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5. Vector Algebra and Spherical Trigonometry (continued)

5.1. Vectors in Three-Dimensional Euclidean Space

A 3-dimensional vector v in the vector space R3 can be represented
as a triple (v1, v2, v3) of real numbers. Vectors in R3 are added
together, subtracted from one another, and multiplied by real
numbers by the usual rules, so that

(u1, u2, u3) + (v1, v2, v3) = (u1 + v1, u2 + v2, u3 + v3),

(u1, u2, u3)− (v1, v2, v3) = (u1 − v1, u2 − v2, u3 − v3),

t(u1, u2, u3) = (tu1, tu2, tu3)

for all vectors (u1, u2, u3) and (v1, v2, v3) in R3, and for all real
numbers t.
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The operation of vector addition is commutative and associative.
Also 0 + v = v for all v ∈ R3, where 0 = (0, 0, 0), and
v + (−v) = 0 for all v ∈ R3, where −(v1, v2, v3) = (−v1, v2, v3) for
all (v1, v2, v3) ∈ R3. Moreover

u− v = u + (−v), t(u + v) = tu + tv, (s + t)v = sv + tv,

s(tv) = (st)v, 1v = v

for all u, v ∈ R3 and s, t ∈ R.
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The set of all vectors in three-dimensional space, with the usual
operations of vector addition and of scalar multiplication constitute
a three-dimensional real vector space.

The Euclidean norm |v| of a vector v is defined so that if
v = (v1, v2, v3) then

|v| =
√
v21 + v22 + v23 .

The scalar product u . v and the vector product u× v of vectors u
and v are defined such that

(u1, u2, u3) . (v1, v2, v3) = u1v1 + u2v2 + u3v3,

(u1, u2, u3)× (v1, v2, v3)

= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

for all vectors (u1, u2, u3) and (v1, v2, v3) in R3. Then
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(u + v) .w = u .w + v .w, u . (v + w) = u . v + u .w,

(u + v)×w = u×w + v ×w,

(tu) . v = u . (tv) = t(u . v), (tu)× v = u× (tv) = t(u× v)

u . v = v . u, u . u = |u|2, u× v = −v × u

for all u, v,w ∈ R3 and t ∈ R.
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The unit vectors i, j, k of the standard basis of R3 are defined so
that

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Then
i . i = j . j = k . k = 1,

i . j = j . i = j . k = k . j = k . i = i . k = 0,

i× i = j× j = k× k = 0,

i× j = −j× i = k, j× k = −k× j = i, i× j = −j× i = k.
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Let A and B be points in three-dimensional Euclidean space.
These points may be represented in Cartesian coordinates so that

A = (a1, a2, a3), B = (b1, b2, b3).

The displacement vector
−→
AB from A to B is defined such that

−→
AB = (b1 − a1, b2 − a2, b3 − a3).

If A, B and C are points in three-dimensional Euclidean space then

−→
AB +

−→
BC =

−→
AC .

Points A, B, C and D of three-dimensional Euclidean space are the
vertices of a parallelogram (labelled in clockwise or anticlockwise)

order if and only if
−→
AB =

−→
DC and

−→
AD =

−→
BC .
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Let the origin O be the point with Cartesian coordinates. The
position vector of a point A (with respect to the chosen origin) is

defined to be the displacement vector
−→
OA.
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5.2. Geometrical Interpretation of the Scalar Product

Let u and v be vectors in three-dimensional space, represented in
some Cartesian coordinate system by the ordered triples (u1, u2, u3)
and (v1, v2, v3) respectively. The scalar product u . v of the vectors
u and v is then given by the formula

u . v = u1v1 + u2v2 + u3v3.
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Proposition 5.1

Let u and v be non-zero vectors in three-dimensional space. Then
their scalar product u . v is given by the formula

u . v = |u| |v| cos θ,

where θ denotes the angle between the vectors u and v.



5. Vector Algebra and Spherical Trigonometry (continued)

Proof
Suppose first that the angle θ between the vectors u and v is an
acute angle, so that 0 < θ < 1

2π. Let us consider a triangle ABC ,

where
−→
AB = u and

−→
BC = v, and thus

−→
AC = u + v. Let ADC be

the right-angled triangle constructed as depicted in the figure
below, so that the line AD extends AB and the angle at D is a
right angle.

