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6. Stereographic Projection

6. Stereographic Projection

6.1. Stereographic Projection: A Coordinate Geometry Approach

Let a sphere in three-dimensional Euclidean space be given. A
geometric construction known as stereographic projection gives rise
to a one-to-one correspondence between the complement of a
chosen point A on the sphere and the points of the plane Z
through the centre C of that sphere perpendicular to the line AC .
Specifically each point P on the sphere is mapped under
stereographic projection to the point where the line P A intersects
the plane Z .



6. Stereographic Projection (continued)

Remark
The ancient Greek mathematician Ptolemy wrote a work, the
Planisphere, or Planisphærium, that describes stereographic
projection and investigates its properties. No Greek text survives,
but the work was translated into Arabic, and the work has survived
through the medium of this Arabic translation.



6. Stereographic Projection (continued)

For more information on Ptolemy’s Planiphere, see the Wikipedia
article on the Planisphærium at the following location:

https://en.wikipedia.org/wiki/Planisphaerium

A recent translation is the following:

Nathan Sidoli and J.L. Berggren, The Arabic version of
Ptolemy’s Planisphere or Flattening the Surface of the
Sphere: Text, Translation, Commentary, SCIAMVS 8
(2007), 37-139
http://individual.utoronto.ca/acephalous/

Sidoli Berggren 2007.pdf



6. Stereographic Projection (continued)

Let S2 be the unit sphere in R3, defined so that

S2 = {(u, v ,w) ∈ R3 : u2 + v2 + w2 = 1},

and let (u, v ,w) be a point of the unit sphere S2 distinct from
(0, 0,−1). Then the unique line passing through the points
(u, v ,w) and (0, 0,−1) intersects the plane
{(x , y , z) ∈ R3 : z = 0} at the point (x , y) at which

x =
u

w + 1
and y =

v

w + 1
.

It follows that stereographic projection from the point (0, 0,−1)
sends each point (u, v ,w) of S2 distinct from the point (0, 0,−1)
to the point ψ(u, v ,w) of R2, where ψ : S2 \ {(0, 0,−1)} → R2 is
the mapping from S2 \ {(0, 0,−1)} to R2 defined so that

ψ(u, v ,w) =

(
u

w + 1
,

v

w + 1

)
.

for all (u, v ,w) ∈ S2 \ {(0, 0,−1)}.



6. Stereographic Projection (continued)

Proposition 6.1

Let S2 be the unit sphere in R3, defined so that

S2 = {(u, v ,w) ∈ R3 : u2 + v2 + w2 = 1},

and let ψ : S2 \ {(0, 0,−1)} → R2 be the sphereographic projection
mapping defined such that

ψ(u, v ,w) =

(
u

w + 1
,

v

w + 1

)
for all points (u, v ,w) of S2. Then ψ is a bijective mapping whose
inverse maps each point (x , y) of R2 to the corresponding point
(u, v ,w) of S2 \ {(0, 0,−1)} determined by the equations

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.



6. Stereographic Projection (continued)

Proof
Let λ : R2 → R3 be the mapping defined so that

λ(x , y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,

1− x2 − y2

1 + x2 + y2

)
for all points (x , y) of R2. Let (x , y) be an arbitrary point of R2.
Then

(1− x2 − y2)2 = 1 + x4 + y2 + 2x2y2 − 2x2 − 2y2

and

(1 + x2 + y2)2 = 1 + x4 + y2 + 2x2y2 + 2x2 + 2y2

= 4x2 + 4y2 + (1− x2 − y2)2.



6. Stereographic Projection (continued)

It follows that if (u, v ,w) = λ(x , y) then

u2 + v2 + w2 =
4x2 + 4y2 + (1− x2 − y2)2

(1 + x2 + y2)2
= 1

for all real numbers x and y . Also if u = 0 and v = 0 then x = 0,
y = 0 and w = 1. It follows that λ : R2 → R3 maps R2 into
S2 \ {(0, 0,−1)}.



6. Stereographic Projection (continued)

Moreover

w =
1− x2 − y2

1 + x2 + y2
=

2

1 + x2 + y2
− 1,

and therefore

u =
2x

1 + x2 + y2
= (w + 1)x

and

v =
2y

1 + x2 + y2
= (w + 1)y

It follows that (x , y) = ψ(u, v ,w). Thus the
ψ : S2 \ {(0, 0,−1)} → R2 is surjective.



