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7 Differentiation of Functions of One Real
Variable

7.1 Interior Points and Open Sets in the Real Line

Definition Let D be a subset of the set R of real numbers, and let s be a
real number belonging to D. We say that s is an interior point of D if there
exists some strictly positive number ¢ such that x € D for all real numbers x
satisfying s — 0 < x < s+ §. The interior of D is then the subset of D
consisting of all real numbers belonging to D that are interior points of D.

It follows from the definition of open sets in Euclidean spaces that a
subset D of the set R of real numbers is an open set in R if and only if every
point of D is an interior point of D.

Let s be a real number. We say that a function f: D — R is defined
around s if the real number s is an interior point of the domain D of the
function f. It follows that the function f is defined around s if and only if
there exists some strictly positive real number ¢ such that f(x) is defined for
all real numbers z satisfying s —d < x < s+ 4.

7.2 Differentiable Functions of a Single Real Variable

We recall basic results of the theory of differentiable functions.

Definition Let s be some real number, and let f be a real-valued function
defined around s. The function f is said to be differentiable at s, with
derivative f'(s), if and only if the limit

fls+h) = f(s)
h

f'(s) = lim

h—0

is well-defined. We denote by f’, or by 3—f the function whose value at s is
x
the derivative f'(s) of f at s.

Let s be some real number, and let f and g be real-valued functions
defined around s that are differentiable at s. The basic rules of differential
calculus then ensure that the functions f+ ¢, f —g and f- g are differentiable
at s (where

(f +9)(x) = f(x) +9(z), (f—9)(x)=[f(z)-g(z)
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and
(f-9)(x) = f(x)g(z)
for all real numbers = at which both f(z) and g(z) are defined), and

(f+9)(s)=F(s)+d(s),  (f—9)(s)=[(s) —g'(s).

(f - 9)'(s) = ['(s)g(s) + f(s)g'(s) (Product Rule).

If moreover g(s) # 0 then the function f/g is differentiable at s (where
(f/9)(x) = f(z)/g(x) where both f(x) and g(x) are defined), and

f'(s)g(s) — f(s)g'(s)
g(s)?
Moreover if h is a real-valued function defined around f(s) which is differ-

entiable at f(s) then the composition function h o f is differentiable at f(s)
and

(f/9)(s) = (Quotient Rule).

(ho f)(s)=N'(f(s))f'(s) (Chain Rule).
Derivatives of some standard functions are as follows:—

a
dx

(z™) = ma™ %(Sin x) = cosx, %(COS r) = —sin,

d
—(expz) = expux,

d 1
7 y (logz) = . (x > 0).

dr
7.3 Rolle’s Theorem

Theorem 7.1 (Rolle’s Theorem) Let f:[a,b] — R be a real-valued func-
tion defined on some interval |a,b]. Suppose that f is continuous on [a, D]
and is differentiable on (a,b). Suppose also that f(a) = f(b). Then there
exists some real number s satisfying a < s < b which has the property that

F(s) = 0.

Proof First we show that if the function f attains its minimum value at u,
and if a < u < b, then f’(u) = 0. Now the difference quotient

fluth) = f(u)
h

is non-negative for all sufficiently small positive values of h; therefore f'(u) >
0. On the other hand, this difference quotient is non-positive for all suffi-
ciently small negative values of h; therefore f'(u) < 0. We deduce therefore

that f'(u) =0.
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Similarly if the function f attains its maximum value at v, and if a < v <
b, then f'(v) = 0. (Indeed the result for local maxima can be deduced from
the corresponding result for local minima simply by replacing the function f
by —f.)

Now the function f is continuous on the closed bounded interval [a, b].
It therefore follows from the Extreme Value Theorem that there must exist
real numbers u and v in the interval [a,b] with the property that f(u) <
f(z) < f(v) for all real numbers x satisfying a < z < b (see Theorem 4.21).
If a <u < bthen f'(u) =0 and we can take s = u. Similarly if a < v <b
then f’(v) = 0 and we can take s = v. The only remaining case to consider
is when both u and v are endpoints of the interval [a,b]. In that case the
function f is constant on [a, ], since f(a) = f(b), and we can choose s to be
any real number satisfying a < s <b. |}

7.4 The Mean Value Theorem

Rolle’s Theorem can be generalized to yield the following important theorem.

