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5 The Riemann Integral in One Dimension

5.1 Darboux Sums and the Riemann Integral

The approach to the theory of integration discussed below was developed
by Jean-Gaston Darboux (1842–1917). The integral defined using lower and
upper sums in the manner described below is sometimes referred to as the
Darboux integral of a function on a given interval. However the class of func-
tions that are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach using Dar-
boux sums provides a convenient approach to define and establish the basic
properties of the Riemann integral.

Definition A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of
real numbers satisfying a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Given any bounded real-valued function f on [a, b], the upper sum (or
upper Darboux sum) U(P, f) of f for the partition P of [a, b] is defined so
that

U(P, f) =
n∑
i=1

Mi(xi − xi−1),

where Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Similarly the lower sum (or lower Darboux sum) L(P, f) of f for the

partition P of [a, b] is defined so that

L(P, f) =
n∑
i=1

mi(xi − xi−1),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi}.
Clearly L(P, f) ≤ U(P, f). Moreover

n∑
i=1

(xi−xi−1) = b−a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤M for all x ∈ [a, b].

Definition Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a
f(x) dx (or upper Darboux

integral) and the lower Riemann integral L
∫ b
a
f(x) dx (or lower Darboux

integral) of the function f on [a, b] are defined by

U
∫ b

a

f(x) dx = inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx = sup {L(P, f) : P is a partition of [a, b]} .
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The definition of upper and lower integrals thus requires that U
∫ b
a
f(x) dx

be the infimum of the values of U(P, f) and that L
∫ b
a
f(x) dx be the supre-

mum of the values of L(P, f) as P ranges over all possible partitions of the
interval [a, b].

Definition A bounded function f : [a, b] → R on a closed bounded interval
[a, b] is said to be Riemann-integrable (or Darboux-integrable) on [a, b] if

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

in which case the Riemann integral
∫ b
a
f(x) dx (or Darboux integral) of f on

[a, b] is defined to be the common value of U
∫ b
a
f(x) dx and L

∫ b
a
f(x) dx.

When a > b we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

for all Riemann-integrable functions f on [b, a]. We set
∫ b
a
f(x) dx = 0 when

b = a.
If f and g are bounded Riemann-integrable functions on the interval

[a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx, since

L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g) for all partitions P of [a, b].

Definition Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a refinement of P
if P ⊂ R, so that, for each xi in P , there is some uj in R with xi = uj.

Lemma 5.1 Let R be a refinement of some partition P of [a, b]. Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f)

for any bounded function f : [a, b]→ R.

Proof Let P = {x0, x1, . . . , xn} and R = {u0, u1, . . . , um}, where a = x0 <
x1 < · · · < xn = b and a = u0 < u1 < · · · < um = b. Now for each
integer i between 0 and n there exists some integer j(i) between 0 and m
such that xi = uj(i) for each i, since R is a refinement of P . Moreover 0 =
j(0) < j(1) < · · · < j(n) = n. For each i, let Ri be the partition of [xi−1, xi]
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given by Ri = {uj : j(i − 1) ≤ j ≤ j(i)}. Then L(R, f) =
n∑
i=1

L(Ri, f) and

U(R, f) =
n∑
i=1

U(Ri, f). Moreover

mi(xi − xi−1) ≤ L(Ri, f) ≤ U(Ri, f) ≤Mi(xi − xi−1),

since mi ≤ f(x) ≤ Mi for all x ∈ [xi−1, xi]. On summing these inequal-
ities over i, we deduce that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(P, f), as
required.

Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. For example, we can take
R = P ∪ Q. Such a partition is said to be a common refinement of the
partitions P and Q.

Lemma 5.2 Let f be a bounded real-valued function on the interval [a, b].
Then

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.

Proof Let P and Q be partitions of [a, b], and let R be a common refinement
of P and Q. It follows from Lemma 5.1 that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤
U(Q, f). Thus, on taking the supremum of the left hand side of the inequality
L(P, f) ≤ U(Q, f) as P ranges over all possible partitions of the interval [a, b],

we see that L
∫ b
a
f(x) dx ≤ U(Q, f) for all partitions Q of [a, b]. But then,

taking the infimum of the right hand side of this inequality as Q ranges over
all possible partitions of [a, b], we see that L

∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx, as

required.

Example Let f(x) = cx+d, where c ≥ 0. We shall show that f is Riemann-

integrable on [0, 1] and evaluate
∫ 1

0
f(x) dx from first principles.

For each positive integer n, let Pn denote the partition of [0, 1] into n
subintervals of equal length. Thus Pn = {x0, x1, . . . , xn}, where xi = i/n.
Now the function f takes values between (i− 1)c/n+ d and ic/n+ d on the
interval [xi−1, xi], and therefore

mi =
(i− 1)c

n
+ d, Mi =

ic

n
+ d

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Thus
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L(Pn, f) =
n∑
i=1

mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d− c

n

)
=

c(n+ 1)

2n
+ d− c

n
=
c

2
+ d− c

2n
,

U(Pn, f) =
n∑
i=1

Mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d

)
=

c(n+ 1)

2n
+ d =

c

2
+ d+

c

2n
.

It follows that
lim

n→+∞
L(Pn, f) =

c

2
+ d

and
lim

n→+∞
U(Pn, f) =

c

2
+ d

Now L(Pn, f) ≤ L
∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx ≤ U(Pn, f) for all positive

integers n. It follows that L
∫ b
a
f(x) dx = 1

2
c + d = U

∫ b
a
f(x) dx. Thus f is

Riemann-integrable on the interval [0, 1], and
∫ 1

0
f(x) dx = 1

2
c+ d.

Example Let f : [0, 1]→ R be the function defined by

f(x) =

{
1 if x is rational;
0 if x is irrational.

Let P be a partition of the interval [0, 1] given by P = {x0, x1, x2, . . . , xn},
where 0 = x0 < x1 < x2 < · · · < xn = 1. Then

inf{f(x) : xi−1 ≤ x ≤ xi} = 0, sup{f(x) : xi−1 ≤ x ≤ xi} = 1,

for i = 1, 2, . . . , n, and thus L(P, f) = 0 and U(P, f) = 1 for all partitions P

of the interval [0, 1]. It follows that L
∫ 1

0
f(x) dx = 0 and U

∫ 1

0
f(x) dx = 1,

and therefore the function f is not Riemann-integrable on the interval [0, 1].

5.2 Basic Properties of the Riemann Integral

Lemma 5.3 Let f : [a, b] → R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b. Then the
lower and upper Riemann integrals of f and −f are related by the identities

U
∫ b

a

(−f(x)) dx = −L
∫ b

a

f(x) dx,

L
∫ b

a

(−f(x)) dx = −U
∫ b

a

f(x) dx.

51



Proof Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b,

and let

mi = inf{f(x) : xi−1 ≤ x ≤ xi},
Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.

Then the lower and upper sums of f for the partition P are given by the
formulae

L(P, f) =
n∑
i=1

mi(xi − xi−1), U(P, f) =
n∑
i=1

Mi(xi − xi−1).

Now

sup{−f(x) : xi−1 ≤ x ≤ xi}
= − inf{f(x) : xi−1 ≤ x ≤ xi} = −mi,

inf{−f(x) : xi−1 ≤ x ≤ xi}
= − sup{f(x) : xi−1 ≤ x ≤ xi} = −Mi

It follows that

U(P,−f) =
n∑
i=1

(−mi)(xi − xi−1) = −L(P, f),

L(P,−f) =
n∑
i=1

(−Mi)(xi − xi−1) = −U(P, f).

We have now shown that

U(P,−f) = −L(P, f) and L(P,−f) = −U(P, f)

for all partitions P of the interval [a, b]. Applying the definition of the upper
and lower integrals, we see that

U
∫ b

a

(−f(x)) dx = inf {U(P,−f) : P is a partition of [a, b]}

= inf {−L(P, f) : P is a partition of [a, b]}
= − sup {L(P, f) : P is a partition of [a, b]}

= −L
∫ b

a

f(x) dx
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Similarly

L
∫ b

a

(−f(x)) dx = sup {L(P,−f) : P is a partition of [a, b]}

= sup {−U(P, f) : P is a partition of [a, b]}
= − inf {U(P, f) : P is a partition of [a, b]}

= −U
∫ b

a

f(x) dx.

This completes the proof.

Lemma 5.4 Let f : [a, b] → R and g: [a, b] → R be bounded functions on
a closed bounded interval [a, b], where a and b are real numbers satisfying
a ≤ b, and let P be a partition of the interval [a, b]. Then the lower sums of
the functions f , g and f + g satisfy

L(P, f + g) ≥ L(P, f) + L(P, g),

and the upper sums of these functions satisfy

U(P, f + g) ≤ U(P, f) + U(P, g).

Proof Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b.