6. Stereographic Projection (continued)

Now let (u, v ,w) be an element of S2 distinct from (0, 0,−1)
Then u, v and w are real numbers for which w 6= −1 and
u2 + v2 + w2 = 1. Let (x , y) = ψ(u, v ,w), where ψ is the map
from S2 \ {(0, 0,−1)} to R2 defined by stereographic projection
from the point (0, 0,−1). Then

x =
u

w + 1
and y =

v

w + 1
,

and therefore

1 + x2 + y2 =
(w + 1)2 + u2 + v2

(w + 1)2
=

u2 + v2 + w2 + 2w + 1

(w + 1)2

=
2w + 2)

(w + 1)2
=

2

w + 1
,



6. Stereographic Projection (continued)

It follows that

w + 1 =
2

1 + x2 + y2
,

and therefore

u = (w + 1)x =
2x

1 + x2 + y2
,

v = (w + 1)y =
2y

1 + x2 + y2
,

w =
2

1 + x2 + y2
− 1 =

1− x2 − y2

1 + x2 + y2
.

Thus (u, v ,w) = λ(x , y). We conclude therefore that
(u, v ,w) = λ(ψ(u, v ,w)) for all (u, v ,w) ∈ S2 \ {(0, 0,−1)}. It
follows directly from that that the mapping
ψ : S2 \ {(0, 0,−1)} → R2 is injective.



6. Stereographic Projection (continued)

We have now shown that the mapping ψ : S2 \ {(0, 0,−1)} → R2

is both surjective and injective. It is therefore a bijective mapping
establishing a one-to-one correspondence between points of
S2 \ {(0, 0,−1)} and points of R2. We have also shown that, for
each point (u, v ,w) of S2 \ {(0, 0,−1)}, if (x , y) = ψ(u, v ,w)
then (u, v ,w) = λ(x , y) and therefore

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.

The result follows.



6. Stereographic Projection (continued)

6.2. Images of Circles under Sphereographic Projection

Let (`.m.n) and (u, v ,w) be points of the unit sphere S2 in R3,
where `2 + m2 + n2 = 1 and u2 + v2 + w2 = 1. Then

`u + mv + nw = cos θ,

where θ is the angle, at the centre of the sphere, between the line
segments joining the centre to the given points. It follows that a
subset C of S2 is a circle on the sphere if and only if it takes the
form

C = {(u, v ,w) ∈ S2 : `u + mv + nw = c},

where c , l , m and n are constants for which `2 + m2 + n2 = 1 and
−1 < c < 1.



6. Stereographic Projection (continued)

Let ψ : S2 \ {(0, 0,−1)} → R2 be the stereographic projection
mapping that projects the complement of the point (0, 0,−1) onto
the plane. It follows from Proposition 6.1 that ψ(u, v ,w) = (x , y)
for all (u, v ,w) ∈ S2, where

x =
u

w + 1
, y =

v

w + 1
.

Moreover

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and v =

1− x2 − y2

1 + x2 + y2
.



6. Stereographic Projection (continued)

Proposition 6.2

Let S2 be the unit sphere in R3, defined so that

S2 = {(u, v ,w) ∈ R3 : u2 + v2 + w2 = 1},

and let ψ : S2 \ {(0, 0,−1)} → R2 be the stereographic projection
mapping that projects the complement of the point (0, 0,−1) onto
the plane. Then the circles on S2 that pass through the point
(0, 0,−1) are in one-to-one correspondence under this
stereographic projection mapping with straight lines in the plane.
Specifically let `, m and n be real constants satisfying the
conditions `2 + m2 + n2 = 1 and −1 < n ≤ 0. Then the circle on
the unit sphere consisting of those points of the sphere whose
Cartesian coordinates u, v and w satisfy the equation

`u + mv + nw = −n



6. Stereographic Projection (continued)

corresponds under stereographic projection to the line in R2

consisting of those points of the plane whose Cartesian coordinates
x and y satisfy the equation px + qy = k , where

p =
`√

`2 + m2
, q =

m√
`2 + m2

and k =

√
1

`2 + m2
− 1.

Also, given real constants p, q and k , where p2 + q2 = 1, let

` =
p√

k2 + 1
, m =

q√
k2 + 1

and n = − k√
k2 + 1

.

Then the line in R2 expressed in Cartesian coordinates x and y by
the equation px + qy = k is the image under stereographic
projection of the circle on the unit sphere where that sphere
intersects the plane `u + mv + nw = −n.



6. Stereographic Projection (continued)

Proof
Let C be a circle on S2 that passes through the point (0, 0,−1)
Then

C = {(u, v ,w) ∈ S2 : `u + mv + nw = −n},

where `, m and n are real constants satisfying the condition
`2 + m2 + n2 = 1 and −1 < n ≤ 0. Let (x , y) be the image of a
point (u, v ,w) on the circle C under stereographic projection from
the point (0, 0,−1). Then

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2

(see Proposition 6.1), The equation `u + mv + nw = −n satisfied
by u, v and w then ensures that

`x + my = −n =
√

1− `2 −m2.



