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2 Magnitude and Congruence

2.1 Magnitudes

Propositions in Euclid’s Elements often express relationships satisfied by
sums of magnitudes of the same species. The concept of magnitude (in
Greek, μεγέθος, megethos) is introduced in the definitions commencing Book
V of the Elements. Book V is concerned with the theory of proportion,
determining whether, for magnitudes of a given species, a first magnitude
bears to a second the same ratio, or a lesser or greater ratio, than a third
magnitude to a fourth magnitude. Nevertheless the concept of comparisons
between magnitudes of some given species clearly underlies the reasoning of
the earlier books. This reasoning is underpinned by the Common Notions
prefixed to Book I of the Elements.

Property EP–1 Let some species of magnitude be given whose members
can be compared one with another to determine whether or not the first is
equal to the second. Suppose also that this relation of equality, which we
denote by ≡, conforms to the principles stated as Common Notions 1 and 4
of Book I of Euclid’s Elements. (Thus we suppose that any magnitude of the
species is equal to itself, and also that any magnitudes of the species that are
equal to the same magnitude are also equal to one another.) Let α, β and γ
be magnitudes belonging to the species. Then

(i) ( Reflexivity) α ≡ α;

(ii) ( Symmetry) if α ≡ β then β ≡ α;

(iii) ( Transitivity) if α ≡ β and β ≡ γ then α ≡ γ.

Proof The relation α ≡ α is an immediate consequence of Common No-
tion 4. Thus reflexivity holds.

Suppose that α ≡ β. Now β ≡ β by (i). Thus β and α are magnitudes
that are both equal to the same thing, namely β. It follows from Common
Notion 1 that they are equal to one another, and therefore β ≡ α. This
proves symmetry.

Finally suppose that α ≡ β and β ≡ γ. It follows from symmetry that γ ≡
β. Thus α and γ are both equal to β. It follows from Common Notion 1 that
α and γ are equal to one another, and thus α ≡ γ. This proves transitivity,
completing the proof.

Principle EP–2 (Addition of Magnitudes of the Same Species) Given
a list of magnitudes of the same species, the sum of the magnitudes in the list
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will be determined on specifying the magnitudes that occur in the list, and the
number of times that those magnitudes occur in the list, but the sum of the
magnitudes in the list will not depend on the order in which those elements
are listed.

Thus, for example, if α, β and γ are magnitudes of the same species then
the sum of the list α, β, γ will be the same as the sums of the list β, γ, α, the
list γ, α, β, the list γ, β, α, the list β, α, γ and the list α, γ, β.

But, given magnitudes α and β of the same species, the sum of the mag-
nitudes in the list α, α, β will be greater than the sum of the magnitudes in
the list α, β because the magnitude α occurs twice in the first list and once
in the second list, whilst the magnitude β occurs once in both lists.

Many propositions in Euclid’s Elements establish relationships that can
be expressed in the form

α1 + α2 + · · ·+ αp = β1 + β2 + · · ·+ βq,

where α1, α2, . . . , αp and β1, β2, . . . , βq are magnitudes of the same species.
Other propositions might express an inequality, asserting for example that

α1 + α2 + · · ·+ αp < β1 + β2 + · · ·+ βq,

where α1, α2, . . . , αp and β1, β2, . . . , βq are magnitudes of the same species.
It may be that an appropriate metaphor would be that of a balance used

in weighing collections of objects. The magnitudes α1, α2, . . . , αp might be
thought of as though they were weights, to be placed on the left hand side
of the balance. The other magnitudes magnitudes β1, β2, . . . , βq might be
thought of as though they were weights to be placed on the right hand side
of the balance. Then either the weights on the left hand side balance the
weights on the right hand side, in which case equality holds, or else the
weights on one side might overbalance those on the other side.

Now suppose that a certain species of magnitude is given, and that the
magnitudes belonging to that species can be added together and that the
resulting sums can be compared with one another. Suppose further that
the results of such comparisons are always consistent with the five com-
mon notions stated in Book I of Euclid’s Elements. Let α1, α2, . . . , αp and
β1, β2, . . . , βq and γ1, γ2, . . . , γr and δ1, δ2, . . . , δs, be lists of magnitudes of
the given species, where each list is a finite list of magnitudes containing at
least one magnitude, and let the sums of the magnitudes in these four lists
be denoted by

p∑
i=1

αi,

q∑
i=1

βi,
r∑
i=1

γi and
s∑
i=1

δi
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respectively.
Then Common Notion 2 can be cited to justify the proposition that if

p∑
i=1

αi ≡
r∑
i=1

γi and

q∑
i=1

βi ≡
s∑
i=1

δi

then
p∑
i=1

αi +

q∑
i=1

βi ≡
r∑
i=1

γi +
s∑
i=1

δi.