A

B

C

D

u

v
u+ v

θ
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Then the lengths of the line segments AB, BC , AC , BD and CD
may be expressed in terms of the lengths |u|, |v| and |u + v| of the
displacement vectors u, v and u + v and the angle θ between the
vectors u and v by means of the following equations:

AB = |u|, BC = |v|, AC = |u + v|,

BD = |v| cos θ and DC = |v| sin θ.

Then
AD = AB + BD = |u|+ |v| cos θ.
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A

B

C

D

u

v
u+ v

θ

The triangle ADC is a right-angled triangle with hypotenuse AC .
It follows from Pythagoras’ Theorem that

|u + v|2 = AC 2 = AD2 + DC 2 = (|u|+ |v| cos θ)2 + |v| sin2 θ

= |u|2 + 2|u| |v| cos θ + |v| cos2 θ + |v| sin2 θ

= |u|2 + |v|2 + 2|u| |v| cos θ,

because cos2 θ + sin2 θ = 1.
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Let u = (u1, u2, u3) and v = (v1, v2, v3). Then

u + v = (u1 + v1, u2 + v2, u3 + v3),

and therefore

|u + v|2 = (u1 + v1)2 + (u2 + v2)2 + (u3 + v3)2

= u21 + 2u1v1 + v21 + u22 + 2u2v2 + v22

+ u23 + 2u3v3 + v23

= |u|2 + |v|2 + 2(u1v1 + u2v2 + u3v3)

= |u|2 + |v|2 + 2u . v.

On comparing the expressions for |u + v|2 given by the above
equations, we see that u . v = |u| |v| cos θ when 0 < θ < 1

2π.



5. Vector Algebra and Spherical Trigonometry (continued)

The identity u . v = |u| |v| cos θ clearly holds when θ = 0 and
θ = π. Pythagoras’ Theorem ensures that it also holds when the
angle θ is a right angle (so that θ = 1

2π. Suppose that
1
2π < θ < π, so that the angle θ is obtuse. Then the angle
between the vectors u and −v is acute, and is equal to π − θ.
Moreover cos(π − θ) = − cos θ for all angles θ. It follows that

u . v = −u . (−v) = −|u| |v| cos(π − θ) = |u| |v| cos θ

when 1
2π < θ < π. We have therefore verified that the identity

u . v = |u| |v| cos θ holds for all non-zero vectors u and v, as
required.
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Corollary 5.2

Two non-zero vectors u and v in three-dimensional space are
perpendicular if and only if u . v = 0.

Proof
It follows directly from Proposition 5.1 that u . v = 0 if and only if
cos θ = 0, where θ denotes the angle between the vectors u and v.
This is the case if and only if the vectors u and v are perpendicular.
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5.3. Geometrical Interpretation of the Vector Product

Let a and b be vectors in three-dimensional space, with Cartesian
components given by the formulae a = (a1, a2, a3) and
b = (b1, b2, b3). The vector product a× b is then determined by
the formula

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).



5. Vector Algebra and Spherical Trigonometry (continued)

Proposition 5.3

Let a and b be vectors in three-dimensional space R3. Then their
vector product a× b is a vector of length |a| |b| | sin θ|, where θ
denotes the angle between the vectors a and b. Moreover the
vector a× b is perpendicular to the vectors a and b.

Proof
Let a = (a1, a2, a3) and b = (b1, b2, b3), and let l denote the
length |a× b|
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of the vector a× b. Then

l2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

= a22b
2
3 + a23b

2
2 − 2a2a3b2b3

+ a23b
2
1 + a21b

2
3 − 2a3a1b3b1

+ a21b
2
2 + a22b

2
1 − 2a1a2b1b2

= a21(b22 + b23) + a22(b21 + b23) + a23(b21 + b22)

− 2a2a3b2b3 − 2a3a1b3b1 − 2a1a2b1b2

= (a21 + a22 + a23)(b21 + b22 + b23)

− a21b
2
1 − a22b

2
2 − a23b

2
3 − 2a2b2a3b3

− 2a3b3a1b1 − 2a1b1a2b2

= (a21 + a22 + a23)(b21 + b22 + b23)− (a1b1 + a2b2 + a3b3)2

= |a|2|b|2 − (a . b)2

since
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|a|2 = a21+a22+a23, |b|2 = b21+b22+b23, a.b = a1b1+a2b2+a3b3