6. Stereographic Projection (continued)

Moreover every point on the line in R2 determined by this equation
is the image under stereographic projection of some point on the
circle C . Also the requirements that `2 + m2 + n2 = 1 and
−1 < n ≤ 0 together ensure that 0 < `2 + m2 ≤ 1.

Setting p = `/
√
`2 + m2 and q = m/

√
`2 + m2, we see that the

equation of the line can be written in the form

px + qy = k ,

where p2 + q2 = 1 and

k =

√
1

`2 + m2
− 1.



6. Stereographic Projection (continued)

Now, given any line in the plane R2, there exist real numbers p, q
and k , where p2 + q2 = 1, for which the equation of the line takes
the form

px + qy = k .

Let

` =
p√

k2 + 1
, m =

q√
k2 + 1

and n =
−k√
k2 + 1

.

Then `2 + m2 + n2 = 1 and −1 < n ≤ 0. The line px + qy = k is
then the image under stereographic projection of the circle
consisting of points on the unit sphere whose displacement vector
from the centre of the sphere makes an angle θ the direction of the
vector (l ,m, n), where cos θ = −n. The result follows.



6. Stereographic Projection (continued)

Proposition 6.3

Let S2 be the unit sphere in R3, defined so that

S2 = {(u, v ,w) ∈ R3 : u2 + v2 + w2 = 1},

and let ψ : S2 \ {(0, 0,−1)} → R2 be the stereographic projection
mapping that projects the complement of the point (0, 0,−1) onto
the plane. Then Then the circles on S2 that do not pass through
the point (0, 0,−1) are in one-to-one correspondence under this
stereographic projection mapping with circles in the Euclidean
plane. Specifically the circle on the unit sphere consisting of those
points of the sphere whose Cartesian coordinates u, v and w
satisfy the equation `u + mv + nw = c, where `2 + m2 + n2 = 1,
−1 < c < 1 and c 6= −n corresponds under stereographic
projection to the circle in R2 consisting of those points of the
plane whose Cartesian coordinates x and y satisfy the equation
(x − a)2 + (y − b)2 = r2, where



6. Stereographic Projection (continued)

a =
`

c + n
, b =

m

c + n
and r =

√
1− c2

|c + n|
.

Conversely, given real constants a, b and r , where r > 0, the circle
in R2 of radius r centred on the point (a, b) is the image under
stereographic projection of the circle on the unit sphere where that
sphere intersects the plane consisting of those points (u, v ,w) of
R3 that satisfy the equation

2au + 2bv + (1 + r2 − a2 − b2)w = 1− r2 + a2 + b2.



6. Stereographic Projection (continued)

Proof
Let C be a circle on the unit sphere S2 in R3 that does not pass
through the point (0, 0, 1). Then there exist real numbers `, m, n
and c satisfying the conditions `2 + m2 + n2 = 1, −1 < c < 1 and
c 6= −n such that

C = {(u, v ,w) ∈ S2 : `u + mv + nw = c}.

Let (x , y) be the image of a point (u, v ,w) on the circle C under
stereographic projection from the point (0, 0,−1). Then

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2

(see Proposition 6.1), and therefore

2`x + 2my + n(1− x2 − y2) = c(1 + x2 + y2).



6. Stereographic Projection (continued)

Moreover every point on the curve in R2 determined by this
equation is the image under stereographic projection of some point
on the circle C .

Now c + n 6= 0. It follows that point of the plane lies on the curve

2`x + 2my + n(1− x2 − y2) = c(1 + x2 + y2)

if and only if
x2 + y2 − 2ax − 2by + s = 0,

where

a =
`

c + n
, b =

m

c + n
and s =

c − n

c + n
.



6. Stereographic Projection (continued)

The equation
x2 + y2 − 2ax − 2by + s = 0

may be expressed in the form

(x − a)2 + (y − b)2 = r2,

where

r2 = a2 + b2 − s =
`2 + m2 + n2 − c2

(c + n)2

=
1− c2

(c + n)2
.

(We have used here the condition that `2 + m2 + n2 = 1.)



6. Stereographic Projection (continued)

It follows that, under stereographic projection from the point
(0, 0,−1) the image of the circle on the unit sphere along which
the unit sphere intersects the plane

`u + mv + nw = c

(where `2 + m2 + n2 = 1 and −1 < c < 1) is the circle of radius r
about the point (a, b) of R2, where

a =
`

c + n
, b =

m

c + n
and r =

√
1− c2

|c + n|
.