Theorem 7.2 (The Mean Value Theorem) Let f:[a,b] — R be a real-
valued function defined on some interval |a,b|. Suppose that f is continuous
on |a,b] and is differentiable on (a,b). Then there exists some real number s
satisfying a < s < b which has the property that

f(b) = fla) = f'(s)(b—a).

Proof Let g:[a,b] — R be the real-valued function on the closed inter-
val [a, b] defined by

b—=x T —a

9(a) = f(2) = (@) = T [ ().

Then the function ¢ is continuous on [a, b] and differentiable on (a,b). More-
over g(a) = 0 and g(b) = 0. It follows from Rolle’s Theorem (Theorem 7.1)
that ¢'(s) = 0 for some real number s satisfying a < s < b. But

f(0) — f(a)
b—a

Therefore f(b) — f(a) = f'(s)(b — a), as required. |}

g'(s)=['(s)—

A number of basic principles of single variable calculus follow as immedi-
ate consequences of the Mean Value Theorem (Theorem 7.2). A number of
such consequences are presented in the following corollaries.
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Corollary 7.3 Let f:]a,b] — R be a real-valued function defined on some
interval [a,b]. Suppose that f is continuous on |a,b] and is differentiable
on (a,b) and that f'(x) > 0 for all real numbers x satisfying a < x < b.

Then f(b) > f(a).

Corollary 7.4 Let f:]a,b] — R be a real-valued function defined on some
interval [a,b]. Suppose that f is continuous on [a,b] and is differentiable

on (a,b) and that f'(x) = 0 for all real numbers x satisfying a < x < b.
Then f(x) = f(a) for all x € [a,b].

Corollary 7.5 Let f:]a,b] — R be a real-valued function defined on some
interval |a,b], and let M be a real number. Suppose that f is continuous
on [a,b] and is differentiable on (a,b) and that f'(x) < M for all real num-
bers x satisfying a < x < b. Then f(z) < f(a) + M(x — a) for all x € [a,b).

Corollary 7.6 Let f:]a,b] — R be a real-valued function defined on some
interval |a,b], and let M be a real number. Suppose that f is continuous
on [a,b] and is differentiable on (a,b) and that |f'(x)] < M for all real
numbers x satisfying a < x < b. Then |f(b) — f(a)| < M(b— a).

7.5 Concavity and the Second Derivative

Proposition 7.7 Let s and h be real numbers, and let f be a twice dif-
ferentiable real-valued function defined on some open interval containing s
and s + h. Then there exists a real number 0 satisfying 0 < 8 < 1 for which

Fls+h) = f(s)+ hf'(s)+ Lh2f" (s + Oh).

Proof Let I be an open interval, containing the real numbers 0 and 1, chosen
to ensure that f(s+ th) is defined for all ¢ € I, and let ¢: I — R be defined
so that

q(t) = f(s+th) — f(s) = thf'(s) = *(f(s + h) = f(s) = hf'(s)).
for all t € I. Differentiating, we find that
¢ (t) =hf'(s+th) = hf'(s) = 2t(f(s + ) = f(s) = hf'(s))

and
q"(t) = W f"(s +th) = 2(f(s + h) — f(s) — hf'(s)).
Now ¢(0) = ¢(1) = 0. It follows from Rolle’s Theorem, applied to the func-

tion ¢ on the interval [0, 1], that there exists some real number ¢ satisfying
0 < ¢ < 1 for which ¢'(¢) = 0.
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Then ¢'(0) = ¢'(¢) = 0, and therefore Rolle’s Theorem can be applied
to the function ¢’ on the interval [0, ¢] to prove the existence of some real
number 6 satisfying 0 < 6 < ¢ for which ¢”(6) = 0. Then

0=q"(6) = h*f"(s +0h) = 2(f(s + h) = f(s) = hf'(s)).
Rearranging, we find that
f(s+h)=f(s)+hf'(s)+ LR f"(s + 6h),
as required. [

Corollary 7.8 Let f:(s—dy, s+0d0) be a twice-differentiable function through-
out some open interval (s — dg, s + dg) centred on a real number s. Suppose
that f"(s 4+ h) > 0 for all real numbers h satisfying |h| < dg. Then

f(s+h) = f(s)+ hf'(s)
for all real numbers h satisfying |h| < dq.

It follows from Corollary 7.8 that if a twice-differentiable function has
positive second derivative throughout some open interval, then it is concave
upwards throughout that interval. In particular the function has a local
minimum at any point of that open interval where the first derivative is zero
and the second derivative is positive.

