Module MA2321—Analysis in Several Real Variables.
Michaelmas Term 2017.
Assignment I1

1. Letcoshy = (¥ +e7Y) and sinhy = $(e¥ —e™Y) for all real numbers y,
and let p: R? — R? be the mapping from R? to R? defined such that

o(z,y) = (cosz coshy, — sin z sinh y)

for all real numbers x and y. Let (p,q) € R?. Determine the derivative
(D),.q of the mapping ¢ at (p,q), and determine the values of real
numbers r and 6 with the property that

rcosf) —rsinf
rsinf rcosf ’

Doy = (

expressing v and cos @ and sin @ in terms of p and q.
Let p(z,y) = (u,v). Then

ou )

— = —sinx coshy,
ox

0

4~ cosz sinh y,
dy

0

- — cos x sinh y,
Ox

v )

— = —sinx coshy.
Ay

It follows that

[ —sinpcoshgq cosp sinhgq
(Dp)pq = < —cosp sinhg —sinp coshgq ) '

It follows that

r? = sin®p cosh? ¢ + cos? p sinh? ¢

— sin?p (1 + sinh? ¢) + cos? p sinh? q)
= sin?p +sinh?q.

Thus r = /sin? p + sinh? ¢. (Alternative solution: r = \/cosh? g — cos? p.)
It follows that
sin p cosh ¢

\/ sin? p + sinh? ¢

cos p sinh g

cost = — .
\/sin2 p + sinh? ¢

, sinf = —
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(Alternative solution:

tanp tanh ¢

, sinf = — :
\/tan2 p + tanh? ¢ \/tan2 p + tanh? ¢

cosf = —

. For each positive real number k, let f, be the function from R? to R
defined such that f,(0,0) =0 and

rt+ y4

fi(z,y) = @+ )

for all points (x,y) of R* distinct from (0,0). Determine the values
of the positive real number k for which the corresponding function fy
is continuous at (0,0). Determine also the values of the positive real
number k [N.B. “integer k in question as distributed”] for which the
corresponding function f, is differentiable at (0,0).

Let (z,y) € R?, where (x,y) # (0,0). Then

fk(txa ty) = t4_2kf(x7 y)7

fk;tzx_a'—t;y/l _ t4_2k_1f($, y>

for all ¢ > 0. It follows that if (z,y) # (0,0) then
fe(tz,ty) — +oo ast — 0F

unless 4 — 2k > 0. Thus the function f is not continuous at (0,0) when

k> 2. Also
fk(tx7ty)

unless 4 — 2k — 1 > 0. Thus the function f; is not differentiable at
(0,0) when k > 2.

Now z* + 3% < (2% + »?)?, and therefore

— +4ooast — 0"

fulz,y) < (2® + 7).

Suppose that k < 2. Given some positive real number ¢, let §; = £T,

Then §; > 0, and if /22 + y2 < 0; then
0< fil(z,y) <o =e.

It follows that fj is continuous at (0,0) when k < 2.
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Next suppose that k£ < % Given some positive real number ¢, let

Oy = £7% . Then 09 > 0, and if \/x2 4+ y? < do then

fk(xvy)
N

It follows that fy is differentiable at (0,0) when k < 3.
Suppose that &k = 2. Then

0< <63 = ¢,

200 1
tt)="" ==
when ¢ > 0, but f»(0,0) = 0. It follows that f; is not continuous at
(0,0).

Note that
Ofs(x,y Ofs(x,y
—2( ) =0 and —2< ) =0.
ox Jy
(0,0) (0,0)
Thus if the function f% were differentiable at (0,0) then it would follow
that
, fs(z,y)
lim ——— =0.
(z.y)=(0,0) /22 4 12
But this is not the case. Indeed
fs(z,y)
2 = f2 (']:7 y)

for all (z,y) € R?, and we have already shown that the limit of f5(x,y)
as (x,y) — (0,0) does not exist. It follows therefore that the function
f3 1s not differentiable at (0,0).

Notes:

e The question as distributed inadvertently restricted k£ to integer
values for discussing differentiability. Thus for the question, as
distributed and assessed, it was sufficient to establish that f, was
differentiable for k£ = 1, but not differentiable for integers greater
than or equal to two.



e An argument that, for example, shows that lim+ fr(tz, ty) does
t—0

not exist for £ > 2 and is non-zero, for some (z,y), is enough to

show that ( I)mr% : f(z,y) either doesn’t exist or is not equal to
z,y)—(0,0
(0,0) in cases when k& > 2. Thus establishes that, the condition

that 0 < k < 2 is a necessary condition for continuity at the
origin. However this type of argument, by itself, does not prove
that 0 < k < 2is a sufficient condition for continuity at the origin.

e Look at the expression for f; in polar coordinates, we find that
fr(r cosf,r sinf) = r*=%*(cos*  + sin* 9).

Now cos* f+4sin® § < 1 for all real numbers 6. (For the purposes of
the proof, it is sufficient to note that cos* @ +sin*6 < 2.) We then
find that fi(r cosf,r sinf) < r*=2*. Alternatively, it follows from
the inequality z* + y* < (22 + 3?)? that fi(z,y) < (2% + y?)* ",
Now, by basic ¢ — —§, or something similar, (2 + y*)?7% — 0
as (z,y) — (0,0). So, by the Squeeze Theorem, fi(z,y) — 0
as (z,y) — (0,0). Alternatively one can use the general propo-
sition that if f(z,y) = g(x,y)h(z,y), where g(z,y) — 0 and
h(z,y) remains bounded as (x,y) — (0,0), then f(z,y) — 0 as
(x,y) — (0,0). There are various alternative ways of presenting
the argument. But some such approach is needed to prove the
existence of the two-dimensional limit required to show that the
condition 0 < k < 2 is a sufficient condition for the function fj

to be continuous at zero.

e In relation to differentiability for 0 < k£ < %, one could com-
pute first order partial derivatives away from zero, and show that
they tend to the limit zero as (z,y) — (0,0). But this involves
unnessarary computations. In fact, looking at the values of the
function f; along the coordinate axes, it is clear that the first or-
der partial derivatives of f; with respect to (0,0) are zero at the
origin. These partial derivatives would determine the derivative
of the function f;, were that function differentiable, and thus, if
differentiable, the function f; would have zero derivative at the
origin. Thus, applying directly the definition of differentiability,
we see that the function f; is differentiable at the origin if and
only if f_1(x,y) — 0 as (z,y) — (0,0). Morcover this is the
case if and only if fk_% is continuous at the origin. Hence the
sufficiency of the condition 0 < k < g to ensure differentiability
in fact follows directly from the continuity result.