Similarly Common Notion 3 can be cited to justify the proposition that
if

p∑
i=1

αi +

q∑
i=1

βi ≡
r∑
i=1

γi +
s∑
i=1

δi and

q∑
i=1

βi ≡
s∑
i=1

δi

then
p∑
i=1

αi ≡
r∑
i=1

γi.

2.2 Addition of Line Segments and Angles

Principle EP–3 (Addition of Successive Line Segments) If a line seg-
ment is partitioned by division points into subsegments, then the line segment
is equal to the sum of the subsegments.

Thus, for example, if a line segment [AD] is partitioned by division points
B and C into subsegments [AB], [BC] and [CD], where B lies between A
and C and C lies between B and D, the line segment [AD] is equal to the
sum of the subsegments [AB], [BC] and [CD].

A B C D

If we denote the magnitudes of the line segments [AB], [BC], [CD] and
[AD] by |AB|, |BC|, |CD| and |AD| respectively, then the assertion that the
line segment |AD| is equal to the sum of the line segments [AB], [BC], [CD]

A B C D

may be represented symbolically as follows:

|AD| = |AB|+ |BC|+ |CD|.

In a similar fashion we may denote the magnitude of an angle ∠ABC at
the point B using the notation |∠ABC|.
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Principle EP–4 (Addition of Rectilineal Angles) Let A, B, C, and D
be points in the plane, where the points A, B and C are not collinear, and
where the point D lies in the interior of the angle ∠BAC. Then the angle
∠BAC is equal to the sum of the angles BAD and DAC; thus, in symbols,

|∠BAC| = |∠BAD|+ |∠DAC|.

A B

C D

Moreover the angles BAD and DAC are parts of the angle ∠BAC, and
therefore the angles BAD and DAC are both less than BAC; thus, in symbols

|∠BAD| < |∠BAC| and |∠DAC| < |∠BAC|.

2.3 The Homogeneity and Isotropy of the Euclidean
Plane

A few proofs in Euclid rely on the procedure of applying a geometrical figure
such as a triangle to a given line segment. Let M be a geometric figure, such
as a triangle, in a given plane, let A and B be distinct points forming part of
the geometric figure M , and let P and Q be two other distinct points in that
plane. Euclid presumes that the geometric figure M can be applied to the
line segment [PQ], moving the figure in the plane, placing it so as to obtain
a geometrical figure M ′ in which the point A′ corresponding to the point A
of the original figure M coincides with the point P and the point B′ of M ′

corresponding to the point B of M lies on the ray (or half-line) starting at
the point P and passing through the point Q.

28



The diagram to the right depicts a
situation in which a triangle 4ABC
is applied to a line segment [PQ].
The triangle4ABC is moved so that
the vertex A of the triangle is placed
on P and the side [AB] is placed on
the ray from P passing through the
point Q.

A B

C

B′

C ′

P

Q

In thus applying a geometrical figure to a given line segment, all the
geometrical properties of the figure M are presumed to be preserved. In
particular, line segments in the resultant applied figure M ′ are presumed
to be equal to the corresponding line segments in the original figure, and
similarly angles and areas in the resultant applied figure M ′ are presumed to
be equal to the corresponding areas and angles in the original figure M .

Moreover, if C is a point of the original geometrical figure M that does
not lie on the line through the points A and B, then Euclid presumes that
the figure M can be applied to the line segment [PQ] so as to obtain a
geometrical figure M ′ in which the point C ′ corresponding to C lies on any
chosen side of the line [PQ].

The strategy of applying triangles to line segments is used in the proofs
of Propositions 4 and 8 of Book I of Euclid’s Elements. In Proposition 24 of
Book III, a segment of a circle is applied to a line segment.

The method for applying a geometrical figure to a line segment is founded
on the implicit presumption that the geometry of the Euclidean plane is ho-
mogeneous and isotropic. The homogeneity of the Euclidean plane requires
that the geometrical properties of the plane specified with respect to one cho-
sen point within the plane match up with the geometrical properties specified
with respect to any other point of that plane. The isotropy of the Euclidean
plane requires that geometrical properties specified with respect to one cho-
sen direction from a given point of the plane match up with the geometrical
properties specified with respect to any other direction from that given point.

The assertion that the Euclidean plane is homogeneous encapsulates the
proposition that the geometry of the Euclidean plane appears the same at
all points of the plane. Thus the geometry of the plane does not single out
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any particular point as having geometrical properties distinct from those of
other points of the plane

Similarly the assertion that the Euclidean plane is isotropic encapsulates
the proposition that the geometry of the Euclidean plane appears the same in
all directions about a given point of the plane. Thus, at a given point of the
plane, the geometry of the plane does not single out any particular direction
at a given point as having geometrical properties distinct from those of other
directions at that given point.