Then

L(P, f) =
n∑
i=1

mi(f)(xi − xi−1),

L(P, g) =
n∑
i=1

mi(g)(xi − xi−1),

L(P, f + g) =
n∑
i=1

mi(f + g)(xi − xi−1),

where

mi(f) = inf{f(x) : xi−1 ≤ x ≤ xi},
mi(g) = inf{g(x) : xi−1 ≤ x ≤ xi},

mi(f + g) = inf{f(x) + g(x) : xi−1 ≤ x ≤ xi}

53



for i = 1, 2, . . . , n.
Now

f(x) ≥ mi(f) and g(x) ≥ mi(g).

for all x ∈ [xi−1, xi]. Adding, we see that

f(x) + g(x) ≥ mi(f) +mi(g)

for all x ∈ [xi−1, xi], and therefore mi(f) +mi(g) is a lower bound for the set

{f(x) + g(x) : xi−1 ≤ x ≤ xi}.

The greatest lower bound for this set is mi(f + g). Therefore

mi(f + g) ≥ mi(f) +mi(g).

It follows that

L(P, f + g) =
n∑
i=1

mi(f + g)(xi − xi−1)

≥
n∑
i=1

(mi(f) +mi(g))(xi − xi−1)

=
n∑
i=1

mi(f)(xi − xi−1) +
n∑
i=1

mi(g)(xi − xi−1)

= L(P, f) + L(P, g).

An analogous argument applies to upper sums. Now

U(P, f) =
n∑
i=1

Mi(f)(xi − xi−1),

U(P, g) =
n∑
i=1

Mi(g)(xi − xi−1),

U(P, f + g) =
n∑
i=1

Mi(f + g)(xi − xi−1),

where

Mi(f) = sup{f(x) : xi−1 ≤ x ≤ xi},
Mi(g) = sup{g(x) : xi−1 ≤ x ≤ xi},

Mi(f + g) = sup{f(x) + g(x) : xi−1 ≤ x ≤ xi}
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for i = 1, 2, . . . , n.
Now

f(x) ≤Mi(f) and g(x) ≤Mi(g).

for all x ∈ [xi−1, xi]. Adding, we see that

f(x) + g(x) ≤Mi(f) +Mi(g)

for all x ∈ [xi−1, xi], and therefore Mi(f) +Mi(g) is an upper bound for the
set

{f(x) + g(x) : xi−1 ≤ x ≤ xi}.
The least upper bound for this set is Mi(f + g). Therefore

Mi(f + g) ≤Mi(f) +Mi(g).

It follows that

U(P, f + g) =
n∑
i=1

Mi(f + g)(xi − xi−1)

≤
n∑
i=1

(Mi(f) +Mi(g))(xi − xi−1)

=
n∑
i=1

Mi(f)(xi − xi−1) +
n∑
i=1

Mi(g)(xi − xi−1)

= U(P, f) + U(P, g).

This completes the proof that

L(P, f + g) ≥ L(P, f) + L(P, g)

and
U(P, f + g) ≤ U(P, f) + U(P, g).

Proposition 5.5 Let f : [a, b] → R and g: [a, b] → R be bounded Riemann-
integrable functions on a closed bounded interval [a, b], where a and b are
real numbers satisfying a ≤ b. Then the functions f + g and f − g are
Riemann-integrable on [a, b], and moreover∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

and ∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.
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Proof Let some strictly positive real number ε be given. The definition
of Riemann-integrability and the Riemann integral ensures that there exist
partitions P and Q of [a, b] for which

L(P, f) >

∫ b

a

f(x) dx− 1
2
ε

and

L(Q, g) >

∫ b

a

g(x) dx− 1
2
ε.

Let the partition R be a common refinement of the partitions P and Q. Then

L(R, f) ≥ L(P, f) and L(R, g) ≥ L(P, g).

Applying Lemma 5.4, and the definition of the lower Riemann integral, we
see that

L
∫ b

a

(f(x) + g(x)) dx

≥ L(R, f + g) ≥ L(R, f) + L(R, g)

≥ L(P, f) + L(Q, g)

>

(∫ b

a

f(x) dx− 1
2
ε

)
+

(∫ b

a

g(x) dx− 1
2
ε

)
>

∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε

We have now shown that

L
∫ b

a

(f(x) + g(x)) dx >

∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε

for all strictly positive real numbers ε. However the quantities of

L
∫ b

a

(f(x) + g(x)) dx,

∫ b

a

f(x) dx and

∫ b

a

g(x) dx

have values that have no dependence whatsoever on the value of ε. It follows
that

L
∫ b

a

(f(x) + g(x)) dx ≥
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

We can deduce a corresponding inequality involving the upper integral of
f +g by replacing f and g by −f and −g respectively (Lemma 5.3). We find
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that

L
∫ b

a

(−f(x)− g(x)) dx ≥
∫ b

a

(−f(x)) dx+

∫ b

a

(−g(x)) dx

= −
∫ b

a

f(x) dx−
∫ b

a

g(x) dx

and therefore

U
∫ b

a

(f(x) + g(x)) dx = −L
∫ b

a

(−f(x)− g(x)) dx

≤
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Combining the inequalities obtained above, we find that∫ b

a

f(x) dx+

∫ b

a

g(x) dx

≤ L
∫ b

a

(f(x) + g(x)) dx

≤ U
∫ b

a

(f(x) + g(x)) dx

≤
∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

The quantities at the left and right hand ends of this chain of inequalities
are equal to each other. It follows that

L
∫ b

a

(f(x) + g(x)) dx = U
∫ b

a

(f(x) + g(x)) dx

=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Thus the function f + g is Riemann-integrable on [a, b], and∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Then, replacing g by −g, we find that∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

as required.
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Proposition 5.6 Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a ≤ b. Then the
function f is Riemann-integrable on [a, b] if and only if, given any positive
real number ε, there exists a partition P of [a, b] with the property that

U(P, f)− L(P, f) < ε.

Proof First suppose that f : [a, b] → R is Riemann-integrable on [a, b]. Let
some positive real number ε be given. Then∫ b

a

f(x) dx

is equal to the common value of the lower and upper integrals of the func-
tion f on [a, b], and therefore there exist partitions Q and R of [a, b] for
which

L(Q, f) >

∫ b

a

f(x) dx− 1
2
ε

and

U(R, f) <

∫ b

a

f(x) dx+ 1
2
ε.

Let P be a common refinement of the partitions Q and R. Now

L(Q, f) ≤ L(P, f) ≤ U(P, f) ≤ U(R, f).

(see Lemma 5.1). It follows that

U(P, f)− L(P, f) ≤ U(R, f)− L(Q, f) < ε.

Now suppose that f : [a, b] → R is a bounded function on [a, b] with the
property that, given any positive real number ε, there exists a partition P of
[a, b] for which U(P, f)− L(P, f) < ε. Let ε > 0 be given. Then there exists
a partition P of [a, b] for which U(P, f) − L(P, f) < ε. Now it follows from
the definitions of the upper and lower integrals that

L(P, f) ≤ L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx ≤ U(P, f),

and therefore

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < U(P, f)− L(P, f) < ε.
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Thus the difference between the values of the upper and lower integrals of f
on [a, b] must be less than every strictly positive real number ε, and therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx.

This completes the proof.

Proposition 5.7 Let f be a bounded real-valued function on the interval
[a, c]. Suppose that f is Riemann-integrable on the intervals [a, b] and [b, c],
where a < b < c. Then f is Riemann-integrable on [a, c], and∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Proof Let some positive real number ε be given. The function f is Riemann-
integrable on the interval [a, b] and therefore there exists a partition Q of [a, b]
such that the lower Darboux sum L(Q, f) of f on [a, b] with respect to the
partition Q of [a, b] satisfies

L(Q, f) >

∫ b

a

f(x) dx− 1
2
ε.

Similarly there exists a partition R of [b, c] of [a, b] such that the lower Dar-
boux sum L(Q, f) of f on [b, c] with respect to the partition R of [b, c] satisfies

L(R, f) >

∫ c

b

f(x) dx− 1
2
ε.

Now the partitions Q and R combine to give a partition P of the interval
[a, c], where P = Q ∪ R. Indeed Q = {u0, u1, . . . , um}, where u0, u1, . . . , um
are real numbers satisfying

a = u0 < u1 < u2 < · · ·um−1 < um = b,

and R = {v0, v1, . . . , vn}, where v0, v1, . . . , vn are real numbers satisfying

b = v0 < v1 < v2 < · · · vn−1 < vn = c.

Then
P = {a, u1, u2, . . . , um−1, b, v1, v2, . . . , vn−1, c}.

It follows directly from the definition of Darboux lower sums that

L(P, f) = L(Q, f) + L(R, f).
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The choice of the partitions Q and R then ensures that

L(P, f) >

∫ b

a

f(x) dx+

∫ c

b

f(x) dx− ε.

The lower Riemann integral L
∫ c

a

f(x) dx is by definition the least upper

bound of the lower Darboux sums of f on the interval [a, c]. It follows that

L
∫ c

a

f(x) dx >

∫ b

a

f(x) dx+

∫ c

b

f(x) dx− ε.

Moreover this inequality holds for all values of the positive real number ε. It
follows that

L
∫ c

a

f(x) dx ≥
∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Applying this result with the function f replaced by −f yields the in-
equality

L
∫ c

a

(−f(x)) dx ≥ −
∫ b

a

f(x) dx−
∫ c

b

f(x) dx.

