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2. Magnitude and Congruence (continued)

2.1. Magnitudes

Propositions in Euclid’s Elements often express relationships
satisfied by sums of magnitudes of the same species. The concept
of magnitude (in Greek, μεγέθος, megethos) is introduced in the
definitions commencing Book V of the Elements. Book V is
concerned with the theory of proportion, determining whether, for
magnitudes of a given species, a first magnitude bears to a second
the same ratio, or a lesser or greater ratio, than a third magnitude
to a fourth magnitude. Nevertheless the concept of comparisons
between magnitudes of some given species clearly underlies the
reasoning of the earlier books. This reasoning is underpinned by
the Common Notions prefixed to Book I of the Elements.



2. Magnitude and Congruence (continued)

Property EP–1

Let some species of magnitude be given whose members can be
compared one with another to determine whether or not the first is
equal to the second. Suppose also that this relation of equality,
which we denote by ≡, conforms to the principles stated as
Common Notions 1 and 4 of Book I of Euclid’s Elements. (Thus
we suppose that any magnitude of the species is equal to itself,
and also that any magnitudes of the species that are equal to the
same magnitude are also equal to one another.) Let α, β and γ be
magnitudes belonging to the species. Then

(i) (Reflexivity) α ≡ α;

(ii) (Symmetry) if α ≡ β then β ≡ α;

(iii) (Transitivity) if α ≡ β and β ≡ γ then α ≡ γ.
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Proof
The relation α ≡ α is an immediate consequence of Common
Notion 4. Thus reflexivity holds.

Suppose that α ≡ β. Now β ≡ β by (i). Thus β and α are
magnitudes that are both equal to the same thing, namely β. It
follows from Common Notion 1 that they are equal to one another,
and therefore β ≡ α. This proves symmetry.

Finally suppose that α ≡ β and β ≡ γ. It follows from symmetry
that γ ≡ β. Thus α and γ are both equal to β. It follows from
Common Notion 1 that α and γ are equal to one another, and
thus α ≡ γ. This proves transitivity, completing the proof.
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Principle EP–2 (Addition of Magnitudes of the Same
Species)

Given a list of magnitudes of the same species, the sum of the
magnitudes in the list will be determined on specifying the
magnitudes that occur in the list, and the number of times that
those magnitudes occur in the list, but the sum of the magnitudes
in the list will not depend on the order in which those elements are
listed.
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Thus, for example, if α, β and γ are magnitudes of the same
species then the sum of the list α, β, γ will be the same as the
sums of the list β, γ, α, the list γ, α, β, the list γ, β, α, the list
β, α, γ and the list α, γ, β.

But, given magnitudes α and β of the same species, the sum of
the magnitudes in the list α, α, β will be greater than the sum of
the magnitudes in the list α, β because the magnitude α occurs
twice in the first list and once in the second list, whilst the
magnitude β occurs once in both lists.
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Many propositions in Euclid’s Elements establish relationships that
can be expressed in the form

α1 + α2 + · · ·+ αp = β1 + β2 + · · ·+ βq,

where α1, α2, . . . , αp and β1, β2, . . . , βq are magnitudes of the
same species.
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Other propositions might express an inequality, asserting for
example that

α1 + α2 + · · ·+ αp < β1 + β2 + · · ·+ βq,

where α1, α2, . . . , αp and β1, β2, . . . , βq are magnitudes of the
same species.
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It may be that an appropriate metaphor would be that of a balance
used in weighing collections of objects. The magnitudes
α1, α2, . . . , αp might be thought of as though they were weights,
to be placed on the left hand side of the balance. The other
magnitudes magnitudes β1, β2, . . . , βq might be thought of as
though they were weights to be placed on the right hand side of the
balance. Then either the weights on the left hand side balance the
weights on the right hand side, in which case equality holds, or else
the weights on one side might overbalance those on the other side.
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Now suppose that a certain species of magnitude is given, and that
the magnitudes belonging to that species can be added together
and that the resulting sums can be compared with one another.
Suppose further that the results of such comparisons are always
consistent with the five common notions stated in Book I of
Euclid’s Elements. Let α1, α2, . . . , αp and β1, β2, . . . , βq and
γ1, γ2, . . . , γr and δ1, δ2, . . . , δs , be lists of magnitudes of the given
species, where each list is a finite list of magnitudes containing at
least one magnitude, and let the sums of the magnitudes in these
four lists be denoted by

p∑
i=1

αi ,

q∑
i=1

βi ,

r∑
i=1

γi and
s∑

i=1

δi

respectively.
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Then Common Notion 2 can be cited to justify the proposition
that if

p∑
i=1

αi ≡
r∑

i=1

γi and

q∑
i=1

βi ≡
s∑

i=1

δi

then
p∑

i=1

αi +

q∑
i=1

βi ≡
r∑

i=1

γi +
s∑

i=1

δi .

