Π3. Now cos θ = ±m1 .m2 (see Proposition 5.1). Applying
Lagrange’s Quadruple Product Identity (Proposition 5.9), we find that

± sinϕ1 sinϕ2 cos θ = (n3 × n2) . (n3 × n1)

= (n3 . n3)(n1 . n2)− (n3 . n1)(n3 . n2).

= (n1 . n2)− (n3 . n1)(n3 . n2),
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as required.
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