6. Stereographic Projection (continued)

Now let a, b and r be real numbers, where r > 0. We determine
which points (u, v ,w) of the unit sphere u2 + v2 + w2 = 1 are
mapped by stereographic projection onto the circle of radius r
centred on the point (a, b) of the Euclidean plane. Such points
must satisfy the equation(

u

w + 1
− a

)2

+

(
v

w + 1
− b

)2

= r2.

Expanding out, we find that

u2 + v2

(w + 1)2
− 2au + 2bv

w + 1
+ a2 + b2 = r2.

But u2 + v2 = 1− w2 = (w + 1)(1− w). It follows that

1− w − 2au − 2bv

w + 1
= r2 − a2 − b2,

and therefore

2au + 2bv + (1 + r2 − a2 − b2)w = 1− r2 + a2 + b2.



6. Stereographic Projection (continued)

Now
(2a)2 + (2b)2 + (1 + r2 − a2 − b2)2 = K 2,

where

K =
√

(1 + a2 + b2)2 + 2(1− a2 − b2)r2 + r4.

The equation satisfied by the points on the unit sphere that map
under projection to the circle of radius r about a point (a, b) of R2

therefore takes the form

`u + mv + nw = c,

where `2 + m2 + n2 = 1, provided we take

` =
2a

K
, m =

2b

K
, n =

1 + r2 − a2 − b2

K
,

and

c =
1 + a2 + b2 − r2

K
.
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Moreover

c2K 2 = (1 + a2 + b2)2 − 2(1 + a2 + b2)r2 + r4 = K 2 − 4r2,

and therefore c2 < 1. Thus −1 < c < 1. The result follows.



6. Stereographic Projection (continued)

6.3. Stereographic Projection: A Vector Algebra Approach

Let S2 denote the unit sphere in R3, defined so that

{r ∈ R3 : |r| = 1}.

let Q be a fixed element of S2, let

ΠQ = {r ∈ R3 : Q . r = 0},

and let TQ : R3 → ΠQ be the linear transformation characterized by
the requirement that TQ(p + λQ) = p for all p ∈ ΠQ and λ ∈ R.
Then the point Q determines a stereographic projection mapping

ψQ : S2 \ {Q} → ΠQ,

where

ψQ(r) =
1

1−Q . r
r − Q . r

1−Q . r
Q.



6. Stereographic Projection (continued)

Note that, for all elements r of S2 distinct from Q, the point ψQ(r)
lies on the line passing through the points r and Q. Moreover

Q . ψQ(r) =
1

1−Q . r
Q . r − Q . r

1−Q . r
Q .Q = 0,

because Q .Q = 1. It follows that ψQ(r) ∈ ΠQ for all r ∈ S2 \ {Q}.



6. Stereographic Projection (continued)

Now

|ψQ(r)|2 =
1

(1−Q . r)2
(r − (Q . r)Q) . (r − (Q . r)Q)

=
1

(1−Q . r)2
(1− (Q . r)2)

=
1 + Q . r

1−Q . r

for all r ∈ S2 \ {Q}, because Q .Q = 1 and r . r = 1. Then

|ψQ(r)|2 − 1 = Q . r(1 + |ψQ(r)|2),

and therefore

Q . r =
|ψQ(r)|2 − 1

1 + |ψQ(r)|2
,



6. Stereographic Projection (continued)

Thus

1−Q . r =
2

1 + |ψQ(r)|2
.

It follows that

r = (1−Q . r)ψQ(r) + (Q . r)Q

=
2

1 + |ψQ(r)|2
ψQ(r) +

|ψQ(r)|2 − 1

1 + |ψQ(r)|2
Q.

Thus r = λQ(ψQ(r)) for all r ∈ S2 \ {Q}, where

λQ : ΠQ → R3

is the mapping from the plane ΠQ through the origin perpendicular
to the vector Q to R3 defined such that

λQ(p) =
2

1 + |p|2
p +
|p|2 − 1

1 + |p|2
Q

for all p ∈ ΠQ.



6. Stereographic Projection (continued)

Let S2 denote the sphere of unit radius in R3 centred on the
origin O, let Q be a point of S2, and let ΠQ denote the plane
through the origin O perpendicular to the line OQ. For each
point P of the sphere S2 that is distinct from Q, let ψ(P) denote
the image of P under stereographic projection from Q. Then, for
each point P of S2 distinct from the fixed point Q, ψ(P) is the
unique point of the plane ΠQ at which that plane intersects the
line passing through both P and Q.