Similarly Common Notion 3 can be cited to justify the proposition
that if

p∑
i=1

αi +

q∑
i=1

βi ≡
r∑

i=1

γi +
s∑

i=1

δi and

q∑
i=1

βi ≡
s∑

i=1

δi

then
p∑

i=1

αi ≡
r∑

i=1

γi .



2. Magnitude and Congruence (continued)

2.2. Addition of Line Segments and Angles

Principle EP–3 (Addition of Successive Line Segments)

If a line segment is partitioned by division points into subsegments,
then the line segment is equal to the sum of the subsegments.

Thus, for example, if a line segment [AD] is partitioned by division
points B and C into subsegments [AB], [BC ] and [CD], where B
lies between A and C and C lies between B and D, the line
segment [AD] is equal to the sum of the subsegments [AB], [BC ]
and [CD].

A B C D
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If we denote the magnitudes of the line segments [AB], [BC ], [CD]
and [AD] by |AB|, |BC |, |CD| and |AD| respectively, then the
assertion that the line segment |AD| is equal to the sum of the line
segments [AB], [BC ], [CD]

A B C D

may be represented symbolically as follows:

|AD| = |AB|+ |BC |+ |CD|.

In a similar fashion we may denote the magnitude of an angle
∠ABC at the point B using the notation |∠ABC |.
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Principle EP–4 (Addition of Rectilineal Angles)

Let A, B, C , and D be points in the plane, where the points A, B
and C are not collinear, and where the point D lies in the interior
of the angle ∠BAC . Then the angle ∠BAC is equal to the sum of
the angles BAD and DAC ; thus, in symbols,

|∠BAC | = |∠BAD|+ |∠DAC |.

A B

C D
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Moreover the angles BAD and DAC are parts of the angle ∠BAC ,
and therefore the angles BAD and DAC are both less than BAC ;
thus, in symbols

|∠BAD| < |∠BAC | and |∠DAC | < |∠BAC |.

A B

C D
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2.3. The Homogeneity and Isotropy of the Euclidean Plane

A few proofs in Euclid rely on the procedure of applying a
geometrical figure such as a triangle to a given line segment. Let
M be a geometric figure, such as a triangle, in a given plane, let A
and B be distinct points forming part of the geometric figure M,
and let P and Q be two other distinct points in that plane. Euclid
presumes that the geometric figure M can be applied to the line
segment [PQ], moving the figure in the plane, placing it so as to
obtain a geometrical figure M ′ in which the point A′ corresponding
to the point A of the original figure M coincides with the point P
and the point B ′ of M ′ corresponding to the point B of M lies on
the ray (or half-line) starting at the point P and passing through
the point Q.
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The diagram to the right depicts a sit-
uation in which a triangle 4ABC is
applied to a line segment [PQ]. The
triangle 4ABC is moved so that the
vertex A of the triangle is placed on P
and the side [AB] is placed on the ray
from P passing through the point Q.

A B

C

B′

C ′

P

Q
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In thus applying a geometrical figure to a given line segment, all
the geometrical properties of the figure M are presumed to be
preserved. In particular, line segments in the resultant applied
figure M ′ are presumed to be equal to the corresponding line
segments in the original figure, and similarly angles and areas in
the resultant applied figure M ′ are presumed to be equal to the
corresponding areas and angles in the original figure M.

Moreover, if C is a point of the original geometrical figure M that
does not lie on the line through the points A and B, then Euclid
presumes that the figure M can be applied to the line
segment [PQ] so as to obtain a geometrical figure M ′ in which the
point C ′ corresponding to C lies on any chosen side of the line
[PQ].
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The strategy of applying triangles to line segments is used in the
proofs of Propositions 4 and 8 of Book I of Euclid’s Elements. In
Proposition 24 of Book III, a segment of a circle is applied to a line
segment.
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The method for applying a geometrical figure to a line segment is
founded on the implicit presumption that the geometry of the
Euclidean plane is homogeneous and isotropic. The homogeneity
of the Euclidean plane requires that the geometrical properties of
the plane specified with respect to one chosen point within the
plane match up with the geometrical properties specified with
respect to any other point of that plane. The isotropy of the
Euclidean plane requires that geometrical properties specified with
respect to one chosen direction from a given point of the plane
match up with the geometrical properties specified with respect to
any other direction from that given point.
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The assertion that the Euclidean plane is homogeneous
encapsulates the proposition that the geometry of the Euclidean
plane appears the same at all points of the plane. Thus the
geometry of the plane does not single out any particular point as
having geometrical properties distinct from those of other points of
the plane

