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11 The Inverse and Implicit Function Theo-

rems

11.1 Local Invertibility of Differentiable Functions

Definition Let ϕ:X → Rn be a continuous function defined over an open
set X in Rn and mapping that open set into Rn, and let p be a point of X.
A local inverse of the map ϕ:X → Rn around the point p is a continuous
function µ:W → X defined over an open set W in Rn that satisfies the
following conditions:

(i) µ(W ) is an open set in Rn contained in X, and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈ W .

If there exists a function µ:W → X satisfying these conditions, then the
function ϕ is said to be locally invertible around the point p.

Lemma 11.1 Let ϕ:X → Rn be a continuous function defined over an open
set X in Rn and mapping that open set into Rn, let p be a point of X. and
let µ:W → X be a local inverse for the map φ around the point p. Then
ϕ(x) ∈ W and µ(ϕ(x)) = x for all x ∈ µ(W ).

Proof The definition of local inverses ensures that µ(W ) is an open subset
of X, p ∈ µ(W ) and ϕ(µ(y)) = y for all y ∈ W . Let x ∈ µ(W ). Then
x = µ(y) for some y ∈ W . But then ϕ(x) = ϕ(µ(y)) = y, and therefore
ϕ(x) ∈ W . Moreover µ(ϕ(x)) = µ(y) = x, as required.

Let ϕ:X → Rn be a continuous function defined over an open set X in Rn

and mapping that open set into Rn, let p be a point of X. and let µ:W → X
be a local inverse for the map φ around the point p. Then the function from
the open set µ(W ) to the open set W that sends each point x of µ(W ) to
ϕ(x) is invertible, and its inverse is the continuous function from W to ϕ(W )
that sends each point y of W to µ(y). A function between sets is bijective if
it has a well-defined inverse. A continuous bijective function whose inverse
is also continuous is said to be a homeomorphism. We see therefore that the
restriction of the map ϕ to the image µ(W ) of the local inverse µ:W → X
determines a homeomorphism from the open set µ(W ) to the open set W .

Example The function ϕ:R2 → R2 \ {(0, 0)} defined such that

ϕ(u, v) = (eu cos v, eu sin v)
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for all u, v ∈ R2 is locally invertible, though it is not bijective. Indeed, given
(u0, v0) ∈ R, let

W = {(r cos(v0 + θ), r sin(v0 + θ)) :

r, θ ∈ R, r > 0 and − π < θ < π},

and let
µ(r cos(v0 + θ), r sin(v0 + θ)) = (log r, v0 + θ)

whenever r > 0 and −π < θ < 1. Then W is an open set in R2, the function
µ:W → R2 is continuous,

µ(W ) = {(u, v) ∈ R2 : v0 − π < v < v0 + π},

and µ(ϕ(u, v)) = (u, v) for all (u, v) ∈ µ(W ).

A continuously differentiable function may have a continuous inverse, but
that inverse is not guaranteed to be differentiable, as the following example
demonstrates.

Example Let f :R→ R be defined so that f(x) = x3 for all real numbers x.
The function f is continuously differentiable and has a continuous inverse
f−1:R → R, where f−1(x) = 3

√
x when x ≥ 0 and f−1(x) = − 3

√
−x when

x < 0. This inverse function is not differentiable at zero.

Lemma 11.2 Let ϕ:X → Rn be a continuously differentiable function de-
fined over an open set X in Rn. Suppose that ϕ is locally invertible around
some point p of X. Suppose also that a local inverse to ϕ around p is dif-
ferentiable at the point ϕ(p). Then the derivative (Dϕ)p:Rn → Rn of ϕ at
the point p is an invertible linear operator on Rn. Thus if

ϕ(x1, x2, . . . , xn) = (y1, y2, . . . , yn),

for all (x1, x2, . . . , xn) ∈ X, where y1, y2, . . . , yn are differentiable functions of
x1, x2, . . . , xn, and if ϕ has a differentiable local inverse around the point p,
then the Jacobian matrix

∂y1
∂x1

∂y1
∂x2

. . .
∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

. . .
∂y2
∂xn

...
...