For each point P of the sphere S2 let TP denote the tangent plane
to S2 at the point P. Then, for each point P of S2 the tangent
plane TP is the union of all lines passing through the point P that
are perpendicular to the radius vector OP.



6. Stereographic Projection (continued)

Proposition 6.4

Let S2 be the unit sphere centered at the origin O, let Q be a
fixed point of S2, let ΠQ be the plane passing through the origin O
that is perpendicular to the line OQ, and let ψ : S2 \ {0} → ΠQ be
the mapping implementing stereographic projection from the
point Q onto the plane ΠQ . Then the mapping ψ is an
angle-preserving mapping from S2 \ {0} to ΠQ .



6. Stereographic Projection (continued)

Proof
Let Q be a fixed point of the unit sphere S2, let P be a point of
S2 distinct from the point Q, let ΠQ denote the plane through the
origin perpendicular to the radius vector OQ, and let ψ(P) be the
image of P under stereographic projection from the point Q, so
that ψ(P) is the unique point of the plane ΠQ at which that plane
intersects the line passing through both P and Q. Let L1 and L2
be distinct lines contained in the tangent plane TP to the unit
sphere S2 at the point P, that intersect at the point P. Then
L1 ⊂ TP , L2 ⊂ TP and L1 ∩ L2 = {P}. Let Π1 denote the unique
plane in R3 that contains both the line L1 and the point Q, and let
Π2 denote the unique plane in R3 that contains both the line L2
and the point Q. Let M1 and M2 denote the distinct lines in the
tangent plane TQ to the unit sphere at the point Q along which
which the tangent plane TQ intersects the planes Π1 and Π2.
Then M1 = Π1 ∩ TQ , M2 = Π2 ∩ TQ and M1 ∩M2 = {Q}.
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Let Λ denote the plane in R3 consisting of all points of R3 that are
equidistant from the points P and Q, and let τ : R3 → R3 denote
the reflection of the space R3 in the plane Λ. Then the plane Λ
contains the centre O of the unit sphere S2, located at the origin.
Also the line segment PQ from P to Q is perpendicular to the
plane Λ and is bisected by Λ. It follows that τ(P) = Q. Also
τ(Π1) = Π1, because the plane contains a line, namely the line
PQ, which is perpendicular to the plane Λ, and similarly
τ(Π2) = Π2. Also the mapping τ : R3 → R3 preserves lengths and
angles, and therefore τ(TP) = TQ . It follows that

τ(L1) = τ(TP ∩ Π1) = τ(TP) ∩ τ(Π1) = TQ ∩ Π1 = M1,

and similarly τ(L2) = M2.
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The angle-preserving property of the reflection τ therefore ensures
that the angle between the lines L1 and L2 at their point P of
intersection is equal to the angle between the lines M1 and M2 at
their point Q of intersection.
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Let N1 and N2 denote the lines along which the plane ΠQ through
the origin O perpendicular to OQ cuts the planes Π1 and Π2

respectively. Then N1 = ΠQ ∩ Π1 and N2 = ΠQ ∩ Π2. The plane
ΠQ is parallel to the tangent plane TQ at the point Q. It follows
that the lines N1 and N2 are parallel to the lines M1 and M2.
Therefore the angle between the lines N1 and N2 at their point
ψ(P) of intersection is equal to the angle between the lines M1 and
M2 at their point Q of intersection, and is therefore equal to the
angle between the lines L1 and L2 at their point P of intersection.

Let C1 and C2 denote the circles on the unit sphere S2 along
which the unit sphere cuts the planes Π1 and Pi2 respectively.
Then the line L1 is tangent to C1 at the point P, and similarly the
line L2 is tangent to C2 at the point P. Now the point Q belongs
to the both the planes Π1 and Π2. It follows from the definition of
stereographic projection that ψ(C1) ⊂ Π1 and ψ(C2) ⊂ Π2.



6. Stereographic Projection (continued)

But ψ(C1) ⊂ ΠQ , ψ(C2) ⊂ ΠQ , ΠQ ∩Π1 = N1 and ΠQ ∩Π2 = N2.
It follows that ψ(C1) ⊂ N1 and ψ(C2) ⊂ N2. Moreover all points of
the line N1 are the images of points of S2 ∩Π1 under stereographic
projection. It follows that ψ(C1) = N1. Similarly ψ(C2) = N2.

Now the angle between the circles C1 and C2 at the point P is
equal to the angle between their tangent lines L1 and L2 at the
point P. This angle has been shown to be equal to the angle
between the lines N1 and N2. Therefore the stereographic
projection mapping ψ : S2 \ {Q} → ΠQ is angle-preserving, as
required.
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