But

L
∫ c

a

(−f(x)) dx = −U
∫ c

a

f(x) dx

(see Lemma 5.3). It follows that

U
∫ c

a

f(x) dx ≤
∫ b

a

f(x) dx+

∫ c

b

f(x) dx ≤ L
∫ c

a

f(x) dx.

But

L
∫ c

a

f(x) dx ≤ U
∫ c

a

f(x) dx.

It follows that

L
∫ c

a

f(x) dx = U
∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

The result follows.
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5.3 Integrability of Monotonic Functions

Let a and b be real numbers satisfying a < b. A real-valued function
f : [a, b] → R defined on the closed bounded interval [a, b] is said to be non-
decreasing if f(u) ≤ f(v) for all real numbers u and v satisfying a ≤ u ≤ v ≤
b. Similarly f : [a, b] → R is said to be non-increasing if f(u) ≥ f(v) for all
real numbers u and v satisfying a ≤ u ≤ v ≤ b. The function f : [a, b]→ R is
said to be monotonic on [a, b] if either it is non-decreasing on [a, b] or else it
is non-increasing on [a, b].

Proposition 5.8 Let a and b be real numbers satisfying a < b. Then every
monotonic function on the interval [a, b] is Riemann-integrable on [a, b].

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

Proof Let f : [a, b]→ R be a non-decreasing function on the closed bounded
interval [a, b]. Then f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b], and therefore the
function f is bounded on [a, b]. Let some positive real number ε be given.
Let δ be some strictly positive real number for which (f(b)−f(a))δ < ε, and
let P be a partition of [a, b] of the form P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

and xi − xi−1 < δ for i = 1, 2, . . . , n. The maximum and minimum values
of f(x) on the interval [xi−1, xi] are attained at xi and xi−1 respectively, and
therefore the upper sum U(P, f) and L(P, f) of f for the partition P satisfy

U(P, f) =
n∑
i=1

f(xi)(xi − xi−1)
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and

L(P, f) =
n∑
i=1

f(xi−1)(xi − xi−1).

Now f(xi)− f(xi−1) ≥ 0 for i = 1, 2, . . . , n. It follows that

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

U(P, f)− L(P, f)

=
n∑
i=1

(f(xi)− f(xi−1))(xi − xi−1)

< δ
n∑
i=1

(f(xi)− f(xi−1)) = δ(f(b)− f(a)) < ε.

We have thus shown that

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < ε

for all strictly positive numbers ε. But

U
∫ b

a

f(x) dx ≥ L
∫ b

a

f(x) dx.

It follows that

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].
Now let f : [a, b]→ R be a non-increasing function on [a, b]. Then −f is a

non-decreasing function on [a, b] and it follows from what we have just shown
that −f is Riemann-integrable on [a, b]. It follows that the function f itself
must be Riemann-integrable on [a, b], as required.
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Corollary 5.9 Let f : [a, b] → R be a real-valued function on the interval
[a, b], where a and b are real numbers satisfying a < b. Suppose that there
exist real numbers x0, x1, . . . , xn, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

such that the function f restricted to the interval [xi−1, xi] is monotonic on
[xi−1, xi] for i = 1, 2, . . . , n. Then f is Riemann-integrable on [a, b].

Proof The result follows immediately on applying the results of Proposi-
tion 5.7 and Proposition 5.8.

Remark The result and proof-strategy of Proposition 5.8 are to be found
in their essentials in Isaac Newton, Philosophiae naturalis principia mathe-
matica (1686), Book 1, Section 1, Lemmas 2 and 3.

5.4 Integrability of Continuous functions

Theorem 5.10 Let a and b be real numbers satisfying a < b. Then any
continuous real-valued function on the interval [a, b] is Riemann-integrable.

Proof Let f be a continuous real-valued function on [a, b]. Then f is
bounded above and below on the interval [a, b], and moreover f : [a, b]→ R is
uniformly continuous on [a, b]. (These results follow from Theorem 4.21 and
Theorem 4.22.) Therefore there exists some strictly positive real number δ
such that |f(x)− f(y)| < ε whenever x, y ∈ [a, b] satisfy |x− y| < δ.

Choose a partition P of the interval [a, b] such that each subinterval in
the partition has length less than δ. Write P = {x0, x1, . . . , xn}, where
a = x0 < x1 < · · · < xn = b. Now if xi−1 ≤ x ≤ xi then |x − xi| < δ, and
hence f(xi)− ε < f(x) < f(xi) + ε. It follows that

f(xi)− ε ≤ mi ≤Mi ≤ f(xi) + ε (i = 1, 2, . . . , n),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Therefore

n∑
i=1

f(xi)(xi − xi−1)− ε(b− a)

≤ L(P, f) ≤ U(P, f)

≤
n∑
i=1

f(xi)(xi − xi−1) + ε(b− a),

63



where L(P, f) and U(P, f) denote the lower and upper sums of the function f
for the partition P .

We have now shown that

0 ≤ U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx ≤ U(P, f)− L(P, f) ≤ 2ε(b− a).

But this inequality must be satisfied for any strictly positive real number ε.
Therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].

5.5 The Fundamental Theorem of Calculus

Let a and b be real numbers satisfying a < b. One can show that all con-
tinuous functions on the interval [a, b] are Riemann-integrable (see Theo-
rem 5.10). However the task of calculating the Riemann integral of a contin-
uous function directly from the definition is difficult if not impossible for all
but the simplest functions. Thus to calculate such integrals one makes use
of the Fundamental Theorem of Calculus.

Theorem 5.11 (The Fundamental Theorem of Calculus) Let f be a
continuous real-valued function on the interval [a, b], where a < b. Then

d

dx

(∫ x

a

f(t) dt

)
= f(x)

for all x satisfying a < x < b.

Proof Let some strictly positive real number ε be given, and let ε0 be a real
number chosen so that 0 < ε0 < ε. (For example, one could choose ε0 = 1

2
ε.)

Now the function f is continuous at x, where a < x < b. It follows that there
exists some strictly positive real number δ such that

f(x)− ε0 ≤ f(t) ≤ f(x) + ε0

for all t ∈ [a, b] satisfying x − δ < t < x + δ. Let F (s) =
∫ s
a
f(t) dt for all

s ∈ (a, b). Then

F (x+ h) =

∫ x+h

a

f(t) dt =

∫ x

a

f(t) dt+

∫ x+h

x

f(t) dt

= F (x) +

∫ x+h

x

f(t) dt
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whenever x+ h ∈ [a, b]. Also

1

h

∫ x+h

x

f(x) dt =
f(x)

h

∫ x+h

x

dt = f(x),

because f(x) is constant as t varies between x and x+ h. It follows that

F (x+ h)− F (x)

h
− f(x) =

1

h

∫ x+h

x

(f(t)− f(x)) dt

whenever x+ h ∈ [a, b]. But if 0 < |h| < δ and x+ h ∈ [a, b] then

−ε0 ≤ f(t)− f(x) ≤ ε0

for all real numbers t belonging to the closed interval with endpoints x and
x+ h, and therefore

−ε0|h| ≤
∫ x+h

x

(f(t)− f(x)) dt ≤ ε0|h|.

It follows that ∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ ≤ ε0 < ε

whenever x+ h ∈ [a, b] and 0 < |h| < δ. We conclude that

d

dx

(∫ x

a

f(t) dt

)
= lim

h→0

F (x+ h)− F (x)

h
= f(x),

as required.
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6 The Multidimensional Riemann Integral

6.1 Partitions of Closed Cells

Definition We define a closed n-cell in Rn to be a subset of Rn of the form

{(x1, x2, . . . , xn) ∈ Rn : ui ≤ xi ≤ vi for i = 1, 2, . . . , n},

where u1, u2, . . . , un and v1, v2, . . . , vn are real numbers satisfying ui < vi for
i = 1, 2, . . . , n.

Definition Let C be a closed n-cell in Rn. Then there are uniquely-de-
termined real numbers u1, u2, . . . , un and v1, v2, . . . , vn satisfying ui < vi for
i = 1, 2, . . . , n for which

C = {(x1, x2, . . . , xn) ∈ Rn : ui ≤ xi ≤ vi for i = 1, 2, . . . , n}.

We define the interior of the n-cell C to be the open set int(C) defined such
that

int(C) = {(x1, x2, . . . , xn) ∈ Rn : ui < xi < vi for i = 1, 2, . . . , n}.

Definition Let C be a closed n-cell in Rn. Then there are uniquely-de-
termined real numbers u1, u2, . . . , un and v1, v2, . . . , vn satisfying ui < vi for
i = 1, 2, . . . , n for which

C = {(x1, x2, . . . , xn) ∈ Rn : ui ≤ xi ≤ vi for i = 1, 2, . . . , n}.

We define the content of the n-cell C to be the positive real number µ(C)
defined by the formula

µ(C) =
n∏
i=1

(vi − ui),

where
n∏
i=1

(vi − ui) denotes the product of the quantities vi − ui for i =

1, 2, . . . , n.