But a . b = |a| |b| cos θ (Proposition 5.1). Therefore

l2 = |a|2|b|2(1− cos2 θ) = |a|2|b|2 sin2 θ

(since sin2 θ + cos2 θ = 1 for all angles θ) and thus
l = |a| |b| | sin θ|. Also

a .(a×b) = a1(a2b3−a3b2)+a2(a3b1−a1b3)+a3(a1b2−a2b1) = 0

and

b.(a×b) = b1(a2b3−a3b2)+b2(a3b1−a1b3)+b3(a1b2−a2b1) = 0

and therefore the vector a× b is perpendicular to both a and b
(Corollary 5.2), as required.
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5.4. Scalar Triple Products

Given three vectors u, v and w in three-dimensional space, we can
form the scalar triple product u . (v ×w). This quantity can be
expressed as the determinant of a 3× 3 matrix whose rows contain
the Cartesian components of the vectors u, v and w. Indeed

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1),

and thus

u . (v×w) = u1(v2w3−v3w2)+u2(v3w1−v1w3)+u3(v1w2−v2w1).

The quantity on the right hand side of this equality defines the
determinant of the 3× 3 matrix u1 u2 u3

v1 v2 v3
w1 w2 w3

 .
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We have therefore obtained the following result.
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Proposition 5.4

Let u, v and w be vectors in three-dimensional space. Then

u . (v ×w) =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
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Corollary 5.5

Let u, v and w be vectors in three-dimensional space. Then

u . (v ×w) = v . (w × u) = w . (u× v)

= −u . (w × v) = −v . (u×w) = −w . (v × u).

Proof
The basic theory of determinants ensures that 3× 3 determinants
are unchanged under cyclic permutations of their rows by change
sign under transpositions of their rows. These identities therefore
follow directly from Proposition 5.4.
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5.5. The Vector Triple Product Identity

Proposition 5.6 (Vector Triple Product Identity)

Let u, v and w be vectors in three-dimensional space. Then

u× (v ×w) = (u .w) v − (u . v)w

and
(u× v)×w = (u .w) v − (v .w)u.

Proof
Let q = u× (v ×w), and let u = (u1, u2, u3), v = (v1, v2, v3),
w = (w1,w2,w3), and q = (q1, q2, q3). Then
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v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

and hence u× (v ×w) = q = (q1, q2, q3), where

q1 = u2(v1w2 − v2w1)− u3(v3w1 − v1w3)

= (u2w2 + u3w3)v1 − (u2v2 + u3v3)w1

= (u1w1 + u2w2 + u3w3)v1 − (u1v1 + u2v2 + u3v3)w1

= (u .w)v1 − (u . v)w1

Similarly
q2 = (u .w)v2 − (u . v)w2

and
q3 = (u .w)v3 − (u . v)w3
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(In order to verify the formula for q2 with an minimum of
calculation, take the formulae above involving q1, and cyclicly
permute the subcripts 1, 2 and 3, replacing 1 by 2, 2 by 3, and 3
by 1. A further cyclic permutation of these subscripts yields the
formula for q3.) It follows that

q = (u .w) v − (u . v)w,

as required, since we have shown that the Cartesian components of
the vectors on either side of this identity are equal. Thus

u× (v ×w) = (u .w) v − (u . v)w.

On replacing u, v and w by w, u and v respectively, we find that

w × (u× v) = (w . v)u− (w . u) v.

It follows that

(u× v)×w = −w × (u× v) = (u .w) v − (v .w)u,

as required.
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Remark
When recalling these identities for use in applications, it is often
helpful to check that the summands on the right hand side have
the correct sign by substituting, for example, i, j and i for u, v and
w, where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Thus, for example, (i× j)× i = k× i = j and (i.i)j− (j.i)i = j. This
helps check that the summands on the right hand side of the
identity (u× v)×w = (u .w) v − (v .w)u have been chosen with
the correct sign (assuming that these summands have opposite
signs).

We present below a second proof making use of the following
standard identity.
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Proposition 5.7

Let εi ,j ,k and δi ,j be defined for i , j , k ∈ {1, 2, 3} such that

εi ,j ,k =


1 if (i , j , k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)};
−1 if (i , j , k) ∈ {(1, 3, 2), (2, 1, 3), (3, 2, 1)};

0 otherwise.

and

δi ,j =

{
1 if i = j ;
0 otherwise.

