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7 Differentiation of Functions of One Real

Variable

7.1 Interior Points and Open Sets in the Real Line

Definition Let D be a subset of the set R of real numbers, and let s be a
real number belonging to D. We say that s is an interior point of D if there
exists some strictly positive number δ such that x ∈ D for all real numbers x
satisfying s − δ < x < s + δ. The interior of D is then the subset of D
consisting of all real numbers belonging to D that are interior points of D.

It follows from the definition of open sets in Euclidean spaces that a
subset D of the set R of real numbers is an open set in R if and only if every
point of D is an interior point of D.

Let s be a real number. We say that a function f :D → R is defined
around s if the real number s is an interior point of the domain D of the
function f . It follows that the function f is defined around s if and only if
there exists some strictly positive real number δ such that f(x) is defined for
all real numbers x satisfying s− δ < x < s+ δ.

7.2 Differentiable Functions of a Single Real Variable

We recall basic results of the theory of differentiable functions.

Definition Let s be some real number, and let f be a real-valued function
defined around s. The function f is said to be differentiable at s, with
derivative f ′(s), if and only if the limit

f ′(s) = lim
h→0

f(s+ h)− f(s)

h

is well-defined. We denote by f ′, or by
df

dx
the function whose value at s is

the derivative f ′(s) of f at s.

Let s be some real number, and let f and g be real-valued functions
defined around s that are differentiable at s. The basic rules of differential
calculus then ensure that the functions f+g, f−g and f ·g are differentiable
at s (where

(f + g)(x) = f(x) + g(x), (f − g)(x) = f(x)− g(x)
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and
(f.g)(x) = f(x)g(x)

for all real numbers x at which both f(x) and g(x) are defined), and

(f + g)′(s) = f ′(s) + g′(s), (f − g)′(s) = f ′(s)− g′(s).

(f · g)′(s) = f ′(s)g(s) + f(s)g′(s) (Product Rule).

If moreover g(s) 6= 0 then the function f/g is differentiable at s (where
(f/g)(x) = f(x)/g(x) where both f(x) and g(x) are defined), and

(f/g)′(s) =
f ′(s)g(s)− f(s)g′(s)

g(s)2
(Quotient Rule).

Moreover if h is a real-valued function defined around f(s) which is differ-
entiable at f(s) then the composition function h ◦ f is differentiable at f(s)
and

(h ◦ f)′(s) = h′(f(s))f ′(s) (Chain Rule).

Derivatives of some standard functions are as follows:—

d

dx
(xm) = mxm−1,

d

dx
(sinx) = cos x,

d

dx
(cosx) = − sinx,

d

dx
(expx) = exp x,

d

dx
(log x) =

1

x
(x > 0).

7.3 Rolle’s Theorem

Theorem 7.1 (Rolle’s Theorem) Let f : [a, b] → R be a real-valued func-
tion defined on some interval [a, b]. Suppose that f is continuous on [a, b]
and is differentiable on (a, b). Suppose also that f(a) = f(b). Then there
exists some real number s satisfying a < s < b which has the property that
f ′(s) = 0.

Proof First we show that if the function f attains its minimum value at u,
and if a < u < b, then f ′(u) = 0. Now the difference quotient

f(u+ h)− f(u)

h

is non-negative for all sufficiently small positive values of h; therefore f ′(u) ≥
0. On the other hand, this difference quotient is non-positive for all suffi-
ciently small negative values of h; therefore f ′(u) ≤ 0. We deduce therefore
that f ′(u) = 0.
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Similarly if the function f attains its maximum value at v, and if a < v <
b, then f ′(v) = 0. (Indeed the result for local maxima can be deduced from
the corresponding result for local minima simply by replacing the function f
by −f .)

Now the function f is continuous on the closed bounded interval [a, b].
It therefore follows from the Extreme Value Theorem that there must exist
real numbers u and v in the interval [a, b] with the property that f(u) ≤
f(x) ≤ f(v) for all real numbers x satisfying a ≤ x ≤ b (see Theorem 4.21).
If a < u < b then f ′(u) = 0 and we can take s = u. Similarly if a < v < b
then f ′(v) = 0 and we can take s = v. The only remaining case to consider
is when both u and v are endpoints of the interval [a, b]. In that case the
function f is constant on [a, b], since f(a) = f(b), and we can choose s to be
any real number satisfying a < s < b.

7.4 The Mean Value Theorem

Rolle’s Theorem can be generalized to yield the following important theorem.

Theorem 7.2 (The Mean Value Theorem) Let f : [a, b] → R be a real-
valued function defined on some interval [a, b]. Suppose that f is continuous
on [a, b] and is differentiable on (a, b). Then there exists some real number s
satisfying a < s < b which has the property that

f(b)− f(a) = f ′(s)(b− a).