Similarly the assertion that the Euclidean plane is isotropic
encapsulates the proposition that the geometry of the Euclidean
plane appears the same in all directions about a given point of the
plane. Thus, at a given point of the plane, the geometry of the
plane does not single out any particular direction at a given point
as having geometrical properties distinct from those of other
directions at that given point.
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Consider a situation in which one is cycling from place to place. It
seems in accord with everyday experience to presume that the
spokes of the bicycle wheel do not change in length, and that the
distances between points on the rim of the wheel, and the angles
between successive spokes remain invariant as the bicycle moves
from place to place, turning as it does so. Such aspects of
experience make it natural to presume, or postulate, that
geometrical figures can be moved around the Euclidean plane from
one location to another without changing shape.
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2.4. Congruence Rules

The results that Euclid obtains in Propositions 4 and 8 using the
method of superposition in conjunction with Common Notion 4 are
the Side-Angle-Side (SAS) and Side-Side-Side (SSS) Congrence
Rules respectively.

Principle EP–5 (Characterization of Congruence for
Triangles)

If two triangles 4ABC and 4A′B ′C ′ are congruent then the sides
[AB], [AC ] and [BC ] of the first triangle are equal to the
corresponding sides [A′B ′], [A′C ′] and [B ′C ′] respectively of the
second triangle, and the angles of the first triangle at the vertices
A, B and C are equal to the corresponding angles of the second
triangle at A′, B ′ and C ′ respectively.
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This characterization of congruence for triangles can be expressed
in symbols, using the symbol ≡ to denote the relation of equality
(or congruence) of line segments and rectilineal angles, as follows:

Triangles ABC and A′B ′C ′ are congruent if and only if
[AB] ≡ [A′B ′], [AC ] ≡ [A′C ′], [BC ] ≡ [B ′C ′],
∠BAC ≡ ∠B ′A′C ′, ∠CBA ≡ ∠C ′B ′A′, and
∠ACB ≡ ∠A′C ′B ′.

A

B

C

A′

B′

C ′
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Property EP–6 (The Side-Angle-Side (SAS) Congruence
Rule)

If ABC and A′B ′C ′ are triangles, if the sides [AB] and [AC ] of the
first triangle are equal to the corresponding sides [A′B ′] and [A′C ′]
respectively of the second triangle, and if the angle ∠BAC at the
vertex A of the first triangle is equal to the angle ∠B ′A′C ′ at the
vertex A′ of the second triangle (i.e., if [AB] ≡ [A′B ′],
[AC ] ≡ [A′C ′] and ∠BAC ≡ ∠B ′A′C ′), then the triangles 4ABC
and 4A′B ′C ′ are congruent (and therefore [BC ] ≡ [B ′C ′],
∠CBA ≡ ∠C ′B ′A′, and ∠ACB ≡ ∠A′C ′B ′).

The SAS Congruence Rule is established in Proposition 4 of Book I
of Euclid’s Elements.
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Property EP–7 (The Side-Side-Side (SSS) Congruence Rule)

If ABC and A′B ′C ′ are triangles, and if all the sides [AB], [AC ]
and [BC ] of the first triangle are equal to the corresponding sides
[A′B ′], [A′C ′] and [B ′C ′] respectively of the second triangle (i.e., if
[AB] ≡ [A′B ′], [AC ] ≡ [A′C ′] and [BC ] ≡ [B ′C ′]), then the
triangles 4ABC and 4A′B ′C ′ are congruent (and therefore
∠BAC ≡ ∠B ′A′C ′, ∠CBA ≡ ∠C ′B ′A′, and ∠ACB ≡ ∠A′C ′B ′).

The SSS Congruence Rule is established in Proposition 8 of Book I
of Euclid’s Elements.
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The Angle-Side-Angle (ASA) and Angle-Angle-Side (AAS)
Congruence Rules are proved by Euclid in Proposition 26 of Book I
of the Elements. They may be stated as follows.

Property EP–8 (The Angle-Side-Angle (ASA) Congruence
Rule)

If ABC and A′B ′C ′ are triangles, if the side [BC ] of the first
triangle is equal to the corresponding side [B ′C ′] of the second
triangle, and if the angles ABC and ACB at the vertices B and C
of the first triangle are equal to the angles A′B ′C ′ and A′C ′B ′ at
the vertices B ′ and C ′ respectively of the second triangle (i.e., if
[BC ] ≡ [B ′C ′], ∠ABC ≡ A′B ′C ′ and ∠ACB ≡ ∠A′C ′B ′), then the
triangles 4ABC and 4A′B ′C ′ are congruent (and therefore
[AB] = [A′B ′], [AC ] ≡ [A′C ′] and and ∠BAC ≡ ∠B ′A′C ′).
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Justification for the ASA Congruence Rule
Let ABC and A′B ′C ′ be triangles. Suppose that [BC ] ≡ [B ′C ′],
∠ABC ≡ ∠A′B ′C ′ and ∠ACB ≡ A′C ′B ′.