Then
3∑

i=1

εi ,j ,k εi ,m,n = δj ,mδk,n − δj ,nδk,m

for all i , j ,m ∈ {1, 2, 3}.
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Proof
Suppose that j = k . Then εi ,j ,k = 0 for i = 1, 2, 3 and thus the left
hand side is zero. The right hand side is also zero in this case,
because

δj ,mδk,n − δj ,nδk,m = δj ,mδk,n − δk,nδj ,m = 0

when j = k. Thus
3∑

i=1
εi ,j ,k εi ,m,n = δj ,mδk,n − δj ,nδk,m = 0 when

j = k . Similarly
3∑

i=1
εi ,j ,k εi ,m,n = δj ,mδk,n − δj ,nδk,m = 0 when

m = n.
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Next suppose that j 6= k and m 6= n but {j , k} 6= {m, n}. In this
case the single value of i in {1, 2, 3} for which εi ,j ,k 6= 0 does not
coincide with the single value of i for which εi ,m,n 6= 0, and

therefore
3∑

i=1
εi ,j ,k εi ,m,n = 0. Moreover either j 6∈ {m, n}, in which

case δj ,m = δj ,n = 0 and thus δj ,mδk,n − δj ,nδk,m = 0, or else
k 6∈ {m, n}, in which case δk,m = δk,n = 0 and thus
δj ,mδk,n − δj ,nδk,m = 0.
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It follows from all the cases considered above that
3∑

i=1
εi ,j ,k εi ,m,n = δj ,mδk,n − δj ,nδk,m = 0 unless both j 6= k and

{j , k} = {m, n}. Suppose then that j 6= k and {j , k} = {m, n}.
Then there is a single value of i for which εi ,j ,k 6= 0. For this
particular value of i we find that

εi ,j ,k εi ,m,n =

{
1 if j 6= k , j = m and k = n;
−1 if j 6= k , j = n and k = m.

It follows that, in the cases where j 6= k and {j , k} = {m, n},

3∑
i=1

εi ,j ,k εi ,m,n =


1 if j 6= k , j = m and k = n,
−1 if j 6= k , j = n and k = m,

0 otherwise,

= δj ,mδk,n − δj ,nδk,m,

as required.
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Second Proof of Proposition 5.6
Let p = v ×w and q = u× p = u× (v ×w), and let

u = (u1, u2, u3), v = (v1, v2, v3), w = (w1,w2,w3),

p = (p1, p2, p3) and q = (q1, q2, q3).

The definition of the vector product ensures that

pi =
3∑

j ,k=1

εi ,j ,kvjwk for i = 1, 2, 3, where εi ,j ,k and δi ,j are defined

for i , j , k ∈ {1, 2, 3} as described in the statement of
Proposition 5.7. It follows that
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qm =
3∑

n,i=1

εm,n,i unpi =
3∑

n,i ,j ,k=1

εm,n,iεi ,j ,k unvjwk

=
3∑

n,j ,k=1

3∑
i=1

εi ,m,nεi ,j ,k unvjwk

=
3∑

n,j ,k=1

(δj ,mδk,n − δj ,nδk,m)unvjwk

=
3∑

n,k=1

δk,n vmunwk −
3∑

n,j=1

δj ,n unvjwm

= vm

3∑
k=1

ukwk − wm

3∑
j=1

ujvj

= (u .w)vm − (u . v)wm
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for m = 1, 2, 3, and therefore

u× (v ×w) = q = (u .w) v − (u . v)w,

as required.
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Remark
The identity

αS . α′α′′ − α′S.α′′α = V(V . αα′ . α′′)

occurs as equation (12) in article 22 of William Rowan Hamilton’s
On Quaternions, or on a new System of Imaginaries in Algebra,
published in the Philosophical Magazine in August 1846. Hamilton
noted in that paper that this identity “will be found to have
extensive applications.”
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In Hamilton’s quaternion algebra, vectors in three-dimensional
space are represented as pure imaginary quaternions and are
denoted by Greek letters. Thus α, α′ and α′′ denote (in Hamilton’s
notation) three arbitrary vectors. The product of two vectors α′

and α′′ in Hamilton’s system is a quaternion which is the sum of a
scalar part S . αα′ and a vector part V.αα′. (The scalar and vector
parts of a quaternion are the analogues, in Hamilton’s quaternion
algebra, of the real and imaginary parts of a complex number.)
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Now a quaternion can be represented in the form
s + u1i + u2j + u3k where s, u1, u2, u3 are real numbers. The
operations of quaternion addition, quaternion subtraction and
scalar multiplication by real numbers are defined so that the space
H of quaternions is a four-dimensional vector space over the real
numbers with basis 1, i , j , k . The operation of quaternion
multiplication is defined so that quaternion multiplication is
distributive over addition and is determined by the identities

i2 = j2 = k2 = −1,

ij = −ji = k , jk = −kj = i , ki = −ik = j

that Hamilton formulated in 1843. It then transpires that the
operation of quaternion multiplication is associative.
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Hamilton described his discovery of the quaternion algebra in a
letter to P.G. Tait dated October 15, 1858 as follows:—