...
∂yn
∂x1

∂yn
∂x2

. . .
∂yn
∂xn


is invertible at the point p.
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Proof Let µ:W → X be a local inverse of ϕ around p, where W is an open
set in Rn, p ∈ µ(W ), µ(W ) ⊂ X and µ(ϕ(x)) = x for all x ∈ µ(W ). Suppose
that µ:W → X is differentiable at ϕ(p). The identity µ(ϕ(x)) = x holds
throughout the open neighbourhood µ(W ) of point p. Applying the Chain
Rule (Proposition 9.8), we find that (Dµ)ϕ(p)(Dϕ)p is the identity operator
on Rn. It follows that the linear operators (Dµ)ϕ(p) and (Dϕ)p on Rn are
inverses of one another, and therefore (Dϕ)p is an invertible linear operator
on Rn. The result follows.

Definition A function µ:W → X between subsets W and X of Euclidean
spaces is said to be Lipschitz continuous if there exists a positive constant C
such that

|µ(u)− µ(v)| ≤ C|u− v|

for all u,v ∈ W .

It follows from Corollary 9.11 that a continuously differentiable function is
Lipschitz continuous throughout some sufficiently small open neighbourhood
of any given point in its domain.

Lemma 11.3 Let ϕ:X → Rn be a continuously differentiable function de-
fined over an open set X in Rn that is locally invertible around some point
of X and let µ:W → X be a local inverse for ϕ. Suppose that ϕ:X → Rn is
continuously differentiable and that the local inverse µ:W → X is Lipschitz
continuous throughout W . Then µ:W → X is continuously differentiable
throughout W .

Proof The function µ:W → X is Lipschitz continuous, and therefore there
exists a positive constant C such that

|µ(y)− µ(w)| ≤ C |y −w|

for all y,w ∈ W . Let q ∈ W , let p = µ(q), and let S be the derivative of ϕ
at p. Then

Sv = lim
t→0

1

t
(ϕ(p + tv)− ϕ(p))

for all v ∈ Rn (see Lemma 9.5). If |t| is sufficiently small then p+tv ∈ µ(W ).
It then follows from Lemma 11.1 that

tv = µ(ϕ(p + tv))− µ(ϕ(p)),

and therefore
|t||v| ≤ C |ϕ(p + tv)− ϕ(p)|.
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It follows that

|Sv| = lim
t→0

1

|t|
|ϕ(p + tv)− ϕ(p)| ≥ 1

C
|v|

for all v ∈ Rn, and therefore Sv 6= 0 for all non-zero vectors v. It then
follows from basic linear algebra that the linear operator S on Rn is invertible.
Moreover |S−1v| ≤ C|v| for all v ∈ Rn.

Now

lim
x→p

1

|x− p|
|ϕ(x)− ϕ(p)− S(x− p)| = 0,

because the function ϕ is differentiable at p. Also µ(y) 6= p when y 6= q,
because q = ϕ(p) and y = ϕ(µ(y)). The continuity of µ ensures that µ(y)
tends to p as y tends to q. It follows that

lim
y→q

1

|µ(y)− p|
|y − q− S(µ(y)− p)| = 0

(see Proposition 4.16). Now

|S−1(y − q)− (µ(y)− p)| ≤ C|y − q− S(µ(y)− p)|

for all y ∈ W . Also
1

|y − q|
≤ C

|p− µ(y)|
for all y ∈ W satisfying y 6= q. It follows that

1

|y − q|
|µ(y)− p− S−1(y − q)| ≤ C2

|µ(y)− p|
|y − q− S(µ(y)− p)|.

It follows that

lim
y→q

1

|y − q|
|µ(y)− p− S−1(y − q)| = 0

(see Proposition 4.9), and therefore the function µ is differentiable at q with
derivative S−1. Thus (Dµ)q = (Dϕ)−1p for all q ∈ W . It follows from this that
(Dµ)q depends continuously on q, and thus the function µ is continuously
differentiable on W , as required.