We now develop some notation and terminology for use in discussing
partitions of closed n-cells in Rn.

Given sets X1, X2, . . . , Xn, the Cartesian product X1 ×X2 × · · · ×Xn of
those sets is the set consisting of all ordered n-tuples (x1, x2, . . . , xn) with
the property that xi ∈ Xi for i = 1, 2, . . . , n.
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Thus for example let [a, b] and [c, d] be closed intervals, where a, b, c and
d are real numbers satisfying a < b and c < d. The Cartesian product of
these two closed intervals is a closed rectangle [a, b]× [c, d] in R2, where

[a, b]× [c, d] = {(x, y) ∈ R2 : a ≤ x ≤ b1 and c ≤ y ≤ d}.

This closed rectangle is a closed 2-cell in R2, and moreover any closed 2-cell
in R2 is the Cartesian product of 2 closed intervals in R2.

More generally, any n-cell in Rn is the Cartesian product of n closed
intervals of positive length. The content of the n-cell is then the product of
the lengths of those closed intervals.

Indeed let C be a closed n-cell in Rn. This closed cell is determined by
real numbers ui and vi for i = 1, 2, . . . , n, where ui < vi for all i and

C = {(x1, x2, . . . , xn) ∈ Rn : ui ≤ xi ≤ vi for i = 1, 2, . . . , n}.

The n-cell C is thus the Cartesian product

[u1, v1]× [u2, v2]× · · · × [un, vn]

of the closed intervals [u1, v1], [u2, v2], . . . , [un, vn].
Let Pi be a partition of the closed interval [ui, vi] for i = 1, 2, . . . , n. Then

the partitions P1, P2, . . . , Pn induce a partition P of the closed n-cell C, where

C = [u1, v1]× [u2, v2]× · · · × [un, vn],

partitions this n-cell as a collection of closed subcells that meet one another
only along parts of their boundaries. Specifically let

Pi = {wi,0, wi,1, . . . , wi,ki}

for i = 1, 2, . . . , n, where

ui = wi,0 < wi,1 < · · · < wi,ki = vi.

The partition Pi then decomposes the closed interval [ui, vi] as a collection
of subintervals [wi,ji−1, wi,ji ] where the index ji ranges over the integers from
1 to ki.

Let

Ω(P ) = {(j1, j2, . . . , jn) ∈ Zn : 1 ≤ ji ≤ ki for i = 1, 2, . . . , n}.
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Given α ∈ Ω(P ), there exist integers j1, j2, . . . , jn for which 1 ≤ ji ≤ ki for
i = 1, 2, . . . , n and α = (j1, j2, . . . , jn). Let CP,α, or C(j1,j2,...,jn), denote the
closed n-cell in Rn defined so that

CP,α = C(j1,j2,...,jn)

= [w1,j1−1, w1,j1 ]× [w2,j2−1, w2,j2 ]× · · · × [wn,jn−1, wn,jn ]

= {(x1, x2, . . . , xn) ∈ Rn : wi,ji−1 ≤ xi ≤ wi,ji for i = 1, 2, . . . , n}.

Then the closed n-cell C is the union of the closed subcells CP,α as α ranges
over the set Ω(P ). Moreover, if two of these subcells intersect one another,
then they intersect only along parts of their boundaries, and thus the interiors
of these subcells are disjoint.

Proposition 6.1 Let C be a closed n-cell in Rn, let

[u1, v1]× [u2, v2], . . . , [un, vn]

be the closed intervals of positive length whose Cartesian product is the n-
cell C, and let Pi be a partition of the closed interval [ui, vi] for i = 1, 2, . . . , n.
Then the partitions P1, P2, . . . , Pn induce a partition P of the closed n-cell C
as the union of closed subcells CP,α, where the index α ranges over a finite
set Ω(P ). Each element α of this indexing set Ω(P ) is an n-tuple of inte-
gers (j1, j2, . . . , jn), where ji numbers the corresponding subinterval in the
partition Pi of the interval [ui, vi], and the corresponding subcell CP,α of C is
the Cartesian product of those subintervals. Moreover the subcells CP,α for
α ∈ Ω(P ) meet, if at all, only along parts of their boundaries, and thus the
interiors of these subcells are disjoint.

Let C be a closed n-cell in Rn. This n-cell is a product of n closed intervals

[u1, v1], [u2, v2], . . . , [un, vn].

Let Pi be a partition of the interval [ui, vi] for i = 1, 2, . . . , n. Then the
partitions P1, P2, . . . , Pn determine a partition P of the closed n-cell with
indexing set Ω(P ) in the manner described in Proposition 6.1. The elements
of this indexing set Ω(P ) are n-tuples of integers. These n-tuples label the
closed subcells of C determined by the partition P . We refer to these elements
of Ω(P ) as multi-indices.

Let α be a multi-index in the indexing set Ω(P ) for the partition P of
the closed n-cell induced by partitions of the closed intervals [ui, vi] whose
Cartesian product is the n-cell C. Let ki denote the number of subintervals in
the partition of the ith interval [ui, vi] occurring as a factor in the Cartesian
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product. Then α = (j1, j2, . . . , jn), where ji is an integer between 1 and ki for
i = 1, 2, . . . , n. The closed subcell CP,α that corresponds to the multi-index α
is then determined as follows:

CP,α = [w1,j1−1, w1,j1 ]× [w2,j2−1, w2,j2 ]× · · · × [wn,jn−1, wn,jn ],

where [wi,ji−1, wi,ji ] is the jith subinterval occuring in the partition of the
closed interval [ui, vi] for i = 1, 2, . . . , n. The content µ(CP,α) of the closed
n-cell CP,α is then given by the formula

µ(CP,α) =
n∏
i=1

(wi,ji − wi,ji−1).

Proposition 6.2 Let C be a closed n-cell in Rn with content µ(C), and
let P be a partition of C induced by partitions of the closed intervals whose
Cartesian product is the closed n-cell C. Let Ω(P ) be the indexing set for the
partition P , and for all multi-indices α ∈ Ω(P ), let CP,α be the corresponding
closed subcell in the partition of the closed n-cell C, and let µ(CP,α) denote
the content of CP,α. Then

µ(C) =
∑

α∈Ω(P )

µ(CP,α).

Proof Let
C = [u1, v1]× [u2, v2], . . . , [un, vn],

where, for each i between 1 and n, ui and vi are real numbers satisfying
ui < vi. Then

µ(C) =
n∏
i=1

(vi − ui).

Let the partition P of C be induced by partitions Pi of [ui, vi] for i =
1, 2, . . . , n. Moreover let

Pi = {wi,0, wi,1, . . . , wi,ki},

where wi,0, wi,1, wi,2, . . . , wi,ki are real numbers for j = 1, 2, . . . , ki and

ui = wi,0 < wi,1 < · · · < wi,ki = vi.

The content µ(C(j1,j2,...,jn)) of the closed subcell C(j1,j2,...,jn) in the partition
of C corresponding to the multi-index (j1, j2, . . . , jn) is then given by the
formula

µ(C(j1,j2,...,jn)) =
n∏
i=1

(wi,ji − wi,ji−1).
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It follows that
kn∑
jn=1

µ(C(j1,j2,...,jn)) =

(
n−1∏
i=1

(wi,ji − wi,ji−1)

)
×

(
kn∑
jn=1

(wi,ni
− wi,jn−1)

)

=

(
n−1∏
i=1

(wi,ji − wi,ji−1)

)
× (vn − un).

The proposition therefore follows from a straightforward application of the
Principle of Mathematical Induction, using induction on the dimension n of
the n-cell, and making use of the above identity in establishing the inductive
step.

Definition Let C be an n-cell in Rn and let P and R be partitions of C,
where P is induced by partitions P1, P2, . . . , Pn of the closed intervals whose
Cartesian product is the n-cell C and the partition R is induced by partitions
R1, R2, . . . , Rn of those same closed intervals. We say that the partition R is
a refinement of the partition P if Pi ⊂ Ri for i = 1, 2, . . . , n.

The following result follows directly from the definition of refinements of
partitions of closed n-cells in Rn.

Lemma 6.3 Let C be an n-cell in Rn and let P and R be partitions of
C. Then, for each multi-index β belonging to the indexing set Ω(R) for the
partition R of C, there exists a unique multi-index α belonging to the indexing
set Ω(P ) for the partition P of C for which the subcells CR,β and CP,α of C for
the partitions P and R determined by the multi-indices β and α respectively
satisfy the inclusion CR,β ⊂ CP,α.

Lemma 6.4 Let C be a closed n-cell in Rn, and let P and Q be partitions
of C. Then there exists a partition R of C that is a common refinement of
the partitions P and Q.