A

B

C

A′

B′

C ′
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There exists a point A′′ on the ray that starts at B ′ and passes
through A′ for which [A′′B ′] ≡ [AB]. (In the context of Euclid’s
geometry, this can be justified by Proposition 3 of Book I of the
Elements.) Then [A′′B ′] ≡ [AB], [B ′C ′] ≡ [BC ] and
∠A′′B ′C ′ ≡ ∠ABC . Applying the SAS Congruence Rule, we
deduce that the triangles 4A′′B ′C ′ and 4ABC are congruent, and
therefore ∠A′′C ′B ′ ≡ ∠ACB. But ∠A′C ′B ′ = ∠ACB. It follows
that the points A′′, A′ and C ′ are collinear. The points A′′, A′ and
B ′ are also collinear. But the points A′, B ′ and C ′ are not
collinear. Therefore it must be the case that the points A′′ and A′

coincide. It then follows that the triangle 4A′B ′C ′ coincides with
the triangle 4A′′B ′C ′, and is therefore congruent to the triangle
4ABC , as required.
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Property EP–9 (The Angle-Angle-Side (AAS) Congruence
Rule)

If ABC and A′B ′C ′ are triangles, if the side [AB] of the first
triangle is equal to the corresponding side [A′B ′] of the second
triangle, and if the angles ABC and ACB at the vertices B and C
of the first triangle are equal to the angles A′B ′C ′ and A′C ′B ′ at
the vertices B ′ and C ′ respectively of the second triangle (i.e., if
[AB] ≡ [A′B ′], ∠ABC ≡ A′B ′C ′ and ∠ACB ≡ ∠A′C ′B ′), then the
triangles 4ABC and 4A′B ′C ′ are congruent (and therefore
[AC ] = [A′C ′], [BC ] ≡ [B ′C ′] and and ∠BAC ≡ ∠B ′A′C ′).
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The AAS Congruence Rule can be justified by a strategy analogous
to that given above to justify the ASA Congruence Rule.
Specifically there is a point C ′′ on the ray that starts at the point
B ′ and passes though C ′ for which C ′′B ′ ≡ CB. Then AB ≡ A′B ′,
BC ≡ B ′C ′′ and ∠ABC ≡ ∠A′B ′C ′′. An application of the SAS
Congruence Rule establishes that the triangles ABC and A′B ′C ′′

are congruent. It follows that ∠A′C ′′B ′ = ∠ACB. But
∠ACB ≡ A′C ′B ′. It follows that ∠A′C ′′B ′ ≡ A′C ′B ′.
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In order to complete this justification of the AAS Congruence Rule,
one needs to show that the points C ′ and C ′′ must coincide. This
can be done by making use of the result that an external angle of a
triangle is always greater than either of the interior and opposite
angles of that triangle. This result is obtained in Proposition 16 of
Book I of Euclid’s Elements. It ensures that the points C ′ and C ′′

must coincide, because if they did not coincide, the triangle
4A′C ′C ′′ would have an external angle at one of the vertices C ′

and C ′′ equal to the internal angle at the other, and this would
contradict Proposition 16 of Book I of Euclid’s Elements.
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The SAS Congruence Rule in fact encodes within itself the basic
assumptions regarding homogeneity and isotropy that are assumed
to be satisfied by the plane that is the object of investigation.
Indeed let P and Q be points of a plane Π and let rays in that
plane be chosen starting from the points P and Q. Let R be a
point distinct from P that lies on the chosen ray starting at the
point P, and let S be a point distinct from Q that lies on the
chosen ray starting from the point Q. We also choose sides of
these rays.
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Now let A be any point of the plane Π. There then exists a
well-defined map ϕ : Π→ Π such that for all points A of Π,
ϕ(A) = A′, where A′ is determined as follows:

if A = P then A′ = Q;

if A 6= P then the line segment [QA′] is equal to the line
segment [PA];

if A lies on the ray starting at P and passing through R then
A′ lies on the ray starting at Q and passing through S ;

if A lies on the ray opposite R obtained on producing [RP]
beyond P then A′ lies on the ray opposite S obtained on
producing [SQ] beyond Q;

if A does not lie on the line through P and R then the angle
∠A′QS is equal to the angle ∠APR;

if A lies on the chosen side of [PR] then A′ lies on the chosen
side of [QS ];

if A lies on the side of [PR] opposite to the chosen side then
A′ lies on the side of [QS ] opposite to the chosen side.
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If standard assumptions are made (not in themselves requiring the
plane Π to be either homogeneous or isotropic) concerning the
nature of angles with vertices at the points P and Q, and if line
segments can be produced beyond their endpoints to any required
distance, and if, given any two points of the plane Π, there is a
unique line segment joining those two points, then the construction
just described should produce a well-defined map ϕ : Π→ Π with
the following properties:

ϕ(P) = Q;

if A 6= P then the line segment from P to A is equal to the
line segment from Q to ϕ(A);