Consider a situation in which one is cycling from place to place. It seems
in accord with everyday experience to presume that the spokes of the bicycle
wheel do not change in length, and that the distances between points on the
rim of the wheel, and the angles between successive spokes remain invariant
as the bicycle moves from place to place, turning as it does so. Such aspects
of experience make it natural to presume, or postulate, that geometrical
figures can be moved around the Euclidean plane from one location to another
without changing shape.

2.4 Congruence Rules

The results that Euclid obtains in Propositions 4 and 8 using the method of
superposition in conjunction with Common Notion 4 are the Side-Angle-Side
(SAS) and Side-Side-Side (SSS) Congrence Rules respectively.

Principle EP–5 (Characterization of Congruence for Triangles) If two
triangles 4ABC and 4A′B′C ′ are congruent then the sides [AB], [AC] and
[BC] of the first triangle are equal to the corresponding sides [A′B′], [A′C ′]
and [B′C ′] respectively of the second triangle, and the angles of the first tri-
angle at the vertices A, B and C are equal to the corresponding angles of the
second triangle at A′, B′ and C ′ respectively.

This characterization of congruence for triangles can be expressed in sym-
bols, using the symbol ≡ to denote the relation of equality (or congruence)
of line segments and rectilineal angles, as follows:

Triangles ABC and A′B′C ′ are congruent if and only if [AB] ≡
[A′B′], [AC] ≡ [A′C ′], [BC] ≡ [B′C ′], ∠BAC ≡ ∠B′A′C ′, ∠CBA ≡
∠C ′B′A′, and ∠ACB ≡ ∠A′C ′B′.
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A

B

C

A′

B′

C ′

Property EP–6 (The Side-Angle-Side (SAS) Congruence Rule) If ABC
and A′B′C ′ are triangles, if the sides [AB] and [AC] of the first triangle are
equal to the corresponding sides [A′B′] and [A′C ′] respectively of the sec-
ond triangle, and if the angle ∠BAC at the vertex A of the first triangle
is equal to the angle ∠B′A′C ′ at the vertex A′ of the second triangle (i.e.,
if [AB] ≡ [A′B′], [AC] ≡ [A′C ′] and ∠BAC ≡ ∠B′A′C ′), then the tri-
angles 4ABC and 4A′B′C ′ are congruent (and therefore [BC] ≡ [B′C ′],
∠CBA ≡ ∠C ′B′A′, and ∠ACB ≡ ∠A′C ′B′).

The SAS Congruence Rule is established in Proposition 4 of Book I of
Euclid’s Elements.

Property EP–7 (The Side-Side-Side (SSS) Congruence Rule) If ABC
and A′B′C ′ are triangles, and if all the sides [AB], [AC] and [BC] of the
first triangle are equal to the corresponding sides [A′B′], [A′C ′] and [B′C ′]
respectively of the second triangle (i.e., if [AB] ≡ [A′B′], [AC] ≡ [A′C ′] and
[BC] ≡ [B′C ′]), then the triangles 4ABC and 4A′B′C ′ are congruent (and
therefore ∠BAC ≡ ∠B′A′C ′, ∠CBA ≡ ∠C ′B′A′, and ∠ACB ≡ ∠A′C ′B′).

The SSS Congruence Rule is established in Proposition 8 of Book I of
Euclid’s Elements.

The Angle-Side-Angle (ASA) and Angle-Angle-Side (AAS) Congruence
Rules are proved by Euclid in Proposition 26 of Book I of the Elements.
They may be stated as follows.

Property EP–8 (The Angle-Side-Angle (ASA) Congruence Rule) If
ABC and A′B′C ′ are triangles, if the side [BC] of the first triangle is equal
to the corresponding side [B′C ′] of the second triangle, and if the angles ABC
and ACB at the vertices B and C of the first triangle are equal to the an-
gles A′B′C ′ and A′C ′B′ at the vertices B′ and C ′ respectively of the second
triangle (i.e., if [BC] ≡ [B′C ′], ∠ABC ≡ A′B′C ′ and ∠ACB ≡ ∠A′C ′B′),
then the triangles 4ABC and 4A′B′C ′ are congruent (and therefore [AB] =
[A′B′], [AC] ≡ [A′C ′] and and ∠BAC ≡ ∠B′A′C ′).
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Justification for the ASA Congruence Rule Let ABC and A′B′C ′ be
triangles. Suppose that [BC] ≡ [B′C ′], ∠ABC ≡ ∠A′B′C ′ and ∠ACB ≡
A′C ′B′.