Proof Let
C = [u1, v1]× [u2, v2], . . . , [un, vn],

where, for each i between 1 and n, ui and vi are real numbers satisfying
ui < vi. Then there are partitions Pi and Qi of the closed interval [ui, vi] for
i = 1, 2, . . . , n so that the partitions P1, P2, . . . , Pn of the respective closed
intervals induce the partition P of C and the partitions Q1, Q2, . . . , Qn of
those same closed intervals induce the partition Q of C. Let Ri = Pi∪Qi for
i = 1, 2, . . . , n. Then Ri is a partition of the interval [ui, vi] for i = 1, 2, . . . , n
that is a common refinement of the partitions Pi and Qi of the interval
[ui, vi]. Let R be the partition of the closed n-cell C induced by the partitions
R1, R2, . . . , Rn of the respective closed intervals. Then the partition R of C
is the required common refinement of the partitions P and Q of C.
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6.2 Multidimensional Darboux Sums

Let f :C → R be a bounded real-valued function defined on an n-cell C in
Rn. A partition P of the n-cell C represents C as the union of a collection of
closed n-cells CP,α contained in C indexed by a finite set Ω(P ). Distinct n-
cells in this collection intersect, if at all, only along parts of their boundaries,
and therefore the interiors of the subcells of C determined by the partition P
are disjoint. Thus each point of C belongs to the interior of at most one cell
in the collection of closed subcells into which the n-cell C is partitioned. Also
the content µ(C) of the n-cell C is the sum of the contents of the subcells
determined by the partition, and thus

µ(C) =
∑

α∈Ω(P )

µ(CP,α)

(see Proposition 6.2).

Definition Let f :C → R be a bounded real-valued function defined on an
n-cell C in Rn, let P be a partition of C, and let Ω(P ) denote the indexing
set for the partition P , and, for each α ∈ Ω(P ), let

mP,α = inf{f(x) : x ∈ CP,α} and MP,α = sup{f(x) : x ∈ CP,α},

where µ(CP,α) denotes the content of the closed subcell CP,α of C indexed
by α. Then the Darboux lower sum L(P, f) and the Darboux upper sum
U(P, f) are defined by the formulae

L(P, f) =
∑

α∈Ω(P )

mP,α µ(CP,α)

and
U(P, f) =

∑
α∈Ω(P )

MP,α µ(CP,α).

Let f :C → R be a bounded real-valued function defined on an n-cell C
in Rn. Then the definition of the Darboux lower and upper sums ensures
that L(P, f) ≤ U(P, f) for all partitions P of the n-cell C.

Let C be a closed n-cell in Rn, and let P and R be partitions of C, where
P is determined by partitions P1, P2, . . . , Pn of the closed intervals whose
Cartesian product is the closed n-cell C and R is determined by partitions
R1, R2, . . . , Rn of those same closed intervals. We recall that the partition R
is a refinement of P if and only if Pi ⊂ Ri for i = 1, 2, . . . , n.
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Lemma 6.5 Let f :C → R be a bounded real-valued function defined on an
n-cell C in Rn, and let P and R be partitions of C. Suppose that R is a
refinement of P . Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f).

Proof Let the cells of the partitions P and R be indexed by indexing sets
Ω(P ) and ω(R) respectively. Also, for each α ∈ Ω(P ), let CP,α be the cell
of the partition P determined by α, and, for each β ∈ Ω(R), let CR,β be the
cell of the partition R determined by β. Then, given a subcell CR,β of C,
indexed by some element β of the indexing set Ω(R) for the partition R, there
exists a uniquely-determined subcell CP,α of C, indexed by some element α
of the indexing set Ω(P ) for the partition P , for which CR,β ⊂ CP,α. (see
Lemma 6.3). It follows that there is a unique well-defined function λ: Ω(R)→
Ω(P ) characterized by the requirement that, for each multi-index β belonging
to the indexing set Ω(R) for the partition R, the element λ(β) of the indexing
set Ω(P ) for the partition P is the unique multi-index in Ω(P ) for which
CR,β ⊂ CP,λ(β). Now

U(P, f) =
∑

α∈Ω(P )

MP,α µ(CP,α),

L(P, f) =
∑

α∈Ω(P )

mP,α µ(CP,α),

U(R, f) =
∑

β∈Ω(R)

MR,β µ(CR,β),

L(R, f) =
∑

β∈Ω(R)

mR,β µ(CR,β),

where

MP,α = sup{f(x) : x ∈ CP,α},
mP,α = inf{f(x) : x ∈ CP,α},
MR,β = sup{f(x) : x ∈ CR,β},
mR,β = inf{f(x) : x ∈ CR,β}

for all α ∈ Ω(P ) and β ∈ Ω(R). Also

MR,β ≤MP,λ(β) and mR,β ≥ mP,λ(β)

for all β ∈ Ω(R), because CR,β ⊂ CP,λ(β). Now the partition R of C de-
termines a partition of each cell CP,α of the partition P , decomposing the
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cell CP,α as a union of the sets CR,β for which λ(β) = α. It follows from
Proposition 6.2 that

CP,α =
∑

β∈Ω(R;α)

µ(CR,β)

where
Ω(R;α) = {β ∈ Ω(R) : λ(β) = α}

for all α ∈ Ω(P ). Therefore

L(R, f) =
∑

β∈Ω(R)

mR,β µ(CR,β)

=
∑

α∈Ω(P )

∑
β∈Ω(R;α)

mR,β µ(CR,β)

≥
∑

α∈Ω(P )

mP,α

∑
β∈Ω(R;α)

µ(CR,β)

≥
∑

α∈Ω(P )

mP,α µ(CP,α)

= L(P, f).

Similarly

U(R, f) =
∑

β∈Ω(R)

MR,β µ(CR,β)

=
∑

α∈Ω(P )

∑
β∈Ω(R;α)

MR,β µ(CR,β)

≤
∑

α∈Ω(P )

MP,α

∑
β∈Ω(R;α)

µ(CR,β)

≥
∑

α∈Ω(P )

MP,α µ(CP,α)

= U(P, f).

This completes the proof.

Lemma 6.6 Let f :C → R be a bounded real-valued function defined on an
n-cell C in Rn, and let P and Q be partitions of C. Then then the Darboux
sums of the function f for the partitions P and Q satisfy L(P, f) ≤ U(Q, f).

Proof There exists a partition R of C that is a common refinement of the
partitions P and Q of C. (Lemma 6.4.) Moreover L(R, f) ≥ L(P, f) and
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U(R, f) ≤ U(Q, f) (Lemma 6.5). It follows that

L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(Q, f),

as required.

6.3 The Multidimensional Riemann-Darboux Integral

Definition Let C be an n-cell in Rn, and let f :C → R be a bounded real-
valued function on C. The lower Riemann integral and the upper Riemann
integral, denoted by

L
∫
C

f(x) dµ and U
∫
C

f(x) dµ

respectively, are defined such that

L
∫
C

f(x) dµ = sup{L(P, f) : P is a partition of C},

U
∫
C

f(x) dµ = inf{U(P, f) : P is a partition of C}.

Lemma 6.7 Let f be a bounded real-valued function on an n-cell C in Rn.
Then

L
∫
C

f(x) dx ≤ U
∫
C

f(x) dx.

L
∫
C

f(x) dµ ≤ U
∫
C

f(x) dµ.

Proof The inequality L(P, f) ≤ L(Q, f) holds for all partitions P and Q of
the closed n-cell C (Lemma 6.6). It follows that, for a fixed partition Q, the
upper sum U(Q, f) is an upper bound on all the lower sums L(P, f), and
therefore

L
∫
C

f(x) dx ≤ U(Q, f).

The lower Riemann integral is then a lower bound on all the upper sums,
and therefore

L
∫
C

f(x) dµ ≤ U
∫
C

f(x) dµ.

as required.

74



Definition A bounded function f :C → R on a closed n-cell C in Rn is said
to be Riemann-integrable (or Darboux-integrable) on C if

U
∫
C

f(x) dµ = L
∫
C

f(x) dµ,

in which case the Riemann integral
∫
C
f(x) dµ (or Darboux integral) of f on

X is defined to be the common value of U
∫
C
f(x) dµ and L

∫
C
f(x) dµ.

Lemma 6.8 Let f :C → R be a bounded function on a closed n-cell C in
Rn. Then the lower and upper Riemann integrals of f and −f are related by
the identities

U
∫
C

(−f(x)) dµ = −L
∫
C

f(x) dµ,

L
∫
C

(−f(x)) dµ = −U
∫
C

f(x) dµ.

Proof Let P be a partition of C, let Ω(P ) be the indexing set for the cells
of the partition P , and let the cell of the partition indexed by α ∈ Ω(P ) be
denoted by CP,α. Then the lower and upper sums of f for the partition P
satisfy the equations

L(P, f) =
∑

α∈Ω(P )

mP,α µ(CP,α), U(P, f) =
∑

α∈Ω(P )

MP,α µ(CP,α),

where

mP,α = inf{f(x) : x ∈ CP,α},
MP,α = sup{f(x) : x ∈ CP,α}.