ϕ maps lines through the point P to lines through the
point Q;

if A and B are points of the plane Π, and if the points A, B
and P are distinct and not collinear, then the angle between
the line segments joining P to A and B is equal to the angle
between the line segments joining Q to ϕ(A) and ϕ(B).
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If the SAS Congruence Rule is satisfied by triangles in the plane Π
then the properties listed suffice to ensure that, for all points A
and B of Π that constitute with P the vertices of a triangle in Π,
that triangle with vertices P, A and B is congruent to the triangle
with vertices Q, ϕ(A) and ϕ(B). It follows that the line segment
joining the points A and B is equal to the line segment joining the
points ϕ(A) and ϕ(B). This result also holds when A, B and P are
collinear. It follows that ϕ : Π→ Π is a distance-preserving map
from the plane Π to itself. The fact that ϕ maps any triangle with
a vertex at P onto a congruent triangle with a vertex at Q also
ensures that ϕ : Π→ Π is an angle-preserving map from the
plane Π to itself.
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The argument just presented shows that if the geometry of the
plane Π satisfies the SAS congruence rule (in addition to other
unspecified axioms or rules that ensure that the space is sufficiently
‘well-behaved’ in the immediate neighbourhood of a given point),
then given any two points P and Q, and given any two directions
represented by rays starting at P and Q, there exists a
distance-preserving and angle-preserving map from the plane Π to
itself which maps P onto Q, and also maps the chosen ray starting
from the point P onto the chosen ray starting from the point Q.
Therefore geometrical figures can be moved around and rotated in
the plane Π without changing their shape or size.
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This argument can be presented in more concrete terms as follows.
Suppose that Alice is sitting at a desk in a school, facing north,
with a piece of paper in front of her on which geometrical diagrams
can be drawn. Suppose also that Bob is sitting at another desk in
another classroom on the same floor (or indeed on a different
floor) of that school, facing southeast, and that Bob also has a
piece of paper in front of him on which geometrical diagrams can
be drawn. Then the presumed validity of the SAS Congruence Rule
should in theory enable one to match up positions on Alice’s sheet
with corresponding positions on Bob’s sheet in a way that
preserves both distances and angles so that, for every geometrical
figure that can be drawn on Alice’s sheet, there is a corresponding
geometrical figure that could be drawn on Bob’s sheet with the
same geometrical properties as the figure on Alice’s sheet.
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2.5. Comparison between Flat and Spherical Geometry

Suppose that a fixed point is chosen in a flat Euclidean plane, and
that two ants start walking away from this fixed point with speeds
u and v respectively, in directions that make a right angle with one
another. Then, at time t, the distance between the two ants will
be
√
u2 + v2t. Therefore, at a given time t, the two ants, together

with the chosen fixed point, constitute the vertices of a triangle
with sides of length ut, vt and

√
u2 + v2 t. Moreover the angles of

this triangle remain constant as time progresses.
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Such observations would not hold good were the ants to start
walking away from a chosen point on a sphere in directions that
initially make a some chosen fixed angle with one another. The
great circle distance between the ants (i.e., the length of the arc of
a great circle on the sphere joining the two ants) can be found
using the formulae of spherical trigonometry. It would not increase
linearly with time, and the angles of the spherical triangle
determined by the two ants and the chosen fixed point would vary
as time progresses.

Nevertheless the distance between the ants at a given time does
not depend either on the fixed point chosen or on the initial
directions chosen, provided that the ants walk at the same speeds
in directions that initially make an angle with one another equal to
the chosen fixed angle.
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Thus the geometry of the sphere, like the geometry of a flat
Euclidean plane, is both homogeneous and isotropic. Moreover
appopriate analogues of the first fifteen propositions in Book I of
Euclid’s Elements are valid in spherical geometry, with straight
lines replaced by arcs of great circles, provided that the lengths of
such arcs (including the arcs that form the sides of spherical
triangles) are less than the great circle distance between two poles
of the sphere.

In particular the SAS Congruence Rule is valid in spherical
geometry for spherical triangles whose sides are shorter than the
great circle distance between two poles of the sphere.
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2.6. Geodesics on Smooth Surfaces

Differential geometry developed in the nineteenth century following
the publication by Gauss in 1828 of his important treatise
Disquisitiones generales circa Superficies curvas (General
investigations of closed surfaces).

When studying the geometry of a smooth surface in
three-dimensional Euclidean space the analogues of the straight
lines of the flat Euclidean plane are the geodesics on the surface:
geodesics on a smooth surface are smooth curves on that surface
characterized by the property that all sufficiently short segments of
a geodesic minimize distance amongst all smooth curves in the
surface that join its endpoints.
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Example
Consider the smooth surface in three-dimensional space defined by
the equation

z =
10

1 + x2 + y2
.

