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Module MA2321—Analysis in Several Real Variables.
Michaelmas Term 2017.
Assignment II

1. Let cosh y = 1
2
(ey +e−y) and sinh y = 1

2
(ey−e−y) for all real numbers y,

and let ϕ:R2 → R2 be the mapping from R2 to R2 defined such that

ϕ(x, y) = (cos x cosh y,− sinx sinh y)

for all real numbers x and y. Let (p, q) ∈ R2. Determine the derivative
(Dϕ)p.q of the mapping ϕ at (p, q), and determine the values of real
numbers r and θ with the property that

(Dϕ)p,q =

(
r cos θ −r sin θ
r sin θ r cos θ

)
,

expressing r and cos θ and sin θ in terms of p and q.

2. For each positive real number k, let fk be the function from R2 to R
defined such that fk(0, 0) = 0 and

fk(x, y) =
x4 + y4

(x2 + y2)k

for all points (x, y) of R2 distinct from (0, 0). Determine the values of
the positive real number k for which the corresponding function fk is
continuous at (0, 0). Determine also the values of the positive integer k
for which the corresponding function fk is differentiable at (0, 0).
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