Corollary 7.9 Let f: D — R be a twice-differentiable function defined over
a subset D of R, and let s be a point in the interior of D. Suppose that
f'(s) = 0 and that f"(x) > 0 for all real numbers x belonging to some
sufficiently small neighbourhood of x. Then s is a local minimum for the
function f.

7.6 Taylor’s Theorem

The result obtained in Proposition 7.7 is a special case of a more general
result. That more general result is a version of Taylor’s Theorem with re-
mainder. The proof of this theorem will make use of the following lemma.

Lemma 7.10 Let s and h be real numbers, let f be a k times differentiable
real-valued function defined on some open interval containing s and s + h,

let co,cq, ..., c_1 be real numbers, and let
k—1
plt) = f(s+th) = et
n=0
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for all real numbers t belonging to some open interval D for which 0 € D and
1€ D. Then p™(0) = 0 for all integers n satisfying 0 < n < k if and only if

hf (s)

Cp — |
n.

for all integers n satisfying 0 < n < k.

Proof On setting ¢t = 0, we find that p(0) = f(s) — ¢o, and thus p(0) = 0 if
and only if co = f(s).

Let the integer n satisfy 0 < n < k. On differentiating p(t) n times with
respect to t, we find that

T
L

5!
(j —n)!

n

p™ () = B ™) (s + th) —

N
cit’ "

<.
Il

Then, on setting ¢ = 0, we find that only the term with j = n contributes
to the value of the sum on the right hand side of the above identity, and
therefore

p™(0) = " f™(s) — nle,.

The result follows. |}

Theorem 7.11 (Taylor’s Theorem) Let s and h be real numbers, and let f
be a k times differentiable real-valued function defined on some open interval
containing s and s + h. Then

n k
Fls+h) = F()+ 30 o 7O(s) + T 7O+ 0h)

for some real number 0 satisfying 0 < 6 < 1.

Proof Let D be an open interval, containing the real numbers 0 and 1,
chosen to ensure that f(s+ th) is defined for all t € D, and let p: D — R be
defined so that

k-1

pt) = f(s+th) — f(s) = 3 g

n!

n=1

for all t € D. A straightforward calculation shows that p™(0) = 0 for n =
0,1,...,k—1 (see Lemma 7.10). Thus if ¢(t) = p(t) — p(1)t* for all s € [0, 1]
then ¢™(0) = 0 for n = 0,1,...,k — 1, and ¢(1) = 0. We can therefore
apply Rolle’s Theorem (Theorem 7.1) to the function ¢ on the interval [0, 1]
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to deduce the existence of some real number ¢; satisfying 0 < ¢; < 1 for
which ¢/(t;) = 0. We can then apply Rolle’s Theorem to the function ¢’ on
the interval [0,¢;] to deduce the existence of some real number ¢, satisfying
0 < ty < t; for which ¢”(t3) = 0. By continuing in this fashion, applying
Rolle’s Theorem in turn to the functions ¢”,q¢”,...,q¢%* Y, we deduce the
existence of real numbers t1,t9, ..., satisfying 0 <t <t <---<t; <1
with the property that ¢™(t,) = 0 for n = 1,2,...,k. Let § = t;. Then
0<6<1and

O—i(k)g—l(k)g_ _h_k(k) on) —
_k‘!q ()_k!p () p(l)_k!f (S+ ) p(l)v
hence

-1

fls+h) = fls)+ ) —f"(s)+p(1)
i
= fls)+ ) I ()+ f /(s +0h),
n=1

as required. |}

Corollary 7.12 Let f: D — R be a k-times continuously differentiable func-
tion defined over an open subset D of R and let s € R. Then given any strictly
positive real number €, there exists some strictly positive real number 6 such
that
k_pn
Fls+h) = 1ls) = 32 o f™(s)| < ellt

n=1

whenever |h| < 6.

