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10 Second Order Partial Derivatives and the
Hessian Matrix

10.1 Second Order Partial Derivatives

Let X be an open subset of R" and let f: X — R be a real-valued function
on X. We consider the second order partial derivatives of the function f

defined by
o'f 0 [of

We shall show that if the partial derivatives
of  of o f o*f

81'7;’ &cj’ &claxj and &Uj&cl

all exist and are continuous then

orf o
8331-8%- N 81']8.T1

First though we give a counterexample which demonstrates that there exist
functions f for which
0 f 0 f
8:16,093]- 09333171 ’

Example Let f:R? — R be the function defined by
———— 1
f(ili', y) = x? + y2
0 if (z,y) = (0,0).

For convenience of notation, let us write

folz,y) = 8f((;;y)7
filzy) = %a;y)?
fay(@,y) 82(;;525)
Frolz,y) = %
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If (z,y) # (0,0) then

(3z%y — y*)(2® + ) — 22%y(2* — y?)

fo = (22 + 42)?
3zty + 3x%y® — 2%y — b — 22ty + 22293
- (22 + y2)?2
2y + dz2yP — o

(22 + 2)?
Similarly
f = —xy4 — 4a3y? + 2P
L (x2 4 y2)2
(This can be deduced from the formula for f, on noticing that f(z,y) changes

sign on interchanging the variables z and y.)
Differentiating again, when (z,y) # (0,0), we find that

fay(2,y) = %
(—y* = 122%y* + 52*)(2” + y°)
- (% +y?)?
—4x(—zyt — 4a3y® + 2°)
(2 +y?)°
- —x?y* — 12242 + 528 — 9% — 1222y + 5aty?
a (22 + y2)3
422yt + 1621y? — 42°
(22 + 12)3
a4 9aty? — 922yt —yf°
(22 + y?)°

Now the expression just obtained for f,, when (z,y) # (0,0) changes
sign when the variables x and y are interchanged. The same is true of the
expression defining f(x,y). It follows that f,,. We conclude therefore that
if (z,y) # (0,0) then

2% + 9xty? — 9%yt — ¢/F

f;cy = fyz = (ZL‘2 T y2)3

Now if (z,y) # (0,0) and if r = \/2? + 32 then

zty + 42ty — P 6P

= 6r.
ra

| fa (2, 9)

rd
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It follows that
lim )fz(:v,y) =0.

(@,y)—(0,0
Similarly
hm x, — 0
($,y)—>(070) fy( y)
However
hm 2y Ty
(z,y)—(0,0) f y( y>
does not exist. Indeed
: . S
lim fo (2,0) = lim f,u(2,0) = lim —5 =1,
.6

Next we show that f,, f,, fiy, and f,, all exist at (0,0), and thus exist
everywhere on R?. Now f(x,0) = 0 for all z, hence f,(0,0) = 0. Also
f(0,y) =0 for all y, hence f,(0,0) = 0. Thus

fy(l'70) =, f:ﬂ(07y>:_y
for all z,y € R. We conclude that

d(fy(x,0))

0.0 -

fyl‘(oa 0) -

Thus

at (0,0).

Observe that in this example the functions f;, and f,, are continuous
throughout R? \ {(0,0} and are equal to one another there. Although the
functions f,, and f,, are well-defined at (0,0), they are not continuous at

(0,0) and f.,(0,0) # f,2(0,0).

Theorem 10.1 Let X be an open set in R? and let f: X — R be a real-valued
function on X. Suppose that the partial derivatives

g % and Of
ox’ Oy Oxdy
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exist and are continuous throughout X . Then the partial derivative

o0 f
Oyox

exists and is continuous on X, and

2 0
oxdy  Oydx’
Proof Let
_of _of O 0
fx(may> - (9.%7 fy(xay) - 8y7 fa:y - 8:683/ and fy:z: - 83/8:1:

and let (a,b) be a point of X. The set X is open in R™ and therefore there
exists some positive real number L such that (a + h,b + k) € X for all
(h, k) € R? satisfying |h| < L and |k| < L. Let