11.2 Convergence of Contractive Sequences

Proposition 11.4 Let x1,x2,x3, . . . be an infinite sequence of points in n-
dimensional Euclidean space Rn, and let λ be a real number satisfying 0 <
λ < 1. Suppose that

|xj+1 − xj| ≤ λ|xj − xj−1|
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for all integers j satisfying j > 1. Then the infinite sequence x1,x2,x3, . . . is
convergent.

Proof We show that an infinite sequence of points in Euclidean space satis-
fying the stated criterion is a Cauchy sequence and is therefore convergent.
Now the infinite sequence satisfies

|xj+1 − xj| ≤ Cλj

for all positive integers j, where C = |x2 − x1|/λ. Let j and k be positive
integers satisfying j < k. Then

|xk − xj| =

∣∣∣∣∣
k−1∑
s=j

(xs+1 − xs)

∣∣∣∣∣ ≤
k−1∑
s=j

|xs+1 − xs|

≤ C
k−1∑
s=j

λs = Cλj
1− λk−j

1− λ
<

Cλj

1− λ
.

We now show that the infinite sequence x1,x2,x3, . . . is a Cauchy se-
quence. Let some positive real number ε be given. Then a positive inte-
ger N can be chosen large enough to ensure that CλN < (1 − λ)ε. Then
|xk − xj| < ε whenever j ≥ N and k ≥ N . Therefore the given infinite
sequence is a Cauchy sequence. Now all Cauchy sequences in Rn are conver-
gent (see Theorem 2.8). Therefore the given infinite sequence is convergent,
as required.

11.3 The Inverse Function Theorem

The Inverse Function Theorem ensures that, for a continuously differentiable
function of several real variables, mapping an open set in one Euclidean
space into a Euclidean space of the same dimension, the invertibility of the
derivative of the function at a given point is sufficient to ensure the local
invertibility of that function around the given point, and moreover ensures
that the inverse function is also locally a continuously differentiable function.

The proof uses the method of successive approximations, using a conver-
gence criterion for infinite sequences of points in Euclidean space that we
established in Proposition 11.4.

Theorem 11.5 (Inverse Function Theorem) Let ϕ:X → Rn be a con-
tinuously differentiable function defined over an open set X in n-dimensional
Euclidean space Rn and mapping X into Rn, and let p be a point of X. Sup-
pose that the derivative (Dϕ)p:Rn → Rn of the map ϕ at the point p is an
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invertible linear transformation. Then there exists an open set W in Rn and
a continuously differentiable function µ:W → X that satisfies the following
conditions:—

(i) µ(W ) is an open set in Rn contained in X, and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈ W .

Proof We may assume, without loss of generality, that p = 0 and ϕ(p) = 0.
Indeed the result in the general case can then be deduced by applying the
result in this special case to the function that sends z to ϕ(p + z)−ϕ(p) for
all z ∈ Rn for which p + z ∈ X.

Now (Dϕ)0:Rn → Rn is an invertible linear transformation, by assump-
tion. Let T = (Dϕ)−10 , and let ψ:X → Rn be defined such that

ψ(x) = x− T (ϕ(x))

for all x ∈ X. Now the derivative of any linear transformation at any point
is equal to that linear transformation (see Lemma 9.2). It follows from the
Chain Rule (Proposition 9.8) that the derivative of the composition function
T ◦ ϕ at any point x of X is equal to T (Dϕ)x. It follows that (Dψ)x =
I − T (Dϕ)x for all x ∈ X, where I denotes the identity operator on Rn. In
particular (Dψ)0 = I − T (Dϕ)0 = 0. It then follows from Proposition 9.10
that there exists a positive real number δ such that

|ψ(u)− ψ(v)| ≤ 1
2
|u− v|

whenever |u| < δ and |v| < δ.
Now ψ(0) = 0. It follows from the inequality just proved that |ψ(x)| ≤

1
2
|x| whenever |x| < δ.