Proof Let g: [a, b] → R be the real-valued function on the closed inter-
val [a, b] defined by

g(x) = f(x)− b− x
b− a

f(a)− x− a
b− a

f(b).

Then the function g is continuous on [a, b] and differentiable on (a, b). More-
over g(a) = 0 and g(b) = 0. It follows from Rolle’s Theorem (Theorem 7.1)
that g′(s) = 0 for some real number s satisfying a < s < b. But

g′(s) = f ′(s)− f(b)− f(a)

b− a
.

Therefore f(b)− f(a) = f ′(s)(b− a), as required.

A number of basic principles of single variable calculus follow as immedi-
ate consequences of the Mean Value Theorem (Theorem 7.2). A number of
such consequences are presented in the following corollaries.
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Corollary 7.3 Let f : [a, b] → R be a real-valued function defined on some
interval [a, b]. Suppose that f is continuous on [a, b] and is differentiable
on (a, b) and that f ′(x) > 0 for all real numbers x satisfying a < x < b.
Then f(b) > f(a).

Corollary 7.4 Let f : [a, b] → R be a real-valued function defined on some
interval [a, b]. Suppose that f is continuous on [a, b] and is differentiable
on (a, b) and that f ′(x) = 0 for all real numbers x satisfying a < x < b.
Then f(x) = f(a) for all x ∈ [a, b].

Corollary 7.5 Let f : [a, b] → R be a real-valued function defined on some
interval [a, b], and let M be a real number. Suppose that f is continuous
on [a, b] and is differentiable on (a, b) and that f ′(x) ≤ M for all real num-
bers x satisfying a < x < b. Then f(x) ≤ f(a) +M(x− a) for all x ∈ [a, b].

Corollary 7.6 Let f : [a, b] → R be a real-valued function defined on some
interval [a, b], and let M be a real number. Suppose that f is continuous
on [a, b] and is differentiable on (a, b) and that |f ′(x)| ≤ M for all real
numbers x satisfying a < x < b. Then |f(b)− f(a)| ≤M(b− a).

7.5 Concavity and the Second Derivative

Proposition 7.7 Let s and h be real numbers, and let f be a twice dif-
ferentiable real-valued function defined on some open interval containing s
and s+ h. Then there exists a real number θ satisfying 0 < θ < 1 for which

f(s+ h) = f(s) + hf ′(s) + 1
2
h2f ′′(s+ θh).

Proof Let I be an open interval, containing the real numbers 0 and 1, chosen
to ensure that f(s + th) is defined for all t ∈ I, and let q: I → R be defined
so that

q(t) = f(s+ th)− f(s)− thf ′(s)− t2(f(s+ h)− f(s)− hf ′(s)).

for all t ∈ I. Differentiating, we find that

q′(t) = hf ′(s+ th)− hf ′(s)− 2t(f(s+ h)− f(s)− hf ′(s))

and
q′′(t) = h2f ′′(s+ th)− 2(f(s+ h)− f(s)− hf ′(s)).

Now q(0) = q(1) = 0. It follows from Rolle’s Theorem, applied to the func-
tion q on the interval [0, 1], that there exists some real number ϕ satisfying
0 < ϕ < 1 for which q′(ϕ) = 0.
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Then q′(0) = q′(ϕ) = 0, and therefore Rolle’s Theorem can be applied
to the function q′ on the interval [0, ϕ] to prove the existence of some real
number θ satisfying 0 < θ < ϕ for which q′′(θ) = 0. Then

0 = q′′(θ) = h2f ′′(s+ θh)− 2(f(s+ h)− f(s)− hf ′(s)).

Rearranging, we find that

f(s+ h) = f(s) + hf ′(s) + 1
2
h2f ′′(s+ θh),

as required.

Corollary 7.8 Let f : (s−δ0, s+δ0) be a twice-differentiable function through-
out some open interval (s − δ0, s + δ0) centred on a real number s. Suppose
that f ′′(s+ h) > 0 for all real numbers h satisfying |h| < δ0. Then

f(s+ h) ≥ f(s) + hf ′(s)

for all real numbers h satisfying |h| < δ0.

It follows from Corollary 7.8 that if a twice-differentiable function has
positive second derivative throughout some open interval, then it is concave
upwards throughout that interval. In particular the function has a local
minimum at any point of that open interval where the first derivative is zero
and the second derivative is positive.

Corollary 7.9 Let f :D → R be a twice-differentiable function defined over
a subset D of R, and let s be a point in the interior of D. Suppose that
f ′(s) = 0 and that f ′′(x) > 0 for all real numbers x belonging to some
sufficiently small neighbourhood of x. Then s is a local minimum for the
function f .