. . . P.S.—To-morrow will be the 15th birthday of the
Quaternions. They started into life, or light, full grown,
on [Monday] the 16th of October, 1843, as I was walking
with Lady Hamilton to Dublin, and came up to
Brougham Bridge, which my boys have since called the
Quaternion Bridge. That is to say, I then and there felt
the galvanic circuit of thought close; and the sparks
which fell from it were the fundamental equations
between i, j, k; exactly such as I have used them ever
since.
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I pulled out on the spot a pocket-book, which still exists,
and made an entry, on which, at the very moment, I felt
that it might be worth my while to expend the labour of
at least ten (or it might be fifteen) years to come. But
then it is fair to say that this was because I felt a
problem to have been at that moment solved—an
intellectual want relieved—which had haunted me for at
least fifteen years before.



5. Vector Algebra and Spherical Trigonometry (continued)

Let quaternions q and r be defined such that
q = s + u1i + u2j + u3k and r = t + v1i + v2j + v3k, where
s, t, u1, u2, u3, v1, v2, v3 are real numbers. We can then write
q = s + α and r = t + β, where

α = u1i + u2j + u3k , β = v1i + v2j + v3k .

Hamilton then defined the scalar part of the quaternion q to be the
real number s, and the vector part of the quaternion q to be the
quaternion α determined as described above.
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The Distributive Law for quaternion multiplication and the
identities for the products of i , j and k then ensure that

qr = st + S . αβ + sβ + tα + V . αβ,

where
S . αβ = −(u1v1 + u2v2 + u3v3)

and

V . αβ = (u2v3 − u3v2)i + (u3v1 − u1v3)j + (u1v2 − u2v1)k .

Thus the scalar part S . α′α′′ of the quaternion product α′α′′

represents the negative of the scalar product of the vectors α′ and
α′′, and the vector part V . α′α′′ represents the vector product of
the quaternion αα′. Thus Hamilton’s identity can be represented,
using the now customary notation for the scalar and vector
products, as follows:—

−α(α′ . α′′) + α′(α′′ . α) = (α× α′)× α′′.
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Hamilton’s identity of 1846 (i.e., equation (12) in article 22 of On
quaternions) is thus the Vector Triple Product Identity stated in
Proposition 5.6.
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Corollary 5.8

Let u, v and w be vectors in R3. Then

(u× v)× (u×w) = (u.(v ×w))u.

Proof
Using the Vector Triple Product Identity (Proposition 5.6) and
basic properties of the scalar triple product Corollary 5.5, we find
that

(u× v)× (u×w) = (u.(u×w))v − (v.(u×w))u

= (u.(v ×w))u,

as required.
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5.6. Lagrange’s Quadruple Product Identity

Proposition 5.9 (Lagrange’s Quadruple Product Identity)

Let u, v, w and z be vectors in R3. Then

(u× v) . (w × z) = (u .w)(v . z)− (u . z)(v .w).

Proof
Using the Vector Triple Product Identity (Proposition 5.6) and
basic properties of the scalar triple product Corollary 5.5, we find
that

(u× v) . (w × z) = z.((u× v)×w)

= z.((u .w)v − (v .w)u)

= (u .w)(v . z)− (u . z)(v .w),

as required.
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Remark
Substituting i, j, i and j for u, v, w and z respectively, where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1),

we find that (i× j) . (i× j) = k.k = 1 and
(i . i)(j . j)− (i . j)(j . i) = 1− 0 = 1. This helps check that the
summands on the right hand side have been allocated the correct
sign.
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Second Proof of Proposition 5.9
Let

u = (u1, u2, u3), v = (v1, v2, v3),

w = (w1,w2,w3), z = (z1, z2, z3),

and let εi ,j ,k and δi ,j be defined for i , j , k ∈ {1, 2, 3} as described in
the statement of Proposition 5.7. Then the components of u× v

are the values of
3∑

j ,k=1

εi ,j ,kujvk for i = 1, 2, 3. It follows from

Proposition 5.7 that
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(u× v) . (w × z) =
∑

i ,j ,k,m,n

εi ,j ,k εi ,m,n ujvkwmzn

=
∑

j ,k,m,n

(δj ,mδk,n − δj ,nδk,m) ujvkwmzn

=
∑
j ,k

(ujvkwjzk − ujvkwkzj)

= (u .w)(v . z)− (u . z)(v .w),

as required.
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5.7. Some Applications of Vector Algebra to Spherical Trigometry

Let S2 be the unit sphere

{(x , y , z) ∈ R3 : x2 + y2 + z2 = 1}.

in three-dimensional Euclidean space R3. Each point of S2 may be
represented in the form

(sin θ cosϕ, sin θ sinϕ, cos θ).