Let W be the open set in Rn defined so that

W = {y ∈ Rn : |T (y)| < 1
2
δ},

and let µ0, µ1, µ2, . . . be the infinite sequence of functions from W to Rn

defined so that µ0(y) = 0 for all y ∈ W and

µj(y) = µj−1(y) + T (y − ϕ(µj−1(y)))

for all positive integers j. Now ϕ(0) = 0. It follows that if µj−1(0) = 0 for
some positive integer j then µj(0) = 0. It then follows by induction on j
that µj(0) = 0 for all non-negative integers j.
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We shall prove that there is a well-defined function µ:W → Rn defined
such that µ(y) = lim

j→+∞
µj(y) and that this function µ is a local inverse for

ϕ defined on the open set W that satisfies the required properties.
Let y ∈ W and let xj = µj(y) for all non-negative integers j. Then

x0 = 0 and

xj = xj−1 + T (y − ϕ(xj−1))

= ψ(xj−1) + Ty

for all positive integers j. Now we have already shown that |ψ(x)| ≤ 1
2
|x|

whenever |x| < δ. Also the definition of the open set W ensures that |Ty| <
1
2
δ. It follows that if |xj−1| < δ then

|xj| ≤ |ψ(xj−1)|+ |Ty| ≤ 1
2
|xj−1|+ |Ty| < 1

2
δ + |Ty| < δ.

It follows by induction on j that |xj| < 1
2
δ + |Ty| for all non-negative inte-

gers j. Also

xj+1 − xj = xj − xj−1 − T (ϕ(xj)− ϕ(xj−1))

= ψ(xj)− ψ(xj−1)

for all positive integers j. But |xj| < δ and |xj−1| < δ and therefore

|xj+1 − xj| = |ψ(xj)− ψ(xj−1)| ≤ 1
2
|xj − xj−1|

for all positive integers j. It then follows from Lemma 11.4 that the infinite
sequence x0,x1,x2,x3, . . . is convergent. Now xj = µj(y) for all non-negative
integers j, where y is an arbitrary element of the open set W . The conver-
gence result just obtained therefore guarantees that there is a well-defined
function µ:W → Rn which satisfies

µ(y) = lim
j→+∞

µj(y)

for all y ∈ W . Moreover |µj(y)| < 1
2
δ + |Ty| for all positive integers j and

for all y ∈ W , and therefore

|µ(y)| ≤ 1
2
δ + |Ty| < δ

for all y ∈ W .
Next we prove that ϕ(µ(y)) = y for all y ∈ W . Now

µ(y) = lim
j→+∞

µj(y) = lim
j→+∞

(µj−1(y) + T (y − ϕ(µj−1(y))))

= µ(y) + T (y − ϕ(µ(y)))
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It follows that T (y − ϕ(µ(y))) = 0. But T = (Dϕ)−10 . It follows that

y − ϕ(µ(y)) = (Dϕ)0(T (y − ϕ(µ(y)))) = (Dϕ)0(0) = 0.

Thus y = ϕ(µ(y)) for all y ∈ W . Also µj(0) = 0 for all non-negative
integers j, and therefore µ(0) = 0.

Next we show that if x ∈ Rn satisfies |x| < δ and if ϕ(x) ∈ W then
x = µ(ϕ(x)). Now x = ψ(x) + Tϕ(x) for all x ∈ X. Also

|Tϕ(x)| ≤ ‖T‖op |ϕ(x)|

for all x ∈ X, where ‖T‖op denotes the operator norm of T (see Lemma 8.1).
It follows that

|x− z| = |ψ(x)− ψ(z) + T (ϕ(x)− ϕ(z))|
≤ |ψ(x)− ψ(z)|+ |T (ϕ(x)− ϕ(z))|
≤ 1

2
|x− z|+ ‖T‖op |ϕ(x)− ϕ(z)|

for all x, z ∈ Rn satisfying |x| < δ and |z| < δ. Subtracting 1
2
|x − z| from

both sides of the above inequality, and then multiplying by two, we find that

|x− z| ≤ 2‖T‖op |ϕ(x)− ϕ(z)|.

whenever |x| < δ and |z| < δ. Substituting z = µ(y), we find that

|x− µ(y)| ≤ 2‖T‖op |ϕ(x)− y|

for all x ∈ X satisfying |x| < δ and for all y ∈ W . It follows that if x ∈ X
satisfies |x| < δ and if ϕ(x) = y for some y ∈ W then x = µ(y). The
inequality also ensures that

|µ(y)− µ(w)| ≤ 2‖T‖op |y −w|

for all y,w ∈ W . Thus the function µ:W → X is Lipschitz continuous. It
then follows from Lemma 11.3 that the function µ is continuously differen-
tiable.