A

B

C

A′

B′

C ′

There exists a point A′′ on the ray that starts at B′ and passes through
A′ for which [A′′B′] ≡ [AB]. (In the context of Euclid’s geometry, this can be
justified by Proposition 3 of Book I of the Elements.) Then [A′′B′] ≡ [AB],
[B′C ′] ≡ [BC] and ∠A′′B′C ′ ≡ ∠ABC. Applying the SAS Congruence
Rule, we deduce that the triangles 4A′′B′C ′ and 4ABC are congruent,
and therefore ∠A′′C ′B′ ≡ ∠ACB. But ∠A′C ′B′ = ∠ACB. It follows that
the points A′′, A′ and C ′ are collinear. The points A′′, A′ and B′ are also
collinear. But the points A′, B′ and C ′ are not collinear. Therefore it must be
the case that the points A′′ and A′ coincide. It then follows that the triangle
4A′B′C ′ coincides with the triangle 4A′′B′C ′, and is therefore congruent to
the triangle 4ABC, as required.

Property EP–9 (The Angle-Angle-Side (AAS) Congruence Rule) If
ABC and A′B′C ′ are triangles, if the side [AB] of the first triangle is equal
to the corresponding side [A′B′] of the second triangle, and if the angles ABC
and ACB at the vertices B and C of the first triangle are equal to the an-
gles A′B′C ′ and A′C ′B′ at the vertices B′ and C ′ respectively of the second
triangle (i.e., if [AB] ≡ [A′B′], ∠ABC ≡ A′B′C ′ and ∠ACB ≡ ∠A′C ′B′),
then the triangles 4ABC and 4A′B′C ′ are congruent (and therefore [AC] =
[A′C ′], [BC] ≡ [B′C ′] and and ∠BAC ≡ ∠B′A′C ′).

The AAS Congruence Rule can be justified by a strategy analogous to
that given above to justify the ASA Congruence Rule. Specifically there is
a point C ′′ on the ray that starts at the point B′ and passes though C ′ for
which C ′′B′ ≡ CB. Then AB ≡ A′B′, BC ≡ B′C ′′ and ∠ABC ≡ ∠A′B′C ′′.
An application of the SAS Congruence Rule establishes that the triangles
ABC and A′B′C ′′ are congruent. It follows that ∠A′C ′′B′ = ∠ACB. But
∠ACB ≡ A′C ′B′. It follows that ∠A′C ′′B′ ≡ A′C ′B′.
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In order to complete this justification of the AAS Congruence Rule, one
needs to show that the points C ′ and C ′′ must coincide. This can be done
by making use of the result that an external angle of a triangle is always
greater than either of the interior and opposite angles of that triangle. This
result is obtained in Proposition 16 of Book I of Euclid’s Elements. It ensures
that the points C ′ and C ′′ must coincide, because if they did not coincide,
the triangle 4A′C ′C ′′ would have an external angle at one of the vertices C ′

and C ′′ equal to the internal angle at the other, and this would contradict
Proposition 16 of Book I of Euclid’s Elements.

The SAS Congruence Rule in fact encodes within itself the basic assump-
tions regarding homogeneity and isotropy that are assumed to be satisfied by
the plane that is the object of investigation. Indeed let P and Q be points
of a plane Π and let rays in that plane be chosen starting from the points P
and Q. Let R be a point distinct from P that lies on the chosen ray starting
at the point P , and let S be a point distinct from Q that lies on the chosen
ray starting from the point Q. We also choose sides of these rays.

Now let A be any point of the plane Π. There then exists a well-defined
map ϕ: Π → Π such that for all points A of Π, ϕ(A) = A′, where A′ is
determined as follows:

• if A = P then A′ = Q;

• if A 6= P then the line segment [QA′] is equal to the line segment [PA];

• if A lies on the ray starting at P and passing through R then A′ lies
on the ray starting at Q and passing through S;

• if A lies on the ray opposite R obtained on producing [RP ] beyond P
then A′ lies on the ray opposite S obtained on producing [SQ] beyond
Q;

• if A does not lie on the line through P and R then the angle ∠A′QS is
equal to the angle ∠APR;

• if A lies on the chosen side of [PR] then A′ lies on the chosen side of
[QS];

• if A lies on the side of [PR] opposite to the chosen side then A′ lies on
the side of [QS] opposite to the chosen side.

If standard assumptions are made (not in themselves requiring the plane
Π to be either homogeneous or isotropic) concerning the nature of angles
with vertices at the points P and Q, and if line segments can be produced
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beyond their endpoints to any required distance, and if, given any two points
of the plane Π, there is a unique line segment joining those two points, then
the construction just described should produce a well-defined map ϕ: Π→ Π
with the following properties:

• ϕ(P ) = Q;

• if A 6= P then the line segment from P to A is equal to the line segment
from Q to ϕ(A);

• ϕ maps lines through the point P to lines through the point Q;

• if A and B are points of the plane Π, and if the points A, B and P
are distinct and not collinear, then the angle between the line segments
joining P to A and B is equal to the angle between the line segments
joining Q to ϕ(A) and ϕ(B).