Now

sup{−f(x) : x ∈ CP,α} = − inf{f(x) : x ∈ CP,α} = −mP,α,

inf{−f(x) : x ∈ CP,α} = − sup{f(x) : x ∈ CP,α} = −MP,α

It follows that

U(P,−f) =
∑

α∈Ω(P )

(−mP,α)µ(CP,α) = −L(P, f),

L(P,−f) =
∑

α∈Ω(P )

(−MP,α)µ(CP,α) = −U(P, f).
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We have now shown that

U(P,−f) = −L(P, f) and L(P,−f) = −U(P, f)

for all partitions P of the interval C. Applying the definition of the upper
and lower integrals, we see that

U
∫
C

(−f(x)) dµ

= inf {U(P,−f) : P is a partition of C}
= inf {−L(P, f) : P is a partition of C}
= − sup {L(P, f) : P is a partition of C}

= −L
∫
C

f(x) dµ

Similarly

L
∫
C

(−f(x)) dµ

= sup {L(P,−f) : P is a partition of C}
= sup {−U(P, f) : P is a partition of C}
= − inf {U(P, f) : P is a partition of C}

= −U
∫
C

f(x) dµ.

This completes the proof.

Lemma 6.9 Let f :C → R and g:C → R be bounded functions on a closed
n-cell C in Rn. Then the lower sums of the functions f , g and f + g satisfy

L(P, f + g) ≥ L(P, f) + L(P, g),

and the upper sums of these functions satisfy

U(P, f + g) ≤ U(P, f) + U(P, g).

Proof Let P be a partition of C, let Ω(P ) be the indexing set for the cells
of the partition P , and let the cell of the partition indexed by α ∈ Ω(P ) be
denoted by CP,α. Then

L(P, f) =
∑

α∈Ω(P )

mP,α(f)µ(CP,α),
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L(P, g) =
∑

α∈Ω(P )

mP,α(g)µ(CP,α),

L(P, f + g) =
∑

α∈Ω(P )

mP,α(f + g)µ(CP,α),

U(P, f) =
∑

α∈Ω(P )

MP,α(f)µ(CP,α),

U(P, g) =
∑

α∈Ω(P )

MP,α(g)µ(CP,α),

U(P, f + g) =
∑

α∈Ω(P )

MP,α(f + g)µ(CP,α),

where

mP,α(f) = inf{f(x) : x ∈ CP,α},
mP,α(g) = inf{g(x) : x ∈ CP,α},

mP,α(f + g) = inf{f(x) + g(x) : x ∈ CP,α}
MP,α(f) = sup{f(x) : x ∈ CP,α},
MP,α(g) = sup{g(x) : x ∈ CP,α},

MP,α(f + g) = sup{f(x) + g(x) : x ∈ CP,α}

for α ∈ Ω(P ).
Now

mP,α(f) ≤ f(x) ≤MP,α(f) and mP,α(g) ≤ g(x) ≤MP,α(g).

for all x ∈ CP,α. Adding, we see that

mP,α(f) +mP,α(g) ≤ f(x) + g(x) ≤MP,α(f) +MP,α(g)

for all x ∈ CP,α, and therefore MP,α(f) +MP,α(g) is an upper bound for the
set

{f(x) + g(x) : x ∈ CP,α}.

and mP,α(f) + mP,α(g) is a lower bound for the same set. The least upper
bound and greatest lower bound for this set are MP,α(f + g) and mP,α(f + g)
respectively. Therefore

mP,α(f) +mP,α(g) ≤ mP,α(f + g)

≤ MP,α(f + g)

≤ MP,α(f) +MP,α(g).
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It follows that

U(P, f + g)

=
∑

α∈Ω(P )

MP,α(f + g)µ(CP,α)

≤
∑

α∈Ω(P )

(MP,α(f) +MP,α(g))µ(CP,α)

=
∑

α∈Ω(P )

MP,α(f)µ(CP,α) +
∑

α∈Ω(P )

MP,α(g)µ(CP,α)

= U(P, f) + U(P, g).

Similarly

L(P, f + g)

=
∑

α∈Ω(P )

mP,α(f + g)µ(CP,α)

≥
∑

α∈Ω(P )

(mP,α(f) +mP,α(g))µ(CP,α)

=
∑

α∈Ω(P )

mP,α(f)µ(CP,α) +
∑

α∈Ω(P )

mP,α(g)µ(CP,α)

= L(P, f) + L(P, g).

This completes the proof that

L(P, f + g) ≥ L(P, f) + L(P, g)

and
U(P, f + g) ≤ U(P, f) + U(P, g).

Proposition 6.10 Let f :C → R and g:C → R be bounded Riemann-
integrable functions on a closed n-cell C. Then the functions f + g and
f − g are Riemann-integrable on C, and moreover∫

C

(f(x) + g(x)) dµ

=

∫
C

f(x) dµ+

∫
C

g(x) dµ,

and ∫
C

(f(x)− g(x)) dµ

=

∫
C

f(x) dµ−
∫
C

g(x) dµ.
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Proof Let some strictly positive real number ε be given. The definition
of Riemann-integrability and the Riemann integral ensures that there exist
partitions P and Q of C for which

L(P, f) >

∫
C

f(x) dµ− 1
2
ε

and

L(Q, g) >

∫
C

g(x) dµ− 1
2
ε.

Let the partition R be a common refinement of the partitions P and Q. Then

L(R, f) ≥ L(P, f) and L(R, g) ≥ L(P, g).

Applying Lemma 6.9, and the definition of the lower Riemann integral, we
see that

L
∫
C

(f(x) + g(x)) dµ

≥ L(R, f + g) ≥ L(R, f) + L(R, g)

≥ L(P, f) + L(Q, g)

>

(∫
C

f(x) dµ− 1
2
ε

)
+

(∫
C

g(x) dµ− 1
2
ε

)
>

∫
C

f(x) dµ+

∫
C

g(x) dµ− ε

We have now shown that

L
∫
C

(f(x) + g(x)) dµ

>

∫
C

f(x) dµ+

∫
C

g(x) dµ− ε

for all strictly positive real numbers ε. However the quantities of

L
∫
C

(f(x) + g(x)) dµ,

∫
C

f(x) dµ

and ∫
C

g(x) dµ
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have values that have no dependence whatsoever on the value of ε.
It follows that

L
∫
C

(f(x) + g(x)) dµ

≥
∫
C

f(x) dµ+

∫
C

g(x) dµ.

We can deduce a corresponding inequality involving the upper integral of
f +g by replacing f and g by −f and −g respectively (Lemma 6.8). We find
that

L
∫
C

(−f(x)− g(x)) dµ

≥
∫
C

(−f(x)) dµ+

∫
C

(−g(x)) dµ

= −
∫
C

f(x) dµ−
∫
C

g(x) dµ

and therefore

U
∫
C

(f(x) + g(x)) dµ

= −L
∫
C

(−f(x)− g(x)) dµ

≤
∫
C

f(x) dµ+

∫
C

g(x) dµ.

Combining the inequalities obtained above, we find that∫
C

f(x) dµ+

∫
C

g(x) dµ ≤ L
∫
C

(f(x) + g(x)) dµ

≤ U
∫
C

(f(x) + g(x)) dµ

≤
∫
C

f(x) dµ+

∫
C

g(x) dµ.

The quantities at the left and right hand ends of this chain of inequalities
are equal to each other. It follows that

L
∫
C

(f(x) + g(x)) dµ = U
∫
C

(f(x) + g(x)) dµ

=

∫
C

f(x) dµ+

∫
C

g(x) dµ.
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Thus the function f + g is Riemann-integrable on C, and∫
C

(f(x) + g(x)) dµ

=

∫
C

f(x) dµ+

∫
C

g(x) dµ.

Then, replacing g by −g, we find that∫
C

(f(x)− g(x)) dµ

=

∫
C

f(x) dµ−
∫
C

g(x) dµ.

as required.

Proposition 6.11 Let f :C → R be a bounded function on a closed n-cell C
in Rn. Then the function f is Riemann-integrable on C if and only if, given
any positive real number ε, there exists a partition P of C with the property
that

U(P, f)− L(P, f) < ε.

Proof First suppose that f :C → R is Riemann-integrable on C. Let some
positive real number ε be given. Then∫

C

f(x) dµ

is equal to the common value of the lower and upper integrals of the func-
tion f on C, and therefore there exist partitions Q and R of C for which

L(Q, f) >

∫
C

f(x) dµ− 1
2
ε

and

U(R, f) <

∫
C

f(x) dµ+ 1
2
ε.

Let P be a common refinement of the partitions Q and R. Now

L(Q, f) ≤ L(P, f) ≤ U(P, f) ≤ U(R, f).

(see Lemma 6.5). It follows that

U(P, f)− L(P, f) ≤ U(R, f)− L(Q, f) < ε.
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Now suppose that f :C → R is a bounded function on C with the property
that, given any positive real number ε, there exists a partition P of C for
which U(P, f) − L(P, f) < ε. Let ε > 0 be given. Then there exists a
partition P of C for which U(P, f) − L(P, f) < ε. Now it follows from the
definitions of the upper and lower integrals that

L(P, f) ≤ L
∫
C

f(x) dµ

≤ U
∫
C

f(x) dµ ≤ U(P, f),

and therefore

U
∫
C

f(x) dµ− L
∫
C

f(x) dµ

< U(P, f)− L(P, f) < ε.