Let I , J and K denote the points of S2 defined such that

I = (1, 0, 0), J = (0, 1, 0), K = (0, 0, 1).

We take the origin O of Cartesian coordinates to be located at the
centre of the sphere. The position vectors of the points I , J and K
are then the standard unit vectors i, j and k.
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It may be helpful to regard the point K as representing the “north
pole” of the sphere. The “equator” is then the great circle
consisting of those points (x , y , z) of S2 for which z = 0. Every
point P of S2 is the pole of a great circle on S2 consisting of those
points of S2 whose position vectors are orthogonal to the position
vector p of the point P.
Let A and B be distinct points of S2 with position vectors u and v
respectively. We denote by sinAB and cosAB the sine and cosine
of the angles between the lines joining the centre of the sphere to
the points A and B.
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Lemma 5.10

Let A and B be points on the unit sphere S2 in R3, and let u and
v denote the displacement vectors of those points from the centre
of the sphere. Then

u . v = cosAB

and
u× v = sinAB nA,B ,

where nA,B is a unit vector orthogonal to the plane through the
centre of the sphere that contains the points A and B.
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Proof
The displacement vectors u and v of the points A and B from the
centre of the sphere satisfy |u| = 1 and |v| = 1 (because the
sphere has unit radius). The required identities therefore follows
from basic properties of the scalar and vector products stated in
Proposition 5.1 and Proposition 5.3.
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Lemma 5.11

Let V and W be planes in R3 that are not parallel, and let nV and
vW be the unit vectors orthogonal to the planes V and W , and let
α be the angle between those planes. Then

nV . nW = cosα,

and
nV × nW = sinα u,

where u is a unit vector in the direction of the line of intersection
of the planes V and W .
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Proof
The vectors nV and nW are not parallel, because the planes are
not parallel, and therefore nV × nW is a non-zero vector. Let
t = |nV × nW |. Then nV × nW = tu, where u is a unit vector
orthogonal to both nV and nW . This vector u must be parallel to
both V and W , and must therefore be parallel to the line of
intersection of these two planes. Let v = u× nV and w = u× nW .
Then the vectors v and w are parallel to the planes V and W
respectively, and both vectors are orthogonal to the line of
intersection of these planes. It follows that angle between the
vectors v and w is the angle α between the planes V and W .
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Now the vectors v, w, nV and nW are all parallel to the plane that
is orthogonal to u, the angle between the vectors v and nV is a
right angle, and the angle between the vectors w and nW is also a
right angle. It follows that the angle between the vectors nV and
nW is equal to the angle α between the vectors v and w, and
therefore

nV . nW = v .w = cosα,

nV × nW = v ×w = sinα u.
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These identities can also be verified by vector algebra. Indeed,
using Lagrange’s Quadruple Product Identity, we see that

v .w = (nV × u) . (nW × u)

= (nV . nW )(u . u)− (nV . u)(u . nW )

= nV . nW ,

because u . u = |u|2 = 1 nV . u = 0 and nW . u = 0. Thus
nV . nW = cosα. Also nV × nW is parallel to the unit vector u,
and therefore
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v ×w = (nV × u)× (nW × u) = (u× nV )× (u× nW )

= (u.(nV × nW ))u = nV × nW .

(see Corollary 5.8). It follows that

|nV × nW | = |v ×w| = sinα,

and therefore
nV × nW = sinα u,

as required.
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Proposition 5.12 (Cosine Rule of Spherical Trigonometry)

Let A, B and C be distinct points on the unit sphere in R3, let α
be the angle at A between the great circle through A and B and
the great circle through A and C . Then

cosBC = cosAB cosAC + sinAB sinAC cosα.

Proof
The angle α at A between the great circle AB and the great circle
AC is equal to the angle between the planes through the origin
that intersect the unit sphere in those great circles, and this angle
is in turn equal to the angle between the normal vectors nA,B and
nA,C to those planes, and therefore nA,B . nA,C = cosα (see
Lemma 5.11). Let u, v and w denote the displacement vectors of
the points A, B and C respectively from the centre of the sphere.
Then
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u× v = sinAB nA,B , u×w = sinAC nA,C .