If the SAS Congruence Rule is satisfied by triangles in the plane Π then
the properties listed suffice to ensure that, for all points A and B of Π that
constitute with P the vertices of a triangle in Π, that triangle with vertices
P , A and B is congruent to the triangle with vertices Q, ϕ(A) and ϕ(B).
It follows that the line segment joining the points A and B is equal to the
line segment joining the points ϕ(A) and ϕ(B). This result also holds when
A, B and P are collinear. It follows that ϕ: Π → Π is a distance-preserving
map from the plane Π to itself. The fact that ϕ maps any triangle with a
vertex at P onto a congruent triangle with a vertex at Q also ensures that
ϕ: Π→ Π is an angle-preserving map from the plane Π to itself.

The argument just presented shows that if the geometry of the plane Π
satisfies the SAS congruence rule (in addition to other unspecified axioms or
rules that ensure that the space is sufficiently ‘well-behaved’ in the immediate
neighbourhood of a given point), then given any two points P and Q, and
given any two directions represented by rays starting at P and Q, there
exists a distance-preserving and angle-preserving map from the plane Π to
itself which maps P onto Q, and also maps the chosen ray starting from the
point P onto the chosen ray starting from the point Q. Therefore geometrical
figures can be moved around and rotated in the plane Π without changing
their shape or size.

This argument can be presented in more concrete terms as follows. Sup-
pose that Alice is sitting at a desk in a school, facing north, with a piece of
paper in front of her on which geometrical diagrams can be drawn. Suppose
also that Bob is sitting at another desk in another classroom on the same floor
(or indeed on a different floor) of that school, facing southeast, and that Bob
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also has a piece of paper in front of him on which geometrical diagrams can
be drawn. Then the presumed validity of the SAS Congruence Rule should in
theory enable one to match up positions on Alice’s sheet with corresponding
positions on Bob’s sheet in a way that preserves both distances and angles so
that, for every geometrical figure that can be drawn on Alice’s sheet, there is
a corresponding geometrical figure that could be drawn on Bob’s sheet with
the same geometrical properties as the figure on Alice’s sheet.

2.5 Comparison between Flat and Spherical Geometry

Suppose that a fixed point is chosen in a flat Euclidean plane, and that two
ants start walking away from this fixed point with speeds u and v respectively,
in directions that make a right angle with one another. Then, at time t, the
distance between the two ants will be

√
u2 + v2t. Therefore, at a given time t,

the two ants, together with the chosen fixed point, constitute the vertices of
a triangle with sides of length ut, vt and

√
u2 + v2 t. Moreover the angles of

this triangle remain constant as time progresses.
Such observations would not hold good were the ants to start walking

away from a chosen point on a sphere in directions that initially make a
some chosen fixed angle with one another. The great circle distance between
the ants (i.e., the length of the arc of a great circle on the sphere joining
the two ants) can be found using the formulae of spherical trigonometry. It
would not increase linearly with time, and the angles of the spherical triangle
determined by the two ants and the chosen fixed point would vary as time
progresses.

Nevertheless the distance between the ants at a given time does not de-
pend either on the fixed point chosen or on the initial directions chosen,
provided that the ants walk at the same speeds in directions that initially
make an angle with one another equal to the chosen fixed angle.

Thus the geometry of the sphere, like the geometry of a flat Euclidean
plane, is both homogeneous and isotropic. Moreover appopriate analogues
of the first fifteen propositions in Book I of Euclid’s Elements are valid in
spherical geometry, with straight lines replaced by arcs of great circles, pro-
vided that the lengths of such arcs (including the arcs that form the sides of
spherical triangles) are less than the great circle distance between two poles
of the sphere.

In particular the SAS Congruence Rule is valid in spherical geometry
for spherical triangles whose sides are shorter than the great circle distance
between two poles of the sphere.
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2.6 Geodesics on Smooth Surfaces

Differential geometry developed in the nineteenth century following the pub-
lication by Gauss in 1828 of his important treatise Disquisitiones generales
circa Superficies curvas (General investigations of closed surfaces).

When studying the geometry of a smooth surface in three-dimensional
Euclidean space the analogues of the straight lines of the flat Euclidean plane
are the geodesics on the surface: geodesics on a smooth surface are smooth
curves on that surface characterized by the property that all sufficiently short
segments of a geodesic minimize distance amongst all smooth curves in the
surface that join its endpoints.

Example Consider the smooth surface in three-dimensional space defined
by the equation

z =
10

1 + x2 + y2
.