Next we prove that µ(W ) is an open subset of X. Now µ(W ) ⊂ ϕ−1(W )
because y = ϕ(µ(y)) for all y ∈ W . We have also proved that |µ(y)| < δ for
all y ∈ W . It follows that

µ(W ) ⊂ ϕ−1(W ) ∩ {x ∈ Rn : |x| < δ}.

But we have also shown that if x ∈ X satisfies |x| < δ, and if ϕ(x) ∈ W then
x = µ(ϕ(x)), and therefore x ∈ µ(W ). It follows that

µ(W ) = ϕ−1(W ) ∩ {x ∈ Rn : |x| < δ}.
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Now ϕ−1(W ) is an open subset in X, because ϕ:X → Rn is continuous
and W is an open set in Rn (see Proposition 4.18). It follows that µ(W ) is
an intersection of two open sets, and is thus itself an open set. Moreover
0 ∈ µ(W ), because µ(0) = 0. We can now conclude that µ:W → X is a
local inverse for ϕ:X → Rn.

We have shown that the function µ:W → X is Lipschitz continuous.
It therefore follows from Lemma 11.3 that the function µ:W → X is con-
tinuously differentiable. This completes the proof of the Inverse Function
Theorem for continuously differentiable functions whose derivative at a given
point is an invertible linear transformation.

11.4 The Implicit Function Theorem

Theorem 11.6 Let X be an open set in Rn, let f1, f2, . . . , fm be a continu-
ously differentiable real-valued functions on X, where m < n, let

M = {x ∈ X : fi(x) = 0 for i = 1, 2, . . . ,m},

and let p be a point of M . Suppose that f1, f2, . . . , fm are zero at p and that
the matrix 

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

...
∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xm


is invertible at the point p. Then there exists an open neighbourhood U
of p and continuously differentiable functions h1, h2, . . . , hm of n − m real
variables, defined around (pm+1, . . . , pn) in Rn−m, such that

M ∩ U = {(x1, x2, . . . , xn) ∈ U :

xi = hi(xm+1, . . . , xn) for i = 1, 2, . . . ,m}.

Proof Let ϕ:X → Rn be the continuously differentiable function defined
such that

ϕ(x) =
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
for all x ∈ X. (Thus the ith Cartesian component of the function ϕ is equal
to fi for i ≤ m, but is equal to xi for m < i ≤ n.) Let J be the Jacobian

152



matrix of ϕ at the point p, and let Ji,j denote the coefficient in the ith row
and jth column of J . Then

Ji,j =
∂fi
∂xj

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Also Ji,i = 1 if i > m, and Ji,j = 0 if
i > m and j 6= i. The matrix J can therefore be represented in block form
as

J =

(
J0 A
0 In−m

)
,

where J0 is the leadingm×m minor of the matrix J , A is an m×(n−m) minor
of the matrix J and In−m is the identity (n−m)× (n−m) matrix. It follows
from standard properties of determinants that det J = det J0. Moreover the
hypotheses of the theorem require that det J0 6= 0. Therefore det J 6= 0. The
derivative (Dϕ)p of ϕ at the point p is represented by the Jacobian matrix J .
It follows that (Dϕ)p:Rn → Rn is an invertible linear transformation.

The Inverse Function Theorem (Theorem 11.5) now ensures the existence
of a local inverse µ:W → X for the function ϕ around p. The range µ(W )
of this local inverse is then an open set in X containing the point p, and
ϕ(µ(y)) = y for all y ∈ W .

Let y be a point of W , and let y = (y1, y2, . . . , yn). Then y = ϕ(µ(y)),
and therefore yi = fi(µ(y)) for i = 1, 2, . . . ,m, and yi is equal to the ith
component of µ(y) when m < i ≤ n.