It follows that

(u× v).(u×w) = sinAB sinAC cosα.

But it follows from Lagrange’s Quadruple Product Identity that
Proposition 5.9 that

(u× v) . (u×w) = (u . u)(v .w)− (u .w)(v . u).

But u.u = |u|2 = 1, because the point u lies on the unit sphere.
Therefore

(u×v) . (u×w) = (v .w)− (u .v)(u .w) = cosBC −cosAB cosAC .

Equating the two formulae for (u× v) . (u×w), we find that

cosBC = cosAB cosAC + sinAB sinAC cosα,

as required.
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Second Proof
Let u, v and w denote the displacement vectors of the points A, B
and C respectively from the centre O of the sphere. Without loss
of generality, we may assume that the Cartesian coordinate system
with origin at the centre O of the sphere has been oriented so that

u = (0, 0, 1),

v = (sinAB, 0, cosAB),

w = (sinAC cosα, sinAC sinα, cosAC ).

Then |u| = 1 and |v| = 1. It follows that

cosBC = v .w = cosAB cosAC + sinAB sinAC cosα,

as required.
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Proposition 5.13 (Gauss)

If A, B, C and D denote four points on the sphere, and η the
angle which the arcs AB, CD make at their point of intersection,
then we shall have

cosAC cosBD − cosAD cosBC = sinAB sinCD cos η.

Proof
Let u, v, w and z denote the displacement vectors of the points A,
B, C and D from the centre of the sphere. It follows from
Lagrange’s Quadruple Product Identity (Proposition 5.9) that

(u .w)(v . z)− (u . z)(v .w) = (u× v) . (w × z).
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Now it follows from the standard properties of the scalar and
vector products recorded in the statement of Lemma 5.10 that
u .w = cosAC etc., u× v = sinAB nA,B and w× z = sinCD nC ,D ,
where nA,B is a unit vector orthogonal to the plane through the
origin containing the points A and B, and nC ,D is a unit vector
orthogonal to the plane through the origin containing the points C
and D. Now nA,B . nC ,D = cos η, where cos η is the cosine of the
angle η between these two planes (see Lemma 5.11).
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This angle is also the angle, at the points of intersection, between
the great circles on the sphere that represent the intersection of
those planes with the sphere. It follows that

cosAC cosBD − cosAD cosBC

= (u .w)(v . z)− (u . z)(v .w)

= (u× v) . (w × z)

= sinAB sinCD (nA,B . nC ,D)

= sinAB sinCD cos η,

as required.
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Second Proof
(This proof follows fairly closely the proof given by Gauss in the
Disquisitiones Generales circa Superficies Curvas, published in
1828.) Let the point O be the centre of the sphere, and let P be
the point where the great circle passing through AB intersects the
great circle passing through CD. The angle η is then the angle
between these great circles at the point P. Let the angles between
the line OP and the lines OA, OB, OC and OD be denoted by α,
β, γ, δ respectively (so that cosPA = cosα etc.).
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It then follows from the Cosine Rule of Spherical Trigonometry
(Proposition 5.12) that

cosAC = cosα cos γ + sinα sin γ cos η,

cosAD = cosα cos δ + sinα sin δ cos η,

cosBC = cosβ cos γ + sinβ sin γ cos η,

cosBD = cosβ cos δ + sinβ sin δ cos η.

From these equations it follows that

cosAC cosBD − cosAD cosBC

= cos η
(
cosα cos γ sinβ sin δ + cosβ cos δ sinα sin γ

− cosα cos δ sinβ sin γ − cosβ cos γ sinα sin δ
)

= cos η (cosα sinβ − sinα cosβ)(cos γ sin δ − sin γ cos δ)

= cos η sin(β − α) sin(δ − γ)

= cos η sinAB sinCD,

as required.
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Remark
In his Disquisitiones Generales circa Superficies Curvas, published
in 1828, Gauss proved Proposition 5.13, using the method of the
second of the proofs of that theorem given above.
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Proposition 5.14 (Gauss)

Let A, B and C be three distinct points on the unit sphere that do
not all lie on any one great circle of the sphere, and let p be the
angle which the line from the centre of the sphere to the point C
makes with the plane through the centre of the sphere that
contains the points A and B. Then

sin p = sinA sinAC = sinB sinBC ,

where sinA denotes the sine of the angle between the arcs AB and
AC at A and sinB denotes the sine of the angle between the arcs
BC and AB at B.
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Proof
Let u, v and w denote the displacement vectors of the points A, B
and C from the centre of the sphere. A straightforward application
of the Vector Triple Product Identity shows that

(u× v)× (u×w) = (u.(v ×w))u.