Let P = (1, 0, 5) and Q = (−1, 0, 5). Then the points P and Q lie on the
surface, and lie on the circle in the plane z = 5 of radius 1 about the point
(0, 0, 5). This circle lies on the surface. It follows that any length-minimizing
curve on the surface from P to Q must have length not exceeding 4. It
follows that a length-minimizing geodesic from P to Q cannot pass through
the point (0, 0, 10) and thus is not contained in the plane y = 0.

Given any geodesic on the surface joining the points P and Q, that
geodesic can be reflected in the plane y = 0 to obtain another geodesic
from P to Q. Now standard results in the theory of differential equations
will guarantee the existance of at least one length-minimizing geodesic on
the surface joining the points P and Q. But this length-minimizing geodesic
cannot be the unique length-minimizing geodesic joining the points P and
Q.

Consider two ants walking across a smooth surface at constant speed,
following the paths of geodesics across the surface. If those ants had started
from a single point in the Euclidean plane, walking at constant speeds along
straight lines, setting out from that point at the same time, then the distance
between the ants would increase linearly with the time elapsed since setting
out.

On a positively curved smooth surface such as a sphere, or on a posi-
tively curved portion of a smooth surface, two ants setting out at the same
time from a single point at constant speeds along distinct geodesics will at
subsequent times be closer than the equivalent ants setting out at the same
speeds along straight lines in the flat Euclidean plane that make the same
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angle with one another. Ants on negatively curved smooth surfaces would
be further apart than the equivalent ants walking across the flat Euclidean
plane.

2.7 Intersections of Lines and Circles

The following principle is a direct consequence of the definition of parallel
lines in Book I of Euclid’s Elements, combined with the principle that, given
two distinct points, there exists at most one line passing through those points.

Property EP–10 Given two lines in a single plane that are not parallel to
one another, there exists a single point of the plane at which those two lines
intersect one another.

The following two principles concern intersections of circles with straight
lines and with other circles.

Property EP–11 Let a circle and a line segment be given, together with the
centre of the circle. Suppose that one endpoint of the line segment lies closer
to the centre of the circle than the points on the circle, and that the other
endpoint of the line segment lies further away from the centre of the circle
than the points on the circle. Then the circle and the line segment intersect
one another.

Proposition 2 of Book III of Euclid’s Elements shows that if the endpoints
of a line segment lie on a circle then the other points of the line segment lie
in the interior of the circle. It follows immediately that a straight line cannot
intersect a circle in more than two points.

Property EP–12 Let two circles be given, together with the centre of the
first of those circles. Suppose that there are points on the second circle that
lie closer to the centre of the first circle than the points on the first circle,
and that there are also points on the second circle that lie further away from
the centre of the first circle than the points on the first circle. Then the two
circles intersect one another.

If two distinct circles in the plane intersect, then either they touch at a
single point or else they cut one another at exactly two points: see Proposi-
tions 10 and 13 in Book III of Euclid’s Elements.

We now explore links between these assumptions regarding intersections
of straight lines and circles and the theory of connectedness in real analysis
and topology that has developed over the past couple of centuries.

37



In the context of the mathematics in common use throughout the past
century, the flat Euclidean plane can be identified with the space R2 of or-
dered pairs of real numbers. We then define a path in the plane to be a
continuous function γ: [0, 1]→ R2 mapping the the closed unit interval [0, 1]
into R2, where

[0, 1] = {t ∈ R : 0 ≤ t ≤ 1}.
Such a path is a path from a point P to a point Q provided that γ(0) = P
and γ(1) = Q.

A subset V of R2 is said to be open in R2 if, given any point P of V , there
exists some strictly positive real number δ such that all points lying within
the circle of radius δ centred on the point P belong to the set V .

We now use results and methods developed in the latter part of the nine-
teenth century to show that, given any two non-empty disjoint open sets in
the plane, any path that starts in one open set and ends in the other must
pass through points that do not belong to either open set.

Property EP–13 Let V and W be disjoint non-empty open sets in R2, and
let γ: [0, 1] → R2 be a path in R2 for which γ(0) ∈ V and γ(1) ∈ W . Then
there exists a real number s satisfying 0 < s < 1 for which γ(s) 6∈ V and
γ(s) 6∈ W .

Proof Let
S = {t ∈ [0, 1] : γ(t) ∈ V },

and let s = supS (so that the real number s is the least upper bound of the
set S). Then 0 ≤ s ≤ 1. We shall prove that γ(s) 6∈ V and γ(s) 6∈ W .

Let r be a real number satisfying 0 ≤ r ≤ 1. If γ(r) ∈ V then it
follows from the definitions of continuity and open sets that there exists some
positive real number δ such that γ(r) ∈ V for all real numbers t satisfying
both 0 ≤ t ≤ 1 and r − δ < t < r + δ. Similarly if γ(r) ∈ W then there
exists some positive real number δ such that γ(r) ∈ W for all real numbers t
satisfying both 0 ≤ t ≤ 1 and r − δ < t < r + δ.