Proof The function f is k-times continuously differentiable, and therefore
its kth derivative f*) is continuous. Let some strictly positive real number e
be given. Then there exists some strictly positive real number ¢ that is small
enough to ensure that s +h € D and |f*) (s + h) — f#)(s)| < kle whenever
|h| < §. If h is an real number satisfying |h| < 0, and if 0 is a real number
satisfying 0 < 6 < 1, then s+6h € D and |f®)(s+0h)— f*)(s)| < kle. Now it
follows from Taylor’s Theorem (Theorem 7.11) that, given any real number h
satisfying |h| < ¢ there exists some real number 6 satisfying 0 < 6 < 1 for
which

fls+h) = +Z f<" ) 4 — fk)(s+9h)
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n k
fls 1) = ()= S eos)| = B g0 oy - )
< <l

as required. |}

Let f:[a,b] — R be a continuous function on a closed interval [a,b]. We
say that f is continuously differentiable on |a,b] if the derivative f’(x) of f
exists for all x satisfying a < x < b, the one-sided derivatives

fla+h) = f(a)

o) = hlgél+ h ’
b+ h)— f(b
Py =y 0D IO

exist at the endpoints of [a, b], and the function f’ is continuous on [a, b].
If f:[a,b] — R is continuous, and if F(z) = [ f(t)dt for all z € [a,d]
then the one-sided derivatives of F' at the endpoints of [a, b] exist, and
. Fla+h)—F(a) . F(b+h)—F(b)
hligh h = fla), hliglf h

= f(b).

One can verify these results by adapting the proof of the Fundamental The-
orem of Calculus.

Proposition 7.13 Let f be a continuously differentiable real-valued function
on the interval [a,b]. Then

v d
[ o= 50 - s
Proof Define g:[a,b] — R by

o) = 1) — @) - [ L

Then g(a) =0, and

AL ([ 400) -

for all x satisfying a < x < b, by the Fundamental Theorem of Calculus.
Now it follows from the Mean Value Theorem (Theorem 7.2) that there
exists some s satisfying a < s < b for which g(b) — g(a) = (b —a)g'(s). We
deduce therefore that g(b) = 0, which yields the required result. |}
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Corollary 7.14 (Integration by Parts) Let f and g be continuously dif-
ferentiable real-valued functions on the interval [a,b]. Then

[ o 4

dx
Proof This result follows from Proposition 7.13 on integrating the identity

102D~ () — o) DD

Corollary 7.15 (Integration by Substitution) Let u:[a,b] — R be a
continuously differentiable monotonically increasing function on the interval
[a,b], and let ¢ = u(a) and d = u(b). Then

[ rwe= [ o™l a

for all continuous real-valued functions f on [c,d].

:f@mw—ﬂwww—/g@> dr.

Proof Let F' and G be the functions on [a,b] defined by

u(x)

Fa)= [ f)dy, /f

C

Then F(a) =0 = G(a). Moreover F(x) = H(u(x)), where

/f ) dy,

and H'(s) = f(s) for all s € [a,b]. Using the Chain Rule and the Fundamen-

tal Theorem of Calculus, we deduce that

F'(z) = H'(u(x))u'(x) = f(u(x))u'(x) = G'(x)

for all z € (a,b). On applying the Mean Value Theorem (Theorem 7.2) to the
function F'— G on the interval [a, b], we see that F'(b) —G(b) = F(a)—G(a) =
0. Thus H(d) = F(b) = G(b), which yields the required identity. [}

Proposition 7.16 (Taylor’s Theorem with Integral Remainder) Let
s and h be real numbers, and let f be a function whose first k derivatives are
continuous on an interval containing s and s+ h. Then

) h*

f(s+h) = f(s)+ Z —f"M(s) + m/o (1 —t)* 1 f®) (s 4 th) dt.
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Proof Let

rm(s,h) = n I /01(1 — t)m’lf(m)(s + th) dt

(m—1
form=1,2,...,k—1. Then
r1(s,h):h/01f’(s+th)dt:/;%f(erth)dt:f(erh)—f(s).

Let m be an integer between 1 and k£ — 2. It follows from the rule for
Integration by Parts (Corollary 7.14) that

hm+1 1
Pmi1(s,h) = ' /(1—t)mf(m+1)(s—|—th)dt
m!  Jo
™ [t d
= — [ (1=t)"— (f") (s +th)) dt
o [ a0 (s )
hm

= a0+ th)],

_ hm/ (= ty") 0 (s + oh) e

m! J,
m

h h™ !
= —mﬂm)(swm/o (1 — )™ (s + th) dt
= ru(s,h) — mf(m)(s).

Thus m
rm(sa h) = %f(m)(s) + rm+l(s7 h)

form=1,2,...,k— 1. It follows by induction on k that

k=1 .,
Fs4m) = F)+ D0 Ts) + el )
:: h" hk ! k—1 p(k
= O+ )+ g [ 00

as required. |
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