S(h,k) = f(a+h,b+k)— f(a+h,b) — f(a,b+ k) + f(a,b)

for all real numbers h and k satisfying |h| < L and |k| < L. We use the Mean
Value Theorem (Theorem 2.2) to prove the existence of real numbers u and
v, where u lies between a and a + h and v lies between b and b+ k, for which

S(h, k) = hk

— W foy 1, 0).
(z,y)=(u,v)

Let h be fixed, where |h| < L, and let ¢: (b — L,b+ L) — R be defined so
that q(t) = f(a+ h,t) — f(a,t) for all real numbers ¢ satisfying b — L < t <
b+ L. Then S(h,k) = q(b+ k) — q(b). But it follows from the Mean Value
Theorem (Theorem 2.2) that there exists some real number v lying between b
and b+k for which ¢(b+k) —q(b) = kq¢'(v). But ¢'(v) = fy(a+h,v)— f,(a,v).
It follows that

S(h, k) =k(fy(a+ h,v) — f,(a,v)).

The Mean Value Theorem can now be applied to the function sending real
numbers s in the interval (e — L,a + L) to f,(s,v) to deduce the existence
of a real number u lying between a and a + h for which

S(h, k) = hk fuy(u,v).

Now let some positive real number € be given. The function f,, is contin-
uous. Therefore there exists some real number ¢§ satisfying 0 < § < L such
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that |fu,(a+h,b+k)— fzy(a,b)] < e whenever |h| < ¢ and |k| < d. It follows

that
S(h, k)

hk
for all real numbers h and k satisfying 0 < |h| < ¢ and 0 < |k|] < §. Now

S(h, k) 1. fla+hb+k)— fla,b+k)

— fay(a,b)| <e¢

R L h
1 _
1y flathb) — fa,b)
k h—0
_ fx(aab+k>_fx(aab>
= 2 .

It follows that
fx(aa b + k) - fx(aa b)
k

— fay(a,b)] <¢

fe(a,b+ k) — f.(a,b)

tends to f,y(a,b) as k tends to zero, and therefore the second order partial
derivative f,, exists at the point (a,b) and

f(am:hmﬁWW+@—nm@

k=0 k

whenever 0 < |k| < §. Thus the difference quotient

= facy(aa b)7
as required. Jj

Corollary 10.2 Let X be an open set in R™ and let f: X — R be a real-
valued function on X. Suppose that the partial derivatives

of p 0% f
83:2- an 31’18:15]

exist and are continuous on X for all integers i and j between 1 and n. Then

o’f O*f
8@-896]- N 81’]8331

for all integers i and j between 1 and n.

10.2 Maxima and Minima for Functions of Several Real
Variables

Let f: X — R be a real-valued function defined over some open subset X of
R™ whose first and second order partial derivatives exist and are continuous
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throughout X. Suppose that f has a local minimum at some point p of X,
where p = (p1,p2, ..., pn). Now for each integer i between 1 and n the map

t— f(p1,. Pic1,t,Dit1y - Dn)

has a local minimum at ¢ = p;, hence the derivative of this map vanishes
there. Thus if f has a local minimum at p then

of

=0.
af[]i x=p

In many situations the values of the second order partial derivatives of
a twice-differentiable function of several real variables at a stationary point
determines the qualitative behaviour of the function around that stationary
point, in particular ensuring, in some situations, that the stationary point is
a local minimum or a local maximum.

Lemma 10.3 Let f be a continuous real-valued function defined throughout
an open ball in R™ of radius R about some point p. Suppose that the partial
derivatives of f of orders one and two exist and are continuous throughout

this open ball. Then there exists some real number 0 satisfying 0 < 6 < 1 for
which

f(p+h) = +th

p+6h
for all h € R™ satisfying |h| < 0.