Suppose that γ(r) ∈ V . Then r < 1, because γ(1) ∈ W and V ∩W = ∅.
But then there exists a positive real number δ such that r + δ ≤ 1 and
γ(t) ∈ V for all real numbers t satisfying t < r + δ. Then t ∈ S for all real
numbers t satisfing r < t < r + δ, and therefore r 6= supS.

Next suppose that γ(r) ∈ W . Then r > 0, because γ(0) ∈ V and
V ∩W = ∅. But then there exists a positive real number δ such that r−δ ≥ 0
and γ(t) ∈ W for all real numbers t satisfying t > r − δ. Then t 6∈ S for all
real numbers t satisfing r − δ < t ≤ r, and therefore r 6= supS.

From these results, we conclude that if s = supS then γ(s) 6∈ V and
γ(s) 6∈ W . Clearly 0 < s < 1. The result follows.
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These results can be applied when V is the open set consisting of all points
of the plane lying inside a given circle and W is the open set consisting of all
points lying outside that given circle. It follows that if a path passes through
points inside the circle, and also passes through points outside the circle,
then the path must intersect the circle.

On page 235 of Vol. I of his translation of Euclid’s Elements, Thomas L.
Heath quotes formulations of a Principle of Continuity included by the 19th
century German mathematician Wilhelm Killing in the second volume (page
43) of his treatise Einführung in die Grundlagen der Geometrie, published
in 1893:

(a) Suppose a line belongs entirely to a figure which is divided into two
parts; then, if the line has at least one point in common with each
part, it must also meet the boundary between the parts; or

(b) If a point moves in a figure which is divided into two parts, and if it
belongs at the beginning of the motion to one part and at the end of
the motion to the other part, it must during the motion arrive at the
boundary between the two parts.

We now consider the problem of determining points of intersections of
circles from the point of view of the sort of coordinate geometry that became
established in the 18th century.

Property EP–14 Let C be the set of points in R2 lying on a circle of radius
r about a point (a, b), and let D be the set of points lying on a circle of radius
s about a point (c, d), so that

C = {(x, y) ∈ R2 : (x− a)2 + (y − b)2 = r2},
D = {(x, y) ∈ R2 : (x− c)2 + (y − d)2 = s2}.

Then any points where the circle C intersects the circle D lie on the line

2(c− a)x+ 2(d− b)y = r2 − s2 − a2 − b2 + c2 + d2.

Also any points where the circle C intersects this line are also points where
the two circles C and D intersect.

Proof Expanding out the equations for the circles we find that, at the points
of intersection of the two circles, the Cartesian coordinates x and y satisfy
the simultaneous equations.

x2 + y2 − 2ax− 2by + a2 + b2 = r2;

x2 + y2 − 2cx− 2dy + c2 + d2 = s2.
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Subtracting one equation from the other and rearranging, we see that any
points where the circles intersect must lie on the line

2(c− a)x+ 2(d− b)y = r2 − s2 − a2 − b2 + c2 + d2.

Also subtracting this equation for the line to the equation for the first circle,
we obtain the the equation for the first circle, and therefore any points at
which the first circle intersects the line with the equation about also lie on
the second circle. The result follows.

Example Consider the special case of Property EP–14 where the first circle
is a circle of radius r centred on the origin (0, 0), and the second circle is a
circle of radius s centred on the point (c, 0). Then, on applying the result of
Property EP–14 with a = b = d = 0, we find that any points where the first
circle intersects the second circle must lie on the line

x =
r2 + c2 − s2

2c
.

Conversely any points where the first circle intersects this line are also points
where the first circle intersects the second circle. It follows that the two
circles intersect if and only if this line passes through the interior of the first
circle.

Now the line passes through the interior of the circle of radius r about
the origin if and only if

−r < r2 + c2 − s2

2c
< r.

Thus the circles intersect in two points if and only if the inequalities

r2 + c2 − 2rc < s2 and r2 + c2 + 2rc > s2

are both satisfied, in which case the coordinates of the points of intersection
are (u, v) and (u,−v) where

u =
r2 + c2 − s2

2c
and v =

√
r2 − u2.

Thus the circles intersect in two points if and only if both

(r − c)2 < s2 and (r + c)2 > s2,

and this is the case if and only if the three inequalities

s+ c > r, s+ r > c and r + c > s

are simultaneously satisfied.
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A subset L of the set R of real numbers is said to be a subfield of R if
0 ∈ L, 1 ∈ L, x + y ∈ L, x− y ∈ L and xy ∈ L, x/y ∈ L for all x, y ∈ L for
which y 6= 0.