Thus the difference between the values of the upper and lower integrals of f
on C must be less than every strictly positive real number ε, and therefore

U
∫
C

f(x) dµ = L
∫
C

f(x) dµ.

This completes the proof.

Lemma 6.12 Let f :X → R be a bounded real-valued function defined on a
non-empty set X, and let

MX(f) = sup{f(x) : x ∈ X},
mX(f) = inf{f(x) : x ∈ X}.

Then
|f(v)− f(u)| ≤MX(f)−mX(f)

for all u, v ∈ X.

Proof Let u, v ∈ X. Then either f(v) ≥ f(u) or f(u) ≥ f(v). In the case
where f(v) ≥ f(u) the inequalities mX(f) ≤ f(u) ≤ f(v) ≤ MX(f) ensure
that |f(v) − f(u)| ≤ MX(f) − mX(f). In the case where f(u) ≥ f(v) the
inequalities mX(f) ≤ f(v) ≤ f(u) ≤ MX(f) ensure that |f(v) − f(u)| ≤
MX(f)−mX(f). The result follows.
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Lemma 6.13 Let f :X → R be a bounded real-valued function defined on a
non-empty set X, and let

MX(f) = sup{f(x) : x ∈ X},
MX(|f |) = sup{|f(x)| : x ∈ X},
mX(f) = inf{f(x) : x ∈ X},
mX(|f |) = inf{|f(x)| : x ∈ X}.

Then
MX(|f |)−mX(|f |) ≤MX(f)−mX(f).

Proof Let δ be a positive real number. Then there exist u, v ∈ X such that

mX(|f |) ≤ |f(u)| < mX(|f |) + δ

and
MX(|f |)− δ < |f(v)| ≤MX(|f |).

Then
|f(v)| − |f(u)| > MX(|f |)−mX(|f |)− 2δ.

But
|f(v)| − |f(u)| ≤ |f(v)− f(u)|,

(because |f(v)| ≤ |f(u)|+ |f(v)− f(u)|) and

|f(v)− f(u)| ≤MX(f)−mX(f)

(see Lemma 6.12). It follows that

MX(|f |)−mX(|f |)− 2δ < |f(v)| − |f(u)| ≤ |f(v)− f(u)|
≤ MX(f)−mX(f).

But the values of MX(|f |)−mX(|f |) and MX(f)−mX(f) are independent
of δ, where δ > 0. It follows that

MX(|f |)−mX(|f |) ≤MX(f)−mX(f),

as required.

Let X be a non-empty set, and let f :X → R and g:X → R be real-valued
functions on X. We denote by f · g:XR the product function defined such
that We denote by (f · g)(x) = f(x)g(x) for all x ∈ X.
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Lemma 6.14 Let f :X → R and g:X → R be bounded real-valued func-
tions defined on a non-empty set X, let C be a positive real number with the
property that |f(x)| ≤ K and |g(x)| ≤ K for all x ∈ X, and let

MX(f) = sup{f(x) : x ∈ X},
MX(g) = sup{g(x) : x ∈ X},

MX(f · g) = sup{f(x)g(x) : x ∈ X},
mX(f) = inf{f(x) : x ∈ X},
mX(g) = inf{g(x) : x ∈ X},

mX(f · g) = inf{f(x)g(x) : x ∈ X}.

Then

MX(f · g)−mX(f · g) ≤ K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
.

Proof Let u and v be elements of the set X. Then

f(v)g(v)− f(u)g(u) = (f(v)− f(u))g(v) + f(u)(g(v)− g(u)),

and therefore

|f(v)g(v)− f(u)g(u)|
≤ |f(v)− f(u)| |g(v)|+ |f(u)| |g(v)− g(u)|,

≤ K
(
|f(v)− f(u)|+ |g(v)− g(u)|

)
.

Now |f(v) − f(u)| ≤ MX(f) −mX(f) and |g(v) − g(u)| ≤ MX(g) −mX(g)
and (see Lemma 6.12). Therefore

|f(v)g(v)− f(u)g(u)| ≤ K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
.

Now, given any positive real number δ, elements u and v of X can be
chosen so that

mX(f · g) ≤ f(u)g(u) < mX(f · g) + δ

and
MX(f · g)− δ < f(v)g(v) ≤MX(f · g).

Then
f(v)g(v)− f(u)g(u) > MX(f · g)−mX(f · g)− 2δ.

It follows that

MX(f · g)−mX(f · g)− 2δ < K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
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for all positive real numbers δ, and therefore

MX(f · g)−mX(f · g) ≤ K
(
MX(f)−mX(f) +MX(g)−mX(g)

)
,

as required.

Proposition 6.15 Let f :C → R be a bounded Riemann-integrable function
on a closed n-cell C in Rn, and let |f |:C → R be the function defined such
that |f |(x) = |f(x)| for all x ∈ C. Then the function |f | is Riemann-
integrable on C, and ∣∣∣∣∫

C

f(x) dµ

∣∣∣∣ ≤ ∫
C

|f(x)| dµ.

Proof Let P be a partition of the n-cell C. We first show that the Darboux
sums U(P, f) and L(P, f) of the function f on C and the Darboux sums
U(P, |f |) and L(P, |f |) of the function |f | on C satisfy the inequality

U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f).

Let Ω(P ) be the indexing set for the partition P of C, and let

MP,α(f) = sup{f(x) : x ∈ CP,α},
MP,α(|f |) = sup{|f(x)| : x ∈ CP,α},
mP,α(f) = inf{f(x) : x ∈ CP,α},
mP,α(|f |) = inf{|f(x)| : x ∈ CP,α}

for α ∈ Ω(P ). It follows from Lemma 6.13 that

MP,α(|f |)−mP,α(|f |) ≤MP,α(f)−mP,α(f)

for α ∈ Ω(P ). Now the Darboux sums of the functions f and |f | for the
partition P are defined by the identities

L(P, f) =
∑

α∈Ω(P )

mP,α(f)µ(CP,α),

L(P, |f |) =
∑

α∈Ω(P )

mP,α(|f |)µ(CP,α),

U(P, f) =
∑

α∈Ω(P )

MP,α(f)µ(CP,α),

U(P, |f |) =
∑

α∈Ω(P )

MP,α(|f |)µ(CP,α).
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It follows that

U(P, |f |)− L(P, |f |) =
∑

α∈Ω(P )

(MP,α(|f |)−mP,α(|f |))µ(CP,α)

≤
∑

α∈Ω(P )

(MP,α(f)−mP,α(f))µ(CP,α)

= U(P, f)− L(P, f).

Let some positive real number ε be given. It follows from Proposition 6.11
that there exists a partition P of C such that

U(P, f)− L(P, f) < ε.

Then
U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f) < ε.

Proposition 6.11 then ensures that the function |f | is Riemann-integrable on
C.

Now −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ C. It follows that

−
∫
C

|f(x)| dµ ≤
∫
C

f(x) dµ

≤
∫
C

|f(x)| dµ.

It follows that ∣∣∣∣∫
C

f(x) dµ

∣∣∣∣ ≤ ∫
C

|f(x)| dµ,

as required.

Proposition 6.16 Let f :C → R and g:C → R be bounded Riemann-
integrable functions on a closed bounded n-cell C in Rn. Then the function
f · g is Riemann-integrable on C, where (f · g)(x) = f(x)g(x) for all x ∈ C.

Proof The functions f and g are bounded on C, and therefore there exists
some positive real number K with the property that |f(x)| ≤ K and |g(x)| ≤
K for all x ∈ C.

Let P be a partition of the n-cell C. We first show that the Darboux
sums U(P, f), U(P, g), U(P, f · g), L(P, f), L(P, g) and L(P, f · g) of the
functions f , g and f · g on C satisfy the inequality

U(P, f · g)− L(P, f · g)

≤ K
(
U(P, f)− L(P, f) + U(P, g)− L(P, g)

)
.
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Let Ω(P ) be the indexing set of the partition P of the n-cell C, and for
all α ∈ Ω(P ), let µ(CP,α) denote the content of the closed subcell of C for
the partition P that corresponds to the multi-index α, and let

MP,α(f) = sup{f(x) : x ∈ CP,α},
MP,α(g) = sup{g(x) : x ∈ CP,α},

MP,α(f · g) = sup{f(x)g(x) : x ∈ CP,α}
mP,α(f) = inf{f(x) : x ∈ CP,α},
mP,α(g) = inf{g(x) : x ∈ CP,α},

mP,α(f · g) = inf{f(x)g(x) : x ∈ CP,α}.