(see Corollary 5.8). Now u× v = sinAB nA,B , where nA,B is a unit
vector orthogonal to the plane spanned by A and B. Similarly
u×w = sinAC nA,C , where nA,C is a unit vector orthogonal to the
plane spanned by A and B. Moreover the vector nA,B × nA,C is
orthogonal to the vectors nA,B and nA,C , and therefore is parallel
to the line of intersection of the plane through the centre of the
sphere containing A and B and the plane through the centre of the
sphere containing A and C . Moreover the magnitude of this vector
is the sine of the angle between them. It follows that
nA,B × nA,C = ± sinAu.
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We note also that u.(v ×w) = w.(u× v). (see Corollary 5.5.)
Putting these identities together, we see that we see that

sinAB sinAC sinA = ±u.(v×w) = ±w.(u×v) = ± sinAB w.nA,B .

Now the cosine of the angle between the unit vector v and the unit
vector nA,C is the sine sin p of the angle between the vector w and
the plane through the centre of the sphere that contains the points
A and B. It follows that w . nA,B = sin p, and therefore

sinAB sinAC sinA = ± sinAB sin p.
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Now the angles concerned are all between 0 and π, and therefore
their sines are non-negative. Also sinAB 6= 0, because A and B are
distinct and are not antipodal points on opposite sides of the
sphere. Dividing by sinAB, we find that

sinA sinAC = sin p.

Interchanging A and B, we find that

sinB sinBC = sin p,

as required.
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Corollary 5.15 (Sine Rule of Spherical Trigonometry)

Let A, B and C be three distinct points on the unit sphere that do
not all lie on any one great circle of the sphere. Then

sinBC

sinA
=

sinAC

sinB
=

sinAB

sinC
,

where sinA denotes the sine of the angle between the arcs AB and
AC at A and sinB denotes the sine of the angle between the arcs
BC and AB at B.
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Proposition 5.16 (Gauss)

Let A, B, C be points on the unit sphere in R3, and let the
point O be at the centre of that sphere. Then the volume V of the
tetrahedron with apex O and base ABC satisfies

V = 1
6 sinA sinAB sinAC ,

where sinAB, sinAC and sinBC are the sines of the angles
between the lines joining the indicated points to the centre of the
sphere, and where sinA, sinB and sinC are the sines of angles of
the geodesic triangle ABC whose vertices are A and B and C and
whose sides are the arcs of great circles joining its vertices.
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Proof
This tetrahedron may be described as the tetrahedron with base
OAB and apex C . Now the area of the base of the tetrahedron is
1
2 sinAB, and the height is sin p, where sin p is the perpendicular
distance from the point C to the plane passing through the centre
of the sphere that contains the points A and B. The volume V of
the tetrahedron is one sixth of the area of the base of the
tetrahedron multiplied by the height of the tetrahedron. On
applying Proposition 5.14 we see that

V = 1
6 sin p sinAB = 1

6 sinA sinAB sinAC .
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Proposition 5.17

Let Π1, Π2 and Π3 be planes in R3 that intersect at a single point,
let n1, n2 and n3 be vectors of unit length normal to Π1, Π2 and
Π3 respectively, let ϕ1 denote the angle between the planes Π1 and
Π3, let ϕ2 denote the angle between the planes Π2 and Π3, and let
θ denote the angle between the lines along which the plane Π3

intersects the planes Π1 and Π2. Then

± sinϕ1 sinϕ2 cos θ = n1 . n2 − (n3.n1)(n3 . n2).
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Proof
The vector n3 × n2 is of length sinϕ2 and is orthogonal to both n2
and n3, and therefore

n3 × n2 = sinϕ2m1.

where m1 is a vector of unit length parallel to the line of
intersection of the planes Π2 and Π3. Similarly

n3 × n1 = sinϕ1m2.

where m2 is a vector of unit length parallel to the line of
intersection of the planes Π1 and Π3. Now cos θ = ±m1 .m2 (see
Proposition 5.1). Applying Lagrange’s Quadruple Product Identity
(Proposition 5.9), we find that
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± sinϕ1 sinϕ2 cos θ = (n3 × n2) . (n3 × n1)

= (n3 . n3)(n1 . n2)− (n3 . n1)(n3 . n2).

= (n1 . n2)− (n3 . n1)(n3 . n2),

as required.
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