
Module MA2321—Analysis in Several Real Variables.
Michaelmas Term 2017.
Assignment II

1. Let cosh y = 1
2
(ey +e−y) and sinh y = 1

2
(ey−e−y) for all real numbers y,

and let ϕ:R2 → R2 be the mapping from R2 to R2 defined such that

ϕ(x, y) = (cos x cosh y,− sinx sinh y)

for all real numbers x and y. Let (p, q) ∈ R2. Determine the derivative
(Dϕ)p.q of the mapping ϕ at (p, q), and determine the values of real
numbers r and θ with the property that

(Dϕ)p,q =

(
r cos θ −r sin θ
r sin θ r cos θ

)
,

expressing r and cos θ and sin θ in terms of p and q.

Let ϕ(x, y) = (u, v). Then

∂u

∂x
= − sinx cosh y,

∂u

∂y
= cos x sinh y,

∂v

∂x
= − cosx sinh y,

∂v

∂y
= − sinx cosh y.

It follows that

(Dϕ)p,q =

(
− sin p cosh q cos p sinh q
− cos p sinh q − sin p cosh q

)
.

It follows that

r2 = sin2 p cosh2 q + cos2 p sinh2 q

= sin2 p (1 + sinh2 q) + cos2 p sinh2 q)

= sin2 p+ sinh2 q.

Thus r =
√

sin2 p+ sinh2 q. (Alternative solution: r =
√

cosh2 q − cos2 p.)

It follows that

cos θ = − sin p cosh q√
sin2 p+ sinh2 q

, sin θ = − cos p sinh q√
sin2 p+ sinh2 q

.
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(Alternative solution:

cos θ = − tan p√
tan2 p+ tanh2 q

, sin θ = − tanh q√
tan2 p+ tanh2 q

.)

2. For each positive real number k, let fk be the function from R2 to R
defined such that fk(0, 0) = 0 and

fk(x, y) =
x4 + y4

(x2 + y2)k

for all points (x, y) of R2 distinct from (0, 0). Determine the values
of the positive real number k for which the corresponding function fk
is continuous at (0, 0). Determine also the values of the positive real
number k [N.B. “integer k in question as distributed”] for which the
corresponding function fk is differentiable at (0, 0).

Let (x, y) ∈ R2, where (x, y) 6= (0, 0). Then

fk(tx, ty) = t4−2kf(x, y),

fk(tx, ty)√
x2 + y2

= t4−2k−1f(x, y)

for all t > 0. It follows that if (x, y) 6= (0, 0) then

fk(tx, ty)→ +∞ as t→ 0+

unless 4−2k ≥ 0. Thus the function f is not continuous at (0, 0) when
k > 2. Also

fk(tx, ty)√
x2 + y2

→ +∞ as t→ 0+

unless 4 − 2k − 1 ≥ 0. Thus the function fk is not differentiable at
(0, 0) when k > 3

2
.

Now x4 + y4 ≤ (x2 + y2)2, and therefore

fk(x, y) ≤ (x2 + y2)2−k.

Suppose that k < 2. Given some positive real number ε, let δ1 = ε
1

4−2k .
Then δ1 > 0, and if

√
x2 + y2 < δ1 then

0 ≤ fk(x, y) < δ4−2k1 = ε.

It follows that fk is continuous at (0, 0) when k < 2.
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Next suppose that k < 3
2
. Given some positive real number ε, let

δ2 = ε
1

4−2k . Then δ2 > 0, and if
√
x2 + y2 < δ2 then

0 ≤ fk(x, y)√
x2 + y2

< δ3−2k2 = ε.

It follows that fk is differentiable at (0, 0) when k < 3
2
.

Suppose that k = 2. Then

f2(t, t) =
2t4

4tk
=

1

2

when t > 0, but f2(0, 0) = 0. It follows that f2 is not continuous at
(0, 0).

Note that

∂f 3
2
(x, y)

∂x

∣∣∣∣∣
(0,0)

= 0 and
∂f 3

2
(x, y)

∂y

∣∣∣∣∣
(0,0)

= 0.

Thus if the function f 3
2

were differentiable at (0, 0) then it would follow
that

lim
(x,y)→(0,0)

f 3
2
(x, y)√
x2 + y2

= 0.

But this is not the case. Indeed

f 3
2
(x, y)√
x2 + y2

= f2(x, y)

for all (x, y) ∈ R2, and we have already shown that the limit of f2(x, y)
as (x, y)→ (0, 0) does not exist. It follows therefore that the function
f 3

2
is not differentiable at (0, 0).

Notes:

• The question as distributed inadvertently restricted k to integer
values for discussing differentiability. Thus for the question, as
distributed and assessed, it was sufficient to establish that fk was
differentiable for k = 1, but not differentiable for integers greater
than or equal to two.
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• An argument that, for example, shows that lim
t→0+

fk(tx, ty) does

not exist for k > 2 and is non-zero, for some (x, y), is enough to
show that lim

(x,y)→(0,0)
f(x, y) either doesn’t exist or is not equal to

(0, 0) in cases when k ≥ 2. Thus establishes that, the condition
that 0 < k < 2 is a necessary condition for continuity at the
origin. However this type of argument, by itself, does not prove
that 0 < k < 2 is a sufficient condition for continuity at the origin.

• Look at the expression for fk in polar coordinates, we find that

fk(r cos θ, r sin θ) = r4−2k(cos4 θ + sin4 θ).

Now cos4 θ+sin4 θ ≤ 1 for all real numbers θ. (For the purposes of
the proof, it is sufficient to note that cos4 θ+ sin4 θ ≤ 2.) We then
find that fk(r cos θ, r sin θ) ≤ r4−2k. Alternatively, it follows from
the inequality x4 + y4 ≤ (x2 + y2)2 that fk(x, y) ≤ (x2 + y2)2−k.
Now, by basic ε − −δ, or something similar, (x2 + y2)2−k → 0
as (x, y) → (0, 0). So, by the Squeeze Theorem, fk(x, y) → 0
as (x, y) → (0, 0). Alternatively one can use the general propo-
sition that if f(x, y) = g(x, y)h(x, y), where g(x, y) → 0 and
h(x, y) remains bounded as (x, y) → (0, 0), then f(x, y) → 0 as
(x, y) → (0, 0). There are various alternative ways of presenting
the argument. But some such approach is needed to prove the
existence of the two-dimensional limit required to show that the
condition 0 < k < 2 is a sufficient condition for the function fk
to be continuous at zero.

• In relation to differentiability for 0 < k < 3
2
, one could com-

pute first order partial derivatives away from zero, and show that
they tend to the limit zero as (x, y) → (0, 0). But this involves
unnessarary computations. In fact, looking at the values of the
function fk along the coordinate axes, it is clear that the first or-
der partial derivatives of fk with respect to (0, 0) are zero at the
origin. These partial derivatives would determine the derivative
of the function fk, were that function differentiable, and thus, if
differentiable, the function fk would have zero derivative at the
origin. Thus, applying directly the definition of differentiability,
we see that the function fk is differentiable at the origin if and
only if fk− 1

2
(x, y) → 0 as (x, y) → (0, 0). Moreover this is the

case if and only if fk− 1
2

is continuous at the origin. Hence the

sufficiency of the condition 0 < k < 3
2

to ensure differentiability
in fact follows directly from the continuity result.
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