Now it follows from Lemma 6.14 that

MP,α(f · g)−mP,α(f · g)

≤ K
(
MP,α(f)−mP,α(f) +MP,α(g)−mP,α(g)

)
.

for α ∈ Ω(P ). On multiplying both sides of this inequality by the content
µ(CP,α) of the subcell CP,α of the partition indexed by α and summing over
all integers between 1 and n, we find that

U(P, f · g)− L(P, f · g)

≤ K
(
U(P, f)− L(P, f) + U(P, g)− L(P, g)

)
,

where

U(P, f) =
∑

α∈Ω(P )

MP,α(f)µ(CP,α),

U(P, g) =
∑

α∈Ω(P )

MP,α(g)µ(CP,α),

U(P, f · g) =
∑

α∈Ω(P )

MP,α(f · g)µ(CP,α),

L(P, f) =
∑

α∈Ω(P )

mP,α(f)µ(CP,α),

L(P, g) =
∑

α∈Ω(P )

mP,α(g)µ(CP,α),

L(P, f · g) =
∑

α∈Ω(P )

mP,α(f · g)µ(CP,α),
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Let some positive real number ε be given. It follows from Proposition 6.11
that there exist partitions Q and R of the closed n-cell C for which

U(Q, f)− L(Q, f) <
ε

2K

and
U(R, g)− L(R, g) <

ε

2K
.

Let P be a common refinement of the partitions Q and R. It follows from
Lemma 6.5 that

U(P, f)− L(P, f) ≤ U(Q, f)− L(Q, f) <
ε

2K

and
U(P, g)− L(P, g) ≤ U(R, g)− L(R, g) <

ε

2K
.

Combining the various inequalities obtained in the course of the proof, we
find that

U(P, f · g)− L(P, f · g)

≤ K
(
U(P, f)− L(P, f) + U(P, g)− L(P, g)

)
< ε

We have thus shown that, given any positive real number ε, there exists a
partition P of the closed n-cell C with the property that

U(P, f · g)− L(P, f · g) < ε.

It follows from Proposition 6.11 that the product function f · g is Riemann-
integrable, as required.

6.4 Integrability of Continuous Functions

Theorem 6.17 Let C be a closed n-cell in Rn. Then any continuous real-
valued function on C is Riemann-integrable.

Proof Let f :C → R be a continuous real-valued function on C. Then
f is bounded above and below on C, and moreover f :C → R is uni-
formly continuous on C. (These results follow from Theorem 4.21 and The-
orem 4.22.) Therefore there exists some strictly positive real number δ such
that |f(u)− f(w)| < ε whenever u,w ∈ C satisfy |u−w| < δ.

Choose a partition P of the n-cell C such that each cell in the partition
has diameter less than δ. Let Ω(P ) be an index set which indexes the cells of
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the partition P and, for each α ∈ Ω(P ) let CP,α be the corresponding cell of
the partition P of C. Also let pα be a point of CP,α for all α ∈ Ω(P ). Then
|x− pα| < δ for all x ∈ CP,α. Thus if

mP,α = inf{f(x) : x ∈ CP,α}

and
MP,α = sup{f(x) : x ∈ CP,α}

then
f(pα)− ε ≤ mP,α ≤MP,α ≤ f(pα) + ε

for all α ∈ Ω(P ). It follows that

n∑
i=1

f(pα)µ(CP,α)− εµ(C)

≤ L(P, f) ≤ U(P, f)

≤
n∑
i=1

f(pα)µ(CP,α) + εµ(C),

where L(P, f) and U(P, f) denote the lower and upper sums of the function f
for the partition P .

We have now shown that

0 ≤ U
∫
C

f(x) dµ− L
∫
C

f(x) dµ

≤ U(P, f)− L(P, f) ≤ 2εµ(C).

But this inequality must be satisfied for any strictly positive real number ε.
Therefore

U
∫
C

f(x) dµ = L
∫
C

f(x) dµ,

and thus the function f is Riemann-integrable on C.

6.5 Repeated Integration

Let C be an n-cell in Rn, given by

C =
n∏
i=1

[ai, bi]

= {x ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n},
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where a1, a2, . . . , an and b1, b2, . . . , bn are real numbers which satisfy ai ≤ bi
for each i. Given any continuous real-valued function f on C, let us denote
by IC(f) the repeated integral of f over the n-cell C whose value is∫ bn

xn=an

(
· · ·
∫ b2

x2=a2

(∫ b1

x1=a1

f(x1, x2, . . . , xn) dx1

)
dx2 . . .

)
dxn.

(Thus IC(f) is obtained by integrating the function f first over the coordinate
x1, then over the coordinate x2, and so on).

Note that if m ≤ f(x) ≤M on C for some constants m and M then

mµ(C) ≤ IC(f) ≤M µ(C).

We shall use this fact to show that if f is a continuous function on some
n-cell C in Rn then

IC(f) =

∫
C

f(x) dµ

(i.e., IC(f) is equal to the Riemann integral of f over C).

Theorem 6.18 Let f be a continuous real-valued function defined on some
n-cell C in Rn, where

C = {x ∈ Rn : ai ≤ xi ≤ bi}.

Then the Riemann integral ∫
C

f(x) dµ

of f over C is equal to the repeated integral∫ bn

xn=an

(
· · ·
∫ b2

x2=a2

(∫ b1

x1=a1

f(x1, x2, . . . , xn) dx1

)
dx2 . . .

)
dxn.

Proof Given a partition P of the n-cell C, we denote by L(P, f) and U(P, f)
the quantities so that

L(P, f) =
∑

α∈Ω(P )

mP,α(f)µ(CP,α)

and
U(P, f) =

∑
α∈Ω(P )

MP,α(f)µ(CP,α)
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where Ω(P ) is an indexing set that indexes the cells of the partition P ,
and where, for all α ∈ Ω(P ), µ(CP,α) is the content of the cell CP,α of the
partition P indexed by α,

mP,α(f) = inf{f(x) : x ∈ CP,α},

and
MP,α(f) = sup{f(x) : x ∈ CP,α}.

Now
mP,α(f) ≤ f(x) ≤MP,α(f)

for all α ∈ Ω(P ) and x ∈ CP,α, and therefore

mP,α(f)µ(CP,α) ≤ IC,α(f) ≤MP,α(f)µ(CP,α)

for all α ∈ Ω(P ). Summing these inequalities as α ranges over the indexing
set Ω(P ), we find that

L(P, f) =
∑

α∈Ω(P )

mP,α(f)µ(CP,α)

≤
∑

α∈Ω(P )

IC,α(f)

≤
∑

α∈Ω(P )

MP,α(f)µ(CP,α)

= U(P, f).

But ∑
α∈Ω(P )

IC,α(f) = IC(f).

It follows that
L(P, f) ≤ IC(f) ≤ U(P, f).

The Riemann integral of f is equal to the supremum of the quantities L(P, f)
as P ranges over all partitions of the n-cell C, hence∫

C

f(x) dµ ≤ IC(f).

Similarly the Riemann integral of f is equal to the infimum of the quanti-
ties U(P, f) as P ranges over all partitions of the n-cell C, hence

IC(f) ≤
∫
C

f(x) dµ.
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Hence

IC(f) =

∫
C

f(x) dµ,

as required.

Note that the order in which the integrations are performed in the re-
peated integral plays no role in the above proof. We may therefore deduce
the following important corollary.

Corollary 6.19 Let f be a continuous real-valued function defined over some
closed rectangle C in R2, where

C = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}.

Then ∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.

Proof It follows directly from Theorem 6.18 that the repeated integrals∫ b

a

(∫ d

c

f(x, y) dy

)
dx and

∫ d

c

(∫ b

a

f(x, y) dx

)
dy

are both equal to the Riemann integral of the function f over the rectangle C.
Therefore these repeated integrals must be equal.

Example Let f :R2 → R be defined such that

f(x, y) =


4xy(x2 − y2)

(x2 + y2)3
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Set u = x2 + y2. Then

f(x, y) =
2x(2x2 − u)

u3

∂u

∂y
,

and therefore, when x 6= 0,∫ 1

y=0

f(x, y) dy =

∫ x2+1

u=x2

(
4x3

u3
− 2x

u2

)
du

=

[
−2x3

u2
+

2x

u

]x2+1

u=x2

= − 2x3

(x2 + 1)2
+

2x

x2 + 1

=
2x

(x2 + 1)2
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It follows that∫ 1

x=0

(∫ 1

y=0

f(x, y) dy

)
dx =

∫ 1

x=0

2x

(x2 + 1)2
dx

=

[
− 1

x2 + 1

]1

0

=
1

2
.

Now f(y, x) = −f(x, y) for all x and y. Interchanging x and y in the above
evaluation, we find that∫ 1

y=0

(∫ 1

x=0

f(x, y) dx

)
dy =

∫ 1

x=0

(∫ 1

y=0

f(y, x) dy

)
dx

= −
∫ 1

x=0

(∫ 1

y=0

f(x, y) dy

)
dx

= −1

2
.

Thus ∫ 1

x=0

(∫ 1

y=0

f(x, y) dy

)
dx 6=

∫ 1

y=0

(∫ 1

x=0

f(x, y) dx

)
dy.

when

f(x, y) =
4xy(x2 − y2)

(x2 + y2)3

for all (x, y) ∈ R2 distinct from (0, 0). Note that, in this case f(2t, t)→ +∞
as t → 0+, and f(t, 2t) → −∞ as t → 0−. Thus the function f is not
continuous at (0, 0) and does not remain bounded as (x, y)→ (0, 0).
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