Let P = (1, 0, 5) and Q = (−1, 0, 5). Then the points P and Q lie
on the surface, and lie on the circle in the plane z = 5 of radius 1
about the point (0, 0, 5). This circle lies on the surface. It follows
that any length-minimizing curve on the surface from P to Q must
have length not exceeding 4. It follows that a length-minimizing
geodesic from P to Q cannot pass through the point (0, 0, 10) and
thus is not contained in the plane y = 0.
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Given any geodesic on the surface joining the points P and Q, that
geodesic can be reflected in the plane y = 0 to obtain another
geodesic from P to Q. Now standard results in the theory of
differential equations will guarantee the existance of at least one
length-minimizing geodesic on the surface joining the points P and
Q. But this length-minimizing geodesic cannot be the unique
length-minimizing geodesic joining the points P and Q.
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Consider two ants walking across a smooth surface at constant
speed, following the paths of geodesics across the surface. If those
ants had started from a single point in the Euclidean plane,
walking at constant speeds along straight lines, setting out from
that point at the same time, then the distance between the ants
would increase linearly with the time elapsed since setting out.

On a positively curved smooth surface such as a sphere, or on a
positively curved portion of a smooth surface, two ants setting out
at the same time from a single point at constant speeds along
distinct geodesics will at subsequent times be closer than the
equivalent ants setting out at the same speeds along straight lines
in the flat Euclidean plane that make the same angle with one
another. Ants on negatively curved smooth surfaces would be
further apart than the equivalent ants walking across the flat
Euclidean plane.



2. Magnitude and Congruence (continued)

2.7. Intersections of Lines and Circles

The following principle is a direct consequence of the definition of
parallel lines in Book I of Euclid’s Elements, combined with the
principle that, given two distinct points, there exists at most one
line passing through those points.

Property EP–10

Given two lines in a single plane that are not parallel to one
another, there exists a single point of the plane at which those two
lines intersect one another.
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The following two principles concern intersections of circles with
straight lines and with other circles.

Property EP–11

Let a circle and a line segment be given, together with the centre
of the circle. Suppose that one endpoint of the line segment lies
closer to the centre of the circle than the points on the circle, and
that the other endpoint of the line segment lies further away from
the centre of the circle than the points on the circle. Then the
circle and the line segment intersect one another.

Proposition 2 of Book III of Euclid’s Elements shows that if the
endpoints of a line segment lie on a circle then the other points of
the line segment lie in the interior of the circle. It follows
immediately that a straight line cannot intersect a circle in more
than two points.
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Property EP–12

Let two circles be given, together with the centre of the first of
those circles. Suppose that there are points on the second circle
that lie closer to the centre of the first circle than the points on the
first circle, and that there are also points on the second circle that
lie further away from the centre of the first circle than the points
on the first circle. Then the two circles intersect one another.

If two distinct circles in the plane intersect, then either they touch
at a single point or else they cut one another at exactly two points:
see Propositions 10 and 13 in Book III of Euclid’s Elements.
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We now explore links between these assumptions regarding
intersections of straight lines and circles and the theory of
connectedness in real analysis and topology that has developed
over the past couple of centuries.
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In the context of the mathematics in common use throughout the
past century, the flat Euclidean plane can be identified with the
space R2 of ordered pairs of real numbers. We then define a path
in the plane to be a continuous function γ : [0, 1]→ R2 mapping
the the closed unit interval [0, 1] into R2, where

[0, 1] = {t ∈ R : 0 ≤ t ≤ 1}.

Such a path is a path from a point P to a point Q provided that
γ(0) = P and γ(1) = Q.
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A subset V of R2 is said to be open in R2 if, given any point P of
V , there exists some strictly positive real number δ such that all
points lying within the circle of radius δ centred on the point P
belong to the set V .

We now use results and methods developed in the latter part of
the nineteenth century to show that, given any two non-empty
disjoint open sets in the plane, any path that starts in one open set
and ends in the other must pass through points that do not belong
to either open set.

Property EP–13

Let V and W be disjoint non-empty open sets in R2, and let
γ : [0, 1]→ R2 be a path in R2 for which γ(0) ∈ V and γ(1) ∈W .
Then there exists a real number s satisfying 0 < s < 1 for which
γ(s) 6∈ V and γ(s) 6∈W .



2. Magnitude and Congruence (continued)

Proof
Let

S = {t ∈ [0, 1] : γ(t) ∈ V },

and let s = supS (so that the real number s is the least upper
bound of the set S). Then 0 ≤ s ≤ 1. We shall prove that
γ(s) 6∈ V and γ(s) 6∈W .