Property EP–15 Let L be a subfield of the field R of real numbers, and let
(a, b), (c, d), (e, f) and (g, h) be points of R2, where the Cartesian components
a, b, c, d, e, f , g and h belong to the subfield L of R. Suppose that the circle
centred on (a, b) and passing through the point (e, f) intersects the circle
centred on (c, d) and passing through (g, h) at points (m,n) and (p, q). Then
each of the real numbers m, n, p and q can be expressed in the form u+

√
v,

where u and v belong to the subfield L of R.

Proof The determination of the point of intersection of the straight line
joining (a, b) to (c, d) and the straight line joining (m,n) to (p, q) involves
solving a pair of simultaneous linear equations in two real unknowns with
coefficients in the subfield L of R. The standard formulae for the solution
of such simultaneous linear equations ensure that the Cartesian components
of the point of intersection of these two straight lines belong to L. The
determination of the points of intersection themselves then finding roots of
quadratic polynomials with coefficients in L. The result follows.

Let C be the collection consisting of all subfields L of the field of real
numbers with the property that

√
x ∈ L for all x ∈ L satisfying x ≥ 0, and

let K be the intersection of all subfields of R that belong to the collection C.
Then K is itself a subfield of R. It is the field of constructible numbers.

The field K of constructible numbers may be characterized as the smallest
subfield L of the field of real numbers that satisfies the following property:√
x ∈ L for all x ∈ L satisfying x ≥ 0.

The following result follows from Property EP–15

Property EP–16 Let (a, b), (c, d), (e, f) and (g, h) be points of R2, where
the Cartesian components a, b, c, d, e, f , g and h belong to the field K of
constructible numbers. Suppose that the circle centred on (a, b) and passing
through the point (e, f) intersects the circle centred on (c, d) and passing
through (g, h). Then the Cartesian components of the points of intersection
belong to the field K of constructible numbers.

Let P = (cos π
3
, sin π

3
) = (1

2
,
√
3
2

) and Q = (cos π
9
, sin π

9
). Then P and Q

are points on the unit circle centred on the origin in R2, the line joining the
point P to the origin make an angle of π

3
radians (60◦) with the positive x-axis,

and the line joining the point Q to the origin make an angle of π
9

radians (20◦)
with the positive x-axis. Moreover the Cartesian components of the point P
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both belong to the field K of constructible numbers. However techniques of
abstract algebra involving the theory of algebraic field extensions, the Tower
Law, and basic results concerning splitting fields of polynomials can be used
to show that the Cartesian components of the point Q do not belong to the
field K of constructible numbers.

Now Property EP–16 can be used to show that if some point of the
flat Euclidean plane can be obtained from some given collection of points
by means of a ruler and compass construction of the sort that appears fre-
quently in Euclid’s Elements, and if the Cartesian components of the given
points all belong to the field K of constructible numbers, then the Cartesian
components of the point constructed from them also belongs to the field of
constructible numbers.

It follows from the results just described that there cannot exist any ruler
and compass construction of the type employed in Euclid’s Elements that
provides a geometric construction for trisecting an arbitrary angle in the
Euclidean plane.

Suppose that one has a complete set of axioms for planar Euclidean ge-
ometry, including not only that axioms, postulates and common notions set
out by Euclid but also those implicit in the propositions contained in the first
six books of Euclid’s Elements. Once such a complete set of axioms has been
compiled, the propositions of the first six books of Euclid’s Elements should
follow by strict application of principles of pure logic that codify the rules
employed by mathematicians for deducing propositions by logical deduction
from sets of axioms.

We can then consider models for the axioms of planar Euclidean geometry.
By definition, these are mathematical structures that satisfy the necessary
axioms. One model for plane Euclidean geometry is the Cartesian plane R2

whose elements are represented as ordered pairs of real numbers, and points,
straight lines and circles are defined in the usual fashion.

Another model is provided by the set K2 of ordered pairs of constructible
numbers. In this model one essentially disregards all ‘points’ other than those
that can be constructed from the reference points (0, 0) and (1, 0) by ruler
and compass constructions in accordance with the usual rules.

Whilst concepts of ‘continuity’, ‘completeness’ and ‘connectedness’ de-
veloped in the 19th century and ubiquitous in the fields of mathematical
analysis and topology from that time onwards might be imported into a set
of axioms for ‘Euclidean’ geometry, some might see disadvantages in such an
approach. Consider for example the Peano space-filling curve: a continuous
path parameterized by the unit interval that passes through every point of
the closed unit square in the plane. If, for example, one adopts axioms that
ensure that any line within the ‘Euclidean plane’ is a complete metric space,
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then this might well have the effect of populating all models of those axioms
with ‘monsters’ such as the Peano space-filling curve.
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