7.6 Taylor’s Theorem

The result obtained in Proposition 7.7 is a special case of a more general
result. That more general result is a version of Taylor’s Theorem with re-
mainder. The proof of this theorem will make use of the following lemma.

Lemma 7.10 Let s and h be real numbers, let f be a k times differentiable
real-valued function defined on some open interval containing s and s + h,
let c0, c1, . . . , ck−1 be real numbers, and let

p(t) = f(s+ th)−
k−1∑
n=0

cnt
n.
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for all real numbers t belonging to some open interval D for which 0 ∈ D and
1 ∈ D. Then p(n)(0) = 0 for all integers n satisfying 0 ≤ n < k if and only if

cn =
hnf (n)(s)

n!

for all integers n satisfying 0 ≤ n < k.

Proof On setting t = 0, we find that p(0) = f(s)− c0, and thus p(0) = 0 if
and only if c0 = f(s).

Let the integer n satisfy 0 < n < k. On differentiating p(t) n times with
respect to t, we find that

p(n)(t) = hnf (n)(s+ th)−
k−1∑
j=n

j!

(j − n)!
cjt

j−n.

Then, on setting t = 0, we find that only the term with j = n contributes
to the value of the sum on the right hand side of the above identity, and
therefore

p(n)(0) = hnf (n)(s)− n!cn.

The result follows.

Theorem 7.11 (Taylor’s Theorem) Let s and h be real numbers, and let f
be a k times differentiable real-valued function defined on some open interval
containing s and s+ h. Then

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh)

for some real number θ satisfying 0 < θ < 1.

Proof Let D be an open interval, containing the real numbers 0 and 1,
chosen to ensure that f(s+ th) is defined for all t ∈ D, and let p:D → R be
defined so that

p(t) = f(s+ th)− f(s)−
k−1∑
n=1

tnhn

n!
f (n)(s)

for all t ∈ D. A straightforward calculation shows that p(n)(0) = 0 for n =
0, 1, . . . , k− 1 (see Lemma 7.10). Thus if q(t) = p(t)− p(1)tk for all s ∈ [0, 1]
then q(n)(0) = 0 for n = 0, 1, . . . , k − 1, and q(1) = 0. We can therefore
apply Rolle’s Theorem (Theorem 7.1) to the function q on the interval [0, 1]
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to deduce the existence of some real number t1 satisfying 0 < t1 < 1 for
which q′(t1) = 0. We can then apply Rolle’s Theorem to the function q′ on
the interval [0, t1] to deduce the existence of some real number t2 satisfying
0 < t2 < t1 for which q′′(t2) = 0. By continuing in this fashion, applying
Rolle’s Theorem in turn to the functions q′′, q′′′, . . . , q(k−1), we deduce the
existence of real numbers t1, t2, . . . , tk satisfying 0 < tk < tk−1 < · · · < t1 < 1
with the property that q(n)(tn) = 0 for n = 1, 2, . . . , k. Let θ = tk. Then
0 < θ < 1 and

0 =
1

k!
q(k)(θ) =

1

k!
p(k)(θ)− p(1) =

hk

k!
f (k)(s+ θh)− p(1),

hence

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) + p(1)

= f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh),

as required.

Corollary 7.12 Let f :D → R be a k-times continuously differentiable func-
tion defined over an open subset D of R and let s ∈ R. Then given any strictly
positive real number ε, there exists some strictly positive real number δ such
that ∣∣∣∣∣f(s+ h)− f(s)−

k∑
n=1

hn

n!
f (n)(s)

∣∣∣∣∣ < ε|h|k

whenever |h| < δ.

Proof The function f is k-times continuously differentiable, and therefore
its kth derivative f (k) is continuous. Let some strictly positive real number ε
be given. Then there exists some strictly positive real number δ that is small
enough to ensure that s + h ∈ D and |f (k)(s + h)− f (k)(s)| < k!ε whenever
|h| < δ. If h is an real number satisfying |h| < δ, and if θ is a real number
satisfying 0 < θ < 1, then s+θh ∈ D and |f (k)(s+θh)−f (k)(s)| < k!ε. Now it
follows from Taylor’s Theorem (Theorem 7.11) that, given any real number h
satisfying |h| < δ there exists some real number θ satisfying 0 < θ < 1 for
which

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh).
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Then∣∣∣∣∣f(s+ h)− f(s)−
k∑

n=1

hn

n!
f (n)(s)

∣∣∣∣∣ =
|h|k

k!
|f (k)(s+ θh)− f (k)(s)|

< ε|h|k,

as required.