Proof Let h satisfy |h| < R, and let

q(t) = f(p +th)

for all t € [0,1]. It follows from the Chain Rule for functions of several
variables (Theorem 8.12) that

"(t) = th(akf)<p + th)

=1
and

= > hih(9;001)(p + th),

jk=1
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where

Of (x1,z9,...,2p)

(ajf)(xl,l’g, . 7:L’n) =

8xj
and 52 ( )
. T1,X2,...,Tp
(8j8kf)($lax27"'7wn) - ax]axk :
Now

q(1) = q(0) + ¢'(0) + 5¢"(0)
for some real number 6 satisfying 0 < # < 1. (see Proposition 2.3). It follows
that

f(p+h) = +th Of)(p Zhhkﬁﬁkf)(p+9h)

jk 1
= h hih

f(pH; ’“a Z J"‘ax]axk

as required. |}

+0h

Let f be a real-valued function of several variables whose first second order
partial derivatives exist and are continuous throughout some open neighbour-
hood of a given point p, and let R > 0 be chosen such that the function f is
defined throughout the open ball of radius R about the point p. It follows
from Lemma 10.3 that if

af | 0

al’j p

for j =1,2,...,n, and if |h| < R then

i = 1)+ § 35 L

=1 j=1

x=p+6h

for some 6 satisfying 0 < 6 < 1.
Let us denote by (H; ;(p)) the Hessian matriz at the point p, defined by

w\P) = 81‘181‘]

X=p

If the partial derivatives of f of second order exist and are continuous then
H, ;(p) = H;,(p) for all i and j, by Corollary 10.2. Thus the Hessian matrix
is symmetric.

We now recall some facts concerning symmetric matrices.
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Let (¢; ;) be a symmetric n x n matrix.

The matrix (¢; ;) is said to be positive semi-definite if Z Z cijhih; >0
i=1 j=1

for all (hq, ho, ..., h,) € R™.
The matrix (¢, ;) is said to be positive definite if Z Z c;jhih; > 0 for

i=1 j=1
all non-zero (hq, hs, ..., h,) € R™

The matrix (¢; ;) is said to be negative semi-definite if Z Z cijhih; <0
i=1 j=1

for all (hy, ha, ..., h,) € R™.
The matrix (c; ;) is said to be negative definite if Z Zci,jhihj < 0 for

i=1 j=1
all non-zero (hy, ha, ..., h,) € R™

The matrix (¢;;) is said to be indefinite if it is neither positive semi-
definite nor negative semi-definite.

Lemma 10.4 Let (¢; ;) be a positive definite symmetric n x n matriz. Then
there exists some € > 0 with the following property: if all of the components
of a symmetric n x n matriz (b; ;) satisfy the inequality |b; ; — ¢; ;| < € then
the matriz (b; ;) is positive definite.

Proof Let S"! be the unit n — 1-sphere in R" defined by
St ={(hy,hg,...,hy,) ER" K2 + A5+ -+ h: =1}
Observe that a symmetric n x n matrix (b; ;) is positive definite if and only

if
Z Z bi,jhihj >0

i=1 j=1
for all (hy,ha, ..., h,) € S*~1. Now the matrix (c; ;) is positive definite, by

assumption. Therefore
Z Z Ci,jhihj >0
i=1 j=1
for all (hl, ]’LQ, R 7hn) S Sn—l'
But S"7! is a closed bounded set in R", it therefore follows from The-
orem 5.5 that there exists some (ki, ks, ..., k,) € S" ! with the property

that L I
Z Z Ci,jhihj Z Z Z Ci,jkikj

i=1 j=1 i=1 j=1
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for all (hy, ho, ..., h,) € S*1. Let

A= i i Ci,jkikj-

i=1 j=1

Then A > 0 and o
Z Z Ci,jhihj Z A
i=1 j=1

for all (hy, ho, ..., h,) € S"71. Set e = A/n?.
If (b;;) is a symmetric n x n matrix all of whose components satisfy
’bi,j — Ci,j| < ¢ then

ii(bm‘ — ¢ j)hih;| < en® = A,

i=1 j=1

for all (hy,ho,...,h,) € S"1 hence

En: Zn: bijhil; > 2": zn:cwhihj —A>0

i=1 j=1 i=1 j=1

for all (hy, ha, ..., hy,) € S*~!. Thus the matrix (b;;) is positive-definite, as
required. |

Using the fact that a symmetric n X n matrix (¢; ;) is negative definite
if and only if the matrix (—¢;;) is positive-definite, we see that if (c; ;) is
a negative-definite matrix then there exists some ¢ > 0 with the following
property: if all of the components of a symmetric n X n matrix (b; ;) satisfy
the inequality |b;; — ¢; j| < € then the matrix (b; ;) is negative definite.