Let r be a real number satisfying 0 ≤ r ≤ 1. If γ(r) ∈ V then it
follows from the definitions of continuity and open sets that there
exists some positive real number δ such that γ(r) ∈ V for all real
numbers t satisfying both 0 ≤ t ≤ 1 and r − δ < t < r + δ.
Similarly if γ(r) ∈W then there exists some positive real number δ
such that γ(r) ∈W for all real numbers t satisfying both
0 ≤ t ≤ 1 and r − δ < t < r + δ.
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Suppose that γ(r) ∈ V . Then r < 1, because γ(1) ∈W and
V ∩W = ∅. But then there exists a positive real number δ such
that r + δ ≤ 1 and γ(t) ∈ V for all real numbers t satisfying
t < r + δ. Then t ∈ S for all real numbers t satisfing
r < t < r + δ, and therefore r 6= supS .

Next suppose that γ(r) ∈W . Then r > 0, because γ(0) ∈ V and
V ∩W = ∅. But then there exists a positive real number δ such
that r − δ ≥ 0 and γ(t) ∈W for all real numbers t satisfying
t > r − δ. Then t 6∈ S for all real numbers t satisfing
r − δ < t ≤ r , and therefore r 6= supS .

From these results, we conclude that if s = supS then γ(s) 6∈ V
and γ(s) 6∈W . Clearly 0 < s < 1. The result follows.



2. Magnitude and Congruence (continued)

These results can be applied when V is the open set consisting of
all points of the plane lying inside a given circle and W is the open
set consisting of all points lying outside that given circle. It follows
that if a path passes through points inside the circle, and also
passes through points outside the circle, then the path must
intersect the circle.
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On page 235 of Vol. I of his translation of Euclid’s Elements,
Thomas L. Heath quotes formulations of a Principle of Continuity
included by the 19th century German mathematician Wilhelm
Killing in the second volume (page 43) of his treatise Einführung in
die Grundlagen der Geometrie, published in 1893:

(a) Suppose a line belongs entirely to a figure which is divided
into two parts; then, if the line has at least one point in
common with each part, it must also meet the boundary
between the parts; or

(b) If a point moves in a figure which is divided into two parts,
and if it belongs at the beginning of the motion to one part
and at the end of the motion to the other part, it must during
the motion arrive at the boundary between the two parts.
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We now consider the problem of determining points of
intersections of circles from the point of view of the sort of
coordinate geometry that became established in the 18th century.
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Property EP–14

Let C be the set of points in R2 lying on a circle of radius r about
a point (a, b), and let D be the set of points lying on a circle of
radius s about a point (c , d), so that

C = {(x , y) ∈ R2 : (x − a)2 + (y − b)2 = r2},
D = {(x , y) ∈ R2 : (x − c)2 + (y − d)2 = s2}.

Then any points where the circle C intersects the circle D lie on
the line

2(c − a)x + 2(d − b)y = r2 − s2 − a2 − b2 + c2 + d2.

Also any points where the circle C intersects this line are also
points where the two circles C and D intersect.
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Proof
Expanding out the equations for the circles we find that, at the
points of intersection of the two circles, the Cartesian coordinates
x and y satisfy the simultaneous equations.

x2 + y2 − 2ax − 2by + a2 + b2 = r2;

x2 + y2 − 2cx − 2dy + c2 + d2 = s2.

Subtracting one equation from the other and rearranging, we see
that any points where the circles intersect must lie on the line

2(c − a)x + 2(d − b)y = r2 − s2 − a2 − b2 + c2 + d2.

Also subtracting this equation for the line to the equation for the
first circle, we obtain the the equation for the first circle, and
therefore any points at which the first circle intersects the line with
the equation about also lie on the second circle. The result
follows.
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Example
Consider the special case of Property EP–14 where the first circle
is a circle of radius r centred on the origin (0, 0), and the second
circle is a circle of radius s centred on the point (c, 0). Then, on
applying the result of Property EP–14 with a = b = d = 0, we find
that any points where the first circle intersects the second circle
must lie on the line

x =
r2 + c2 − s2

2c
.

Conversely any points where the first circle intersects this line are
also points where the first circle intersects the second circle. It
follows that the two circles intersect if and only if this line passes
through the interior of the first circle.
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Now the line passes through the interior of the circle of radius r
about the origin if and only if

−r < r2 + c2 − s2

2c
< r .

Thus the circles intersect in two points if and only if the
inequalities

r2 + c2 − 2rc < s2 and r2 + c2 + 2rc > s2

are both satisfied, in which case the coordinates of the points of
intersection are (u, v) and (u,−v) where

u =
r2 + c2 − s2

2c
and v =

√
r2 − u2.
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Thus the circles intersect in two points if and only if both

(r − c)2 < s2 and (r + c)2 > s2,

and this is the case if and only if the three inequalities

s + c > r , s + r > c and r + c > s

are simultaneously satisfied.
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A subset L of the set R of real numbers is said to be a subfield of
R if 0 ∈ L, 1 ∈ L, x + y ∈ L, x − y ∈ L and xy ∈ L, x/y ∈ L for all
x , y ∈ L for which y 6= 0.