Let f : [a, b] → R be a continuous function on a closed interval [a, b]. We
say that f is continuously differentiable on [a, b] if the derivative f ′(x) of f
exists for all x satisfying a < x < b, the one-sided derivatives

f ′(a) = lim
h→0+

f(a+ h)− f(a)

h
,

f ′(b) = lim
h→0−

f(b+ h)− f(b)

h

exist at the endpoints of [a, b], and the function f ′ is continuous on [a, b].
If f : [a, b] → R is continuous, and if F (x) =

∫ x

a
f(t) dt for all x ∈ [a, b]

then the one-sided derivatives of F at the endpoints of [a, b] exist, and

lim
h→0+

F (a+ h)− F (a)

h
= f(a), lim

h→0−

F (b+ h)− F (b)

h
= f(b).

One can verify these results by adapting the proof of the Fundamental The-
orem of Calculus.

Proposition 7.13 Let f be a continuously differentiable real-valued function
on the interval [a, b]. Then∫ b

a

df(x)

dx
dx = f(b)− f(a)

Proof Define g: [a, b]→ R by

g(x) = f(x)− f(a)−
∫ x

a

df(t)

dt
dt.

Then g(a) = 0, and

dg(x)

dx
=
df(x)

dx
− d

dx

(∫ x

a

df(t)

dt
dt

)
= 0

for all x satisfying a < x < b, by the Fundamental Theorem of Calculus.
Now it follows from the Mean Value Theorem (Theorem 7.2) that there
exists some s satisfying a < s < b for which g(b) − g(a) = (b − a)g′(s). We
deduce therefore that g(b) = 0, which yields the required result.
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Corollary 7.14 (Integration by Parts) Let f and g be continuously dif-
ferentiable real-valued functions on the interval [a, b]. Then∫ b

a

f(x)
dg(x)

dx
dx = f(b)g(b)− f(a)g(a)−

∫ b

a

g(x)
df(x)

dx
dx.

Proof This result follows from Proposition 7.13 on integrating the identity

f(x)
dg(x)

dx
=

d

dx
(f(x)g(x))− g(x)

df(x)

dx
.

Corollary 7.15 (Integration by Substitution) Let u: [a, b] → R be a
continuously differentiable monotonically increasing function on the interval
[a, b], and let c = u(a) and d = u(b). Then∫ d

c

f(x) dx =

∫ b

a

f(u(t))
du(t)

dt
dt.

for all continuous real-valued functions f on [c, d].

Proof Let F and G be the functions on [a, b] defined by

F (x) =

∫ u(x)

c

f(y)dy, G(x) =

∫ x

a

f(u(t))
du(t)

dt
dt.

Then F (a) = 0 = G(a). Moreover F (x) = H(u(x)), where

H(s) =

∫ s

c

f(y) dy,

and H ′(s) = f(s) for all s ∈ [a, b]. Using the Chain Rule and the Fundamen-
tal Theorem of Calculus, we deduce that

F ′(x) = H ′(u(x))u′(x) = f(u(x))u′(x) = G′(x)

for all x ∈ (a, b). On applying the Mean Value Theorem (Theorem 7.2) to the
function F−G on the interval [a, b], we see that F (b)−G(b) = F (a)−G(a) =
0. Thus H(d) = F (b) = G(b), which yields the required identity.

Proposition 7.16 (Taylor’s Theorem with Integral Remainder) Let
s and h be real numbers, and let f be a function whose first k derivatives are
continuous on an interval containing s and s+ h. Then

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

(k − 1)!

∫ 1

0

(1− t)k−1f (k)(s+ th) dt.
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Proof Let

rm(s, h) =
hm

(m− 1)!

∫ 1

0

(1− t)m−1f (m)(s+ th) dt

for m = 1, 2, . . . , k − 1. Then

r1(s, h) = h

∫ 1

0

f ′(s+ th) dt =

∫ 1

0

d

dt
f(s+ th) dt = f(s+ h)− f(s).

Let m be an integer between 1 and k − 2. It follows from the rule for
Integration by Parts (Corollary 7.14) that

rm+1(s, h) =
hm+1

m!

∫ 1

0

(1− t)mf (m+1)(s+ th) dt

=
hm

m!

∫ 1

0

(1− t)m d

dt

(
f (m)(s+ th)

)
dt

=
hm

m!

[
(1− t)mf (m)(s+ th)

]1
0

− hm

m!

∫ 1

0

d

dt
((1− t)m) f (m)(s+ th) dt

= −h
m

m!
f (m)(s) +

hm

(m− 1)!

∫ 1

0

(1− t)m−1f (m)(s+ th) dt

= rm(s, h)− hm

m!
f (m)(s).

Thus

rm(s, h) =
hm

m!
f (m)(s) + rm+1(s, h)

for m = 1, 2, . . . , k − 1. It follows by induction on k that

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) + rk(s, h)

= f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

(k − 1)!

∫ 1

0

(1− t)k−1f (k)(s+ th) dt,

as required.
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