Let f: X — R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set X in
R™. Let p be a point of X. We have already observed that if the function f
has a local maximum or a local minimum at p then

af

8302- x=p

=0 (i=1,2,...,n).

We now study the behaviour of the function f around a point p at which
the first order partial derivatives vanish. We consider the Hessian matrix
(H;j(p)) defined by

0% f

8xi8xj x=p

Hi,j(l))
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Lemma 10.5 Let f: X — R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set X in R™, and let p be a point of X at which

af

3@- x=p

=0 (1=1,2,...,n).

If f has a local minimum at a point p of X then the Hessian matriz (H; ;(p))
at p is positive semi-definite.

Proof The first order partial derivatives of f are zero at p. It follows that,
given any vector h € R which is sufficiently close to 0, there exists some 6
satisfying 0 < 6 < 1 (where 6 depends on h) such that

Fp+1) = F(p)+ 5 D05 hulyHiy(p + 0h),

i=1 j=1

where
o*f

00 |, on

H;;(p+6h) =

(see Lemma 10.3).
It follows from this result that

t—0 t2 -

i=1 j=1
The result follows. |

Let f: X — R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set X in R”,
and let p be a point at which the first order partial derivatives of f vanish.
The above lemma shows that if the function f has a local minimum at h
then the Hessian matrix of f is positive semi-definite at p. However the fact
that the Hessian matrix of f is positive semi-definite at p is not sufficient to
ensure that f is has a local minimum at p, as the following example shows.

Example Consider the function f:R? — R defined by f(x,y) = 2* — >
Then the first order partial derivatives of f vanish at (0,0). The Hessian
matrix of f at (0,0) is the matrix

20
00
and this matrix is positive semi-definite. However (0,0) is not a local mini-

mum of f since f(0,y) < f(0,0) for all y > 0.
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The following theorem shows that if the Hessian of the function f is
positive definite at a point at which the first order partial derivatives of f
vanish then f has a local minimum at that point.

Theorem 10.6 Let f: X — R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set X in R™, and let p be a point of X at which

=0 =1,2,...,n).
amix:p (Z ) 7”)

Suppose that the Hessian matriz (H; j(p)) at p is positive definite. Then f
has a local minimum at p.

Proof The first order partial derivatives of f vanish at p. It therefore follows
from Taylor’s Theorem that, for any h € R™ which is sufficiently close to 0,
there exists some 6 satisfying 0 < 6 < 1 (where ¢ depends on h) such that

Fp+h) = F(p)+ 5 D05 hulyHiy(p+ 0h),

i=1 j=1

where
0 f
8362- 896]-

H; ;(p +6h) =

x=p+6h

(see Lemma 10.3). Suppose that the Hessian matrix (H;;(p)) is positive
definite. It follows from Lemma 10.4 that there exists some ¢ > 0 such that
if |H; ;(x) — H; j(p)| < ¢ for all  and j then (H; ;(x)) is positive definite.

But it follows from the continuity of the second order partial derivatives
of f that there exists some 6 > 0 such that |H; ;(x) — H; ;(p)| < ¢ whenever
|x —p| < 0. Thus if |h| < § then (H,;(p + ¢h)) is positive definite for all
0 € (0,1) so that f(p+h) > f(p). Thus p is a local minimum of f. |

A symmetric n x n matrix C is positive definite if and only if all its
eigenvalues are strictly positive. In particular if n = 2 and if \; and A\, are
the eigenvalues of a symmetric 2 x 2 matrix C', then

A+ Ay = trace C, AAg = det C.

Thus a symmetric 2 x 2 matrix C' is positive definite if and only if its trace
and determinant are both positive.
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Example Consider the function f:R? — R defined by
flz,y) =42 + 3y — 20y — 2 — 2y — y°.

Now

of (z,y)

ox = (0,0),

(x’y):(o’o)

The Hessian matrix of f at (0,0) is

(55

The trace and determinant of this matrix are 14 and 44 respectively. Hence
this matrix is positive definite. We conclude from Theorem 10.6 that the
function f has a local minimum at (0, 0).
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