Property EP–15

Let L be a subfield of the field R of real numbers, and let (a, b),
(c , d), (e, f ) and (g , h) be points of R2, where the Cartesian
components a, b, c , d , e, f , g and h belong to the subfield L of R.
Suppose that the circle centred on (a, b) and passing through the
point (e, f ) intersects the circle centred on (c , d) and passing
through (g , h) at points (m, n) and (p, q). Then each of the real
numbers m, n, p and q can be expressed in the form u +

√
v ,

where u and v belong to the subfield L of R.
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Proof
The determination of the point of intersection of the straight line
joining (a, b) to (c, d) and the straight line joining (m, n) to (p, q)
involves solving a pair of simultaneous linear equations in two real
unknowns with coefficients in the subfield L of R. The standard
formulae for the solution of such simultaneous linear equations
ensure that the Cartesian components of the point of intersection
of these two straight lines belong to L. The determination of the
points of intersection themselves then finding roots of quadratic
polynomials with coefficients in L. The result follows.
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Let C be the collection consisting of all subfields L of the field of
real numbers with the property that

√
x ∈ L for all x ∈ L satisfying

x ≥ 0, and let K be the intersection of all subfields of R that
belong to the collection C. Then K is itself a subfield of R. It is
the field of constructible numbers.

The field K of constructible numbers may be characterized as the
smallest subfield L of the field of real numbers that satisfies the
following property:

√
x ∈ L for all x ∈ L satisfying x ≥ 0.
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The following result follows from Property EP–15

Property EP–16

Let (a, b), (c , d), (e, f ) and (g , h) be points of R2, where the
Cartesian components a, b, c , d , e, f , g and h belong to the
field K of constructible numbers. Suppose that the circle centred
on (a, b) and passing through the point (e, f ) intersects the circle
centred on (c , d) and passing through (g , h). Then the Cartesian
components of the points of intersection belong to the field K of
constructible numbers.
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Let P = (cos π
3 , sin π

3 ) = (12 ,
√
3
2 ) and Q = (cos π

9 , sin π
9 ). Then P

and Q are points on the unit circle centred on the origin in R2, the
line joining the point P to the origin make an angle of π

3 radians
(60◦) with the positive x-axis, and the line joining the point Q to
the origin make an angle of π

9 radians (20◦) with the positive
x-axis. Moreover the Cartesian components of the point P both
belong to the field K of constructible numbers. However
techniques of abstract algebra involving the theory of algebraic
field extensions, the Tower Law, and basic results concerning
splitting fields of polynomials can be used to show that the
Cartesian components of the point Q do not belong to the field K
of constructible numbers.
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Now Property EP–16 can be used to show that if some point of
the flat Euclidean plane can be obtained from some given
collection of points by means of a ruler and compass construction
of the sort that appears frequently in Euclid’s Elements, and if the
Cartesian components of the given points all belong to the field K
of constructible numbers, then the Cartesian components of the
point constructed from them also belongs to the field of
constructible numbers.

It follows from the results just described that there cannot exist
any ruler and compass construction of the type employed in
Euclid’s Elements that provides a geometric construction for
trisecting an arbitrary angle in the Euclidean plane.
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Suppose that one has a complete set of axioms for planar
Euclidean geometry, including not only that axioms, postulates and
common notions set out by Euclid but also those implicit in the
propositions contained in the first six books of Euclid’s Elements.
Once such a complete set of axioms has been compiled, the
propositions of the first six books of Euclid’s Elements should
follow by strict application of principles of pure logic that codify
the rules employed by mathematicians for deducing propositions by
logical deduction from sets of axioms.
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We can then consider models for the axioms of planar Euclidean
geometry. By definition, these are mathematical structures that
satisfy the necessary axioms. One model for plane Euclidean
geometry is the Cartesian plane R2 whose elements are represented
as ordered pairs of real numbers, and points, straight lines and
circles are defined in the usual fashion.

Another model is provided by the set K2 of ordered pairs of
constructible numbers. In this model one essentially disregards all
‘points’ other than those that can be constructed from the
reference points (0, 0) and (1, 0) by ruler and compass
constructions in accordance with the usual rules.
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Whilst concepts of ‘continuity’, ‘completeness’ and ‘connectedness’
developed in the 19th century and ubiquitous in the fields of
mathematical analysis and topology from that time onwards might
be imported into a set of axioms for ‘Euclidean’ geometry, some
might see disadvantages in such an approach. Consider for
example the Peano space-filling curve: a continuous path
parameterized by the unit interval that passes through every point
of the closed unit square in the plane. If, for example, one adopts
axioms that ensure that any line within the ‘Euclidean plane’ is a
complete metric space, then this might well have the effect of
populating all models of those axioms with ‘monsters’ such as the
Peano space-filling curve.
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