Now p ∈ µ(W ). Therefore there exists some point q of W satisfying
µ(q) = p. Now p ∈ M , and therefore fi(p) = 0 for i = 1, 2, . . . ,m. But
qi = fi(µ(q)) = fi(p) when 1 ≤ i ≤ m. It follows that qi = 0 when
1 ≤ i ≤ m. Also qi = pi when i > m.

Let gi denote the ith Cartesian component of the continuously differ-
entiable map µ:W → Rn for i = 1, 2, . . . , n. Then gi:W → R is a con-
tinuously differentiable real-valued function on W for i = 1, 2, . . . , n. If
(y1, y2, . . . , yn) ∈ W then

(y1, y2, . . . , yn) = ϕ(µ(y1, y2, . . . , yn)).

It then follows from the definition of the map ϕ that yi is the ith Cartesian
component of µ(y1, y2, . . . , yn) when i > m, and thus

yi = gi(y1, y2, . . . , yn) when i > m.

Now µ(W ) is an open set, and p ∈ µ(W ). It follows that there exists
some positive real number δ such that H(p, δ) ⊂ µ(W ). where

H(p, δ)

= {(x1, x2, . . . , xn) ∈ Rn : pi − δ < xi < pi + δ for i = 1, 2, . . . , n}.
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Let

D = {(z1, z2, . . . , zn−m) ∈ Rn−m : pm+j − δ < zj < pm+j + δ

for j = 1, 2, . . . , n−m},

and let hi:D → R be defined so that

hi(z1, z2, . . . , zn−m) = gi(0, 0, . . . , 0, z1, z2, . . . , zn−m)

for i = 1, 2, . . . ,m.
Let x ∈ H(p, δ), where x = (x1, x2, . . . , xn). Then x ∈ µ(W ). It follows

from Lemma 11.1 that

(x1, x2, . . . , xn) = µ(ϕ(x))

= µ
(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

On equating Cartesian components we find that

xi = gi

(
f1(x), f2(x), . . . , fm(x), xm+1, . . . , xn

)
.

for i = 1, 2, . . . , n.
In particular, if x ∈ H(p, δ) ∩M then

f1(x) = f2(x) = · · · = fm(x) = 0,

and therefore

xi = gi

(
0, 0, . . . , 0, xm+1, . . . , xn

)
= hi

(
xm+1, . . . , xn

)
.

for i = 1, 2, . . . ,m. It follows that

M ∩H(p, δ) ⊂ {(x1, x2, . . . , xn) ∈ H(p, δ) :

xi = hi(xm+1, . . . , xn) for i = 1, 2, . . . ,m}.

Now let x be a point of H(x, δ) whose Cartesian components x1, x2, . . . , xn
satisfy the equations

xi = hi(xm+1, . . . , xn)

for i = 1, 2, . . . ,m. Then

xi = gi(0, 0, . . . , 0, xm+1, . . . , xn)
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for i = 1, 2, . . . ,m. Now it was shown earlier that

yi = gi(y1, y2, . . . , yn)

for all (y1, y2, . . . , yn) ∈ W when i > m. It follows from this that

xi = gi(0, 0, . . . , 0, xm+1, . . . , xn)

when m < i ≤ n. The functions g1, g2, . . . , gn are the Cartesian components
of the map µ:W → X. We conclude therefore that

(x1, x2, . . . , xn) = µ(0, 0, . . . , 0, xm+1, . . . , xn),

Applying the function ϕ to both sides of this equation we see that

ϕ(x1, x2, . . . , xn) = ϕ(µ(0, 0, . . . , 0, xm+1, . . . , xn))

= (0, 0, . . . , 0, xm+1, . . . , xn).

It then follows from the definition of the map ϕ that

fi(x1, x2, . . . , xn) = 0,

for i = 1, 2, . . . ,m. We have thus shown that if x is a point of H(x, δ) whose
Cartesian components x1, x2, . . . , xn satisfy the equations

xi = hi(xm+1, . . . , xn)

for i = 1, 2, . . . ,m then x ∈M . The converse of this result was proved earlier.
The proof of the theorem is therefore completed on taking U